JPH0249761A - Production of organic monochlorosulfonate - Google Patents

Production of organic monochlorosulfonate

Info

Publication number
JPH0249761A
JPH0249761A JP19890988A JP19890988A JPH0249761A JP H0249761 A JPH0249761 A JP H0249761A JP 19890988 A JP19890988 A JP 19890988A JP 19890988 A JP19890988 A JP 19890988A JP H0249761 A JPH0249761 A JP H0249761A
Authority
JP
Japan
Prior art keywords
sulfite
reaction
organic
aqueous solution
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19890988A
Other languages
Japanese (ja)
Inventor
Toru Matsuoka
亨 松岡
Hiroyuki Katayama
片山 弘幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP19890988A priority Critical patent/JPH0249761A/en
Publication of JPH0249761A publication Critical patent/JPH0249761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the title substance useful as an alkylsulfonating agent in high selectivity, purity and yield by reacting an organic dichloride with a sulfite in an aqueous solution containing a water-miscible polar solvent at a temperature above the boiling point thereof. CONSTITUTION:An organic dichloride (e.g., dichloromethane) is reacted with a sulfite (e.g., Na2SO3) at >=1.1 molar ratio in an aqueous solution containing 10-45wt.% polar solvent (preferably methanol, ethanol, n-and isopropanol) miscible with water at ordinary temperature to 130 deg.C at a temperature above the boiling point thereof to afford the title substance. The volume ratio of the sulfite/reaction medium is <=0.67mol/l. If the methanol or ethanol is used as the polar solvent, the above-mentioned volume ratio is preferably 0.33-0.56mol/l and the molar ratio of organic dichloride/sulfite is preferably 1.5-5.0.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、有機モノクロロスルホン酸塩の選択的製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for selectively producing organic monochlorosulfonate.

そして、この有機モノクロロスルホン酸塩は、アルキル
スルホン化剤として界面活性剤、あるいは医薬原体等の
製造に利用される有用な化合物である。
This organic monochlorosulfonate is a useful compound that is used as an alkyl sulfonating agent in the production of surfactants, pharmaceutical ingredients, and the like.

[従来の技術] 一般に、有機モノハロゲン化合物が水性媒体中で亜硫酸
塩と反応して有機スルホン酸塩を生成することはよく知
られている(The  MerckIndex  8t
h  Ed  1968 1)、1218)。しかし、
有機ジハロゲン化合物からはジスルホン酸塩の生成が優
位であり、例えば、100℃で、1,2−ジクロロエタ
ンと亜硫酸ナトリウムを反応させると、下記(1)式に
示す様にエタンジスルホン酸塩の生成が支配的となり(
J。
[Prior Art] It is generally well known that organic monohalogen compounds react with sulfites in aqueous media to produce organic sulfonates (The Merck Index 8t
h Ed 1968 1), 1218). but,
Formation of disulfonate is predominant from organic dihalogen compounds. For example, when 1,2-dichloroethane and sodium sulfite are reacted at 100°C, ethanedisulfonate is formed as shown in equation (1) below. Becomes dominant (
J.

Am、Chem、Soc、、Vo167.157g(1
945)、特開昭50−101325号公報)、亜硫酸
ナトリウムに対するエタンジスルホン酸塩の収率は42
%、また、下記(2)式に示すクロロエタンスルホン酸
塩の収率は55%と極めて低いものであった。
Am, Chem, Soc,, Vo167.157g (1
945), JP-A No. 50-101325), the yield of ethanedisulfonate based on sodium sulfite is 42
%, and the yield of chloroethanesulfonate shown in the following formula (2) was extremely low at 55%.

CIC2H4C1+2Na2S03→ Na0a 5c2H4So3Na+2NaCl  (1
)CIC2H4C1十Na2SO3→ CIc2H4So3Na十NaCl      (2)
そして、これまで有機モノハロゲンスルホン酸塩の実用
的な合成法としては、いずれも、塩素化合物より高価な
含臭素化合物を原料として用いる次の(a) 、(b)
の方法が知られているに過ぎない。
CIC2H4C1+2Na2S03→ Na0a 5c2H4So3Na+2NaCl (1
)CIC2H4C10Na2SO3→ CIc2H4So3Na10NaCl (2)
Up until now, practical methods for synthesizing organic monohalogen sulfonates have been the following methods (a) and (b), which use bromine-containing compounds, which are more expensive than chlorine compounds, as raw materials.
There is only one known method.

すなわち、(a)2種類のハロゲンを含有する一a機化
合物に亜硫酸塩を反応させ、ハロゲン種の反応性の差を
利用する方法である。この方法の例として、米国特許第
2797239号明細書が存在するが、該記載方法によ
ると、含臭素化合物として、1−ブロモ−2−クロロエ
タンを原料とし、80℃で12.8wt%の亜硫酸ナト
リウム水溶液を反応させる方法であるが、この方法は下
記(3)式(;より、モノクロロエタンスルホン酸ナト
リウムが亜硫酸ナトリウムに対して90%の収率でえら
れている。
That is, (a) a method in which a 1a compound containing two types of halogens is reacted with a sulfite and the difference in reactivity of the halogen species is utilized. As an example of this method, there is U.S. Pat. No. 2,797,239, and according to the described method, 1-bromo-2-chloroethane is used as a bromine-containing compound, and 12.8 wt% sodium sulfite is added at 80°C. This method is a method of reacting an aqueous solution, and according to the following formula (3), sodium monochloroethanesulfonate is obtained at a yield of 90% based on sodium sulfite.

BrCHC1+Na2S○3→ CI C2H4S Oa N a + N a B r
   (3>また、(b)有機ジブロマイドと亜硫酸塩
とをエタノール水溶液中で反応させる方法である。この
方法の例としては、Org、5ynth、C。
BrCHC1+Na2S○3→ CI C2H4S Oa Na + Na Br
(3> Also, (b) is a method of reacting organic dibromide and sulfite in an ethanol aqueous solution. Examples of this method include Org, 5ynth, C.

11、、VolII、p、558に記載されている様に
、50wt%エタノール水溶液中、該反応液の沸点で1
,2−ジブロモエタンと亜硫酸ナトリウムを反応させる
方法である。この方法によれば、亜硫酸ナトリウムに対
して、88%の収率でブロモエタンスルホン酸ナトリウ
ムが得られている。
11, Vol II, p. 558, 1 at the boiling point of the reaction solution in a 50 wt% aqueous ethanol solution.
, 2-dibromoethane and sodium sulfite are reacted. According to this method, sodium bromoethanesulfonate is obtained with a yield of 88% based on sodium sulfite.

BrC2H4Br+Na2SO3→ B r C2H4S O3N a + N a B r
   (4)しかし、Ind、Eng、Chem、、V
o139.906  (1947)に記載のごとく、上
記(4)式においてBrをCIに置き換えた場合、すな
わち、1.2−ジブロモエタンに代えて、12−ジクロ
ロエタンを出発原料として用いて反応を行なった場合は
、その反応の完結に、72℃でほぼ72時間と長時間を
要するともに、亜硫酸塩に対するクロロエタンスルホン
酸ナトリウム収率はたかだか78%である。
BrC2H4Br+Na2SO3→ B r C2H4S O3N a + N a Br
(4) However, Ind, Eng, Chem, ,V
o139.906 (1947), when Br was replaced with CI in the above formula (4), that is, the reaction was performed using 12-dichloroethane as the starting material instead of 1,2-dibromoethane. In this case, the reaction takes a long time, approximately 72 hours at 72°C, to complete, and the yield of sodium chloroethanesulfonate based on the sulfite is at most 78%.

この様に、出発原料として、含臭素化合物を用いた場合
は、それなりの高い収率で有機モノハロゲンスルホン酸
塩をえることが可能であったが、を機ジクロライドから
を機モノクロロスルホン酸塩を高い選択率で、効率よく
、製造する方法は未だ、確立されていないのが現状であ
る。
In this way, when a bromine-containing compound was used as a starting material, it was possible to obtain an organic monohalogen sulfonate with a reasonably high yield, but it was possible to obtain an organic monochlorosulfonate from an organic dichloride. At present, a method for producing it efficiently with high selectivity has not yet been established.

[発明が解決しようとする問題点] 本発明は、含臭素化合物に代えて、安価な有機ジクロラ
イドを出発原料として用い、しかも、短時間の反応によ
って、高収率、かつ、高選択率で高純度のモノクロロス
ルホン酸塩を製造できる方法を提供することにある。
[Problems to be Solved by the Invention] The present invention uses an inexpensive organic dichloride as a starting material instead of a bromine-containing compound, and moreover, achieves high yield and high selectivity through a short reaction time. The object of the present invention is to provide a method for producing pure monochlorosulfonate.

そして、一般に、上述の有機ジクロライドより合成され
るモノクロロスルホン酸塩、およびジスルホン酸塩類は
沸点を示さないか、沸点があっても極めて高いため、通
常の蒸留操作による精製は困難であり、反応で選択率を
高くすることは高純度の製品を得るための重要な条件で
ある。
In general, the monochlorosulfonates and disulfonates synthesized from the above-mentioned organic dichlorides do not exhibit a boiling point, or even if they do have a boiling point, they are extremely high, so it is difficult to purify them by normal distillation operations, and it is difficult to react. High selectivity is an important condition for obtaining high purity products.

さらに、反応器の容積効率をあげることも工業装置とし
ては、重要な課題である。
Furthermore, increasing the volumetric efficiency of the reactor is also an important issue for industrial equipment.

[問題点を解決するための手段] 本発明者らは、これらについて鋭意検討した結果、水と
混和する極性溶媒を含有する水溶液中で、該反応水溶液
の沸点以上の温度で反応を行なうことにより工業的製法
である本発明を完成したものである。
[Means for Solving the Problems] As a result of intensive study on these issues, the present inventors found that by carrying out the reaction in an aqueous solution containing a polar solvent that is miscible with water at a temperature equal to or higher than the boiling point of the reaction aqueous solution. The present invention, which is an industrial manufacturing method, has been completed.

すなわち、本発明は常温乃至130℃で水と混和する極
性溶媒を10〜45wt%含有する水溶液中で、有機ジ
クロライドと亜硫酸塩を該反応水溶液の沸点以上の温度
で反応させることを特徴とする有機モノクロロスルホン
酸塩の製造方法を提供するものである。
That is, the present invention is an organic compound characterized in that an organic dichloride and a sulfite are reacted in an aqueous solution containing 10 to 45 wt% of a polar solvent that is miscible with water at room temperature to 130°C at a temperature higher than the boiling point of the reaction aqueous solution. A method for producing a monochlorosulfonate is provided.

以下その詳細について説明する。The details will be explained below.

本発明で使用される有機ジクロライドとは、式%式% 表わされるアルカンもしくは、アルケン基であり、nは
工ないし6の整数を表わす)で示される化合物であり、
その具体的な化合物としては、ジクロロメタン、1.1
−ジクロロエタン、1.2−ジクロロエタン、1.2−
ジクロロプロパン、1゜2−ジクロロブタン、2,3−
ジクロロブタン、1.2−ジクロロベンクン、1.2−
ジクロロヘキサン、1,2−ジクロロエチレン、1.4
−ジクロロブテン−2等が、あげられる。
The organic dichloride used in the present invention is an alkane or alkene group represented by the formula %, where n represents an integer from 1 to 6.
Specific compounds include dichloromethane, 1.1
-dichloroethane, 1.2-dichloroethane, 1.2-
Dichloropropane, 1゜2-dichlorobutane, 2,3-
Dichlorobutane, 1.2-dichlorobencune, 1.2-
Dichlorohexane, 1,2-dichloroethylene, 1.4
-dichlorobutene-2 and the like.

また、亜硫酸塩とはM S03で示される亜硫酸塩、M
H8O3で示される亜硫酸水素塩など、およびこれらの
混合物を指し、MとしてはLi1に% Rb −、Cs
等のアルカリ金属、−価のCu。
In addition, sulfites are sulfites represented by M S03, M
It refers to hydrogen sulfite represented by H8O3, etc., and mixtures thereof, and M is % Rb −, Cs in Li1.
Alkali metals such as -valent Cu.

NH、さらに、−数式CHNHで示さ 4          n  2n+1  2れるアル
キルアミン基を指す。例えば、亜硫酸塩としでは、Na
  So  、NaH3O、K  S03、KHSO、
Li  So  、LiHSO3,Cu  S O−(
N H)   S O1(CHa NH)So、あるい
は、これらの混合物等があげられる。
NH, further refers to an alkylamine group represented by the formula CHNH. For example, as a sulfite, Na
So, NaH3O, KS03, KHSO,
LiSo, LiHSO3, CuSO-(
N H) S O1 (CHa NH) So, or a mixture thereof.

また、常7H乃至130℃で水と混和する極性溶媒の例
としては、メタノール、エタノール、n −プロパツー
ル、イソプロパツール等のアルコール類、エチレングリ
コール、プロピレングリコール、1.4−ブタンジオー
ル、1,3−ブタンジオール等のグリコール類、スルホ
ラン類、あるいは、これらの混合物等があげられる。こ
のうち、特に、メタツール、エタノール、n−プロパツ
ール、イソプロパツールを用いるのが好ましい。
In addition, examples of polar solvents that are miscible with water at a temperature of 7H to 130°C include alcohols such as methanol, ethanol, n-propatool, isopropatool, ethylene glycol, propylene glycol, 1,4-butanediol, , 3-butanediol and other glycols, sulfolanes, and mixtures thereof. Among these, it is particularly preferable to use metatool, ethanol, n-propatool, and isopropatool.

本発明においては、反応媒体の種類、およびその濃度の
選定が重要である。即ち、本発明者らは該極性溶媒水溶
液の濃度が10wt%未満では副生物であるジスルホン
酸塩の生成が著しく増加し、また、該水溶液濃度が45
wt%以上では、反応速度が減少して実用的でないこと
を見出した。
In the present invention, selection of the type of reaction medium and its concentration is important. That is, the present inventors found that when the concentration of the aqueous polar solvent solution was less than 10 wt%, the production of disulfonate as a by-product increased significantly, and when the concentration of the aqueous polar solvent solution was less than 10 wt%,
It has been found that if the content exceeds wt%, the reaction rate decreases and is not practical.

従って、該極性溶媒の水溶液濃度としては、10W【%
以上、45wt%以下が適当である。
Therefore, the concentration of the aqueous solution of the polar solvent is 10W [%
As mentioned above, 45 wt% or less is appropriate.

極性溶媒がメタノール、もしくは、エタノールを用いた
場合、20wt%ないし40 w t%の水溶液中で反
応を行なうのが好ましい。
When methanol or ethanol is used as the polar solvent, the reaction is preferably carried out in a 20 wt% to 40 wt% aqueous solution.

また、本発明において、反応液中の各成分のモル比、濃
度も選択率に影響を及ぼす重要な因子である。
Furthermore, in the present invention, the molar ratio and concentration of each component in the reaction solution are also important factors that affect the selectivity.

即ち、亜硫酸塩/反応媒体容積の比は0.67m o 
1 / l以下、有機ジクロライド/亜硫酸塩の比は1
.1mol/mo1以上で反応させることが望ましい。
That is, the ratio of sulfite/reaction medium volume is 0.67 m o
1/l or less, the organic dichloride/sulfite ratio is 1
.. It is desirable to react at 1 mol/mol or more.

その理由は、亜硫酸塩/反応媒体容積の比が0.67m
ol/1を超える場合はジスルホン酸塩の副生が増加す
ると共に、モノクロロスルホン酸塩の選択率が低下する
。亜硫酸塩/反応媒体容積の比が小さいと反応器の容積
効率が低下し、また、有機ジクロライド/亜硫酸塩の比
が1.1mol/mo1未満ではモノクロロスルホン酸
塩の収率が低下し、一方、この値が大き過ぎると反応器
の容積効率が低下するためである。そして、極性溶媒と
して、メタノールまたはエタノールを用いた場合、亜硫
酸塩/反応媒体容積の比は0.33〜0.56mo 1
/1.有機ジクロライド/亜硫酸塩の比は1.5〜5.
0mol/mo1で反応を行なうのがより好ましい。
The reason is that the ratio of sulfite/reaction medium volume is 0.67 m
If it exceeds ol/1, the by-product of disulfonate increases and the selectivity of monochlorosulfonate decreases. A small sulfite/reaction medium volume ratio reduces the volumetric efficiency of the reactor, and an organic dichloride/sulfite ratio below 1.1 mol/mol reduces the yield of monochlorosulfonate; This is because if this value is too large, the volumetric efficiency of the reactor will decrease. And when methanol or ethanol is used as the polar solvent, the ratio of sulfite/reaction medium volume is 0.33-0.56 mo 1
/1. The organic dichloride/sulfite ratio is between 1.5 and 5.
It is more preferable to carry out the reaction at 0 mol/mol.

さらに、本発明においては、該反応液の沸点以上の温度
で反応を行なう必要がある。即ち、反応液の沸点以下で
は反応速度が遅く、反応器の容積が過大となり、また、
反応温度を高くし過ぎると、好ましくない副反応が増加
する一方、反応圧力が増大して反応器の耐圧性能をあげ
るなどの対策を講じなければならない等の不都合が生じ
る。極性溶媒としてメタノールまたはエタノールを使用
した場合は、反応液の沸点以上、130℃以下の温度で
反応を行なうのが望ましい。
Furthermore, in the present invention, it is necessary to carry out the reaction at a temperature equal to or higher than the boiling point of the reaction solution. That is, below the boiling point of the reaction liquid, the reaction rate is slow, the volume of the reactor becomes excessive, and
If the reaction temperature is made too high, undesirable side reactions will increase, while the reaction pressure will increase, resulting in disadvantages such as the need to take measures such as increasing the pressure resistance of the reactor. When methanol or ethanol is used as the polar solvent, it is desirable to carry out the reaction at a temperature above the boiling point of the reaction solution and below 130°C.

反応器は、特に限定されるものではないが、オートクレ
ーブ、管状反応器、もしくは、多管式反応器いずれの形
式でもよく、また、反応液の供給方法としては、全原料
、極性溶媒および、水を最初に一括して、張り込む回分
方式、有機ジクロライド、極性溶媒および全ての水、も
しくは、一部の水を張り込み、次いで亜硫酸塩を単体も
しくは、水溶液として一定時間でフィードする半回分方
式、あるいは、全ての原料、極性溶媒および、水を一括
もしくは、分割して連続的にフィードする連続方式いず
れの方式を採用することも可能である。
The reactor is not particularly limited, but may be an autoclave, a tubular reactor, or a multitubular reactor. A batch method in which the organic dichloride, polar solvent, and all or part of the water are charged in at the beginning, a semi-batch method in which the sulfite is fed alone or as an aqueous solution over a fixed period of time, or It is also possible to adopt either a continuous method in which all raw materials, polar solvents, and water are fed all at once or in portions and continuously.

[実施例] 以下本発明をさらに実施例により説明するが、本発明は
これらに限定されるものではない。
[Examples] The present invention will be further explained below with reference to Examples, but the present invention is not limited thereto.

実施例1 オイルバスに浸漬した内容積11の耐圧ガラス製オート
クレーブに濃度40 w t%のエタノール水溶液を室
温で630m l、および純度99wt%の1,2−ジ
クロロエタン99gを張り込み、蓋を密閉後、撹拌下に
昇温し、オートクレーブ内温を100℃に維持する。次
いで、純度9[)w−t%の試薬−級亜硫酸ナトリウム
43.75gを蒸留水166m1に溶解した水溶液を約
15分間かけて定ロボンブでオートクレーブに注入する
Example 1 A pressure-resistant glass autoclave with an internal volume of 11 immersed in an oil bath was charged with 630 ml of an ethanol aqueous solution with a concentration of 40 wt% at room temperature and 99 g of 1,2-dichloroethane with a purity of 99 wt%, and after sealing the lid, The temperature is raised while stirring, and the internal temperature of the autoclave is maintained at 100°C. Next, an aqueous solution of 43.75 g of reagent-grade sodium sulfite having a purity of 9[wt%] dissolved in 166 ml of distilled water is injected into the autoclave over a period of about 15 minutes using a constant flow bomb.

原料投入完了時点でのアルコール水溶液の濃度(アルコ
ール/アルコール+水)は31wt%であり、亜硫酸塩
/反応媒体容積の比は0.42mo l / lであっ
た。
The concentration of the alcohol aqueous solution (alcohol/alcohol+water) at the time of completion of raw material input was 31 wt%, and the sulfite/reaction medium volume ratio was 0.42 mol/l.

亜硫酸ナトリウム水溶液送入完了後15分間はオートク
レーブ内容液に白濁が見られたが、その後は無色透明に
なった。
The autoclave contents were cloudy for 15 minutes after the completion of feeding the sodium sulfite aqueous solution, but became colorless and transparent after that.

さらに、45分間100℃で撹拌を続けたのぢ、オート
クレーブをオイルバスから取り出し、水槽に浸漬して内
温か30℃になるまで撹拌下で冷却した。ついで、オー
トクレーブの蓋を開き、内容物をセパラブルフラスコに
移し、これをウォーターハス中に浸漬、加熱して過剰の
1,2−ジクロロエタン、および、エタノールを留去さ
せた後、減圧下で水を蒸発させ、残渣を蒸発皿に移し8
0℃の恒温乾燥器で一夜乾燥したところ79.6gの固
形物かえられた。
After further stirring at 100°C for 45 minutes, the autoclave was taken out from the oil bath, immersed in a water bath, and cooled under stirring until the internal temperature reached 30°C. Next, the lid of the autoclave was opened and the contents were transferred to a separable flask, which was immersed in a water bath and heated to distill off excess 1,2-dichloroethane and ethanol, and then water was added under reduced pressure. Evaporate and transfer the residue to an evaporating dish.8
When dried overnight in a constant temperature dryer at 0° C., 79.6 g of solid matter was obtained.

この固形物の無機態塩素、無機態硫黄、および、シエー
ニガー法による全塩素、全硫黄含有瓜を分析し、下記の
結果をえた。
This solid substance was analyzed for inorganic chlorine and inorganic sulfur, and the total chlorine and total sulfur containing melon was analyzed by the Schieniger method, and the following results were obtained.

無機態塩素    11.8wt96 無機態硫黄     0,4 全塩素      22.7 全硫黄      11.1 一方、上記固形物を95wt%エタノールでソックスレ
ー抽出し、抽出液を室温で一夜放置したところ、針状物
の集合した板状結晶が析出した。
Inorganic chlorine 11.8wt96 Inorganic sulfur 0.4 Total chlorine 22.7 Total sulfur 11.1 On the other hand, when the above solid matter was Soxhlet extracted with 95wt% ethanol and the extract was left at room temperature overnight, needle-like particles Aggregated plate-like crystals precipitated.

これを吸引a過し、固形物を60℃の恒温乾燥機で一夜
乾燥した後、赤外吸収スペクトルの測定を行なった結果
、2−クロロエタンスルホン酸すトリウムであることが
確認できた。別に、この固形物をイオンクロマトグラフ
ィーで定量したところ、2−クロロエタンスルホン酸ナ
トリウム63.5wt%、エタンジスルホン酸ナトリウ
ムを2.4wt%含有していることが判明した。
This was filtered under suction, and the solid material was dried in a constant temperature dryer at 60° C. overnight, and then an infrared absorption spectrum was measured. As a result, it was confirmed that it was thorium 2-chloroethanesulfonate. Separately, when this solid was quantified by ion chromatography, it was found that it contained 63.5 wt% of sodium 2-chloroethanesulfonate and 2.4 wt% of sodium ethanedisulfonate.

以上の分析値より亜硫酸ナトリウムの反応率は97.5
%、亜硫酸ナトリウムに対する2−クロロエタンスルホ
ン酸ナトリウムの収率は91.1%、エタンジスルホン
酸テトリウムの収率は4゜95%であった。
Based on the above analysis values, the reaction rate of sodium sulfite is 97.5
%, the yield of sodium 2-chloroethanesulfonate based on sodium sulfite was 91.1%, and the yield of tetrium ethanedisulfonate was 4.95%.

実施例2 1.2−ジクロロエタンの使用量を116g、40wt
%エタノール水溶液630m1の代わりに、53wt%
のメタノール水溶液650m1を用いる以外は実施例1
と同様な条件にて反応を行なった。
Example 2 The amount of 1,2-dichloroethane used was 116 g, 40 wt.
% ethanol aqueous solution 630ml, 53wt%
Example 1 except that 650 ml of methanol aqueous solution of
The reaction was carried out under the same conditions.

原料投入完了時点でのアルコール水溶液の濃度は41w
t%、亜硫酸塩/反応媒体容積の比は0゜41mol/
1.有機ジクロライド/亜硫酸塩の比は3.0mo l
/mo lであった。反応温度100℃でオートクレー
ブの圧力は3.5kg/cm2Gを示した。
The concentration of alcohol aqueous solution at the time of completion of raw material input is 41w
t%, the ratio of sulfite/reaction medium volume is 0°41 mol/
1. The organic dichloride/sulfite ratio is 3.0 mol
/mol. The reaction temperature was 100°C and the autoclave pressure was 3.5 kg/cm2G.

反応完結後、実施例1と同様の処理を行なったところ、
乾燥固形物80.2gが得られた。この固形物の分析値
より亜硫酸ナトリウムの反応率は98.5%、亜硫酸ナ
トリウムに対する2−クロロエタンスルホン酸に対する
2−クロロエタンスルホン酸ナトリウムの収率は93.
5%、エタンジスルホン酸ナトリウムの収率は1.75
%であった。
After the reaction was completed, the same treatment as in Example 1 was carried out, and the result was
80.2 g of dry solid was obtained. According to the analytical values of this solid, the reaction rate of sodium sulfite is 98.5%, and the yield of sodium 2-chloroethanesulfonate relative to sodium sulfite and 2-chloroethanesulfonic acid is 93.
5%, yield of sodium ethanedisulfonate is 1.75
%Met.

実施例3 1.2ジクロロエタンのかわりに、ジクロロメタン85
gを用い、反応温度を85℃1反応時間を90分間とし
以外はた実施例2と同様の条件にて反応を行った。反応
完結後、実施例1と同(、lの処理を行なって得られた
乾燥固形物は、76.5gであった。
Example 3 Dichloromethane 85 instead of 1.2 dichloroethane
The reaction was carried out under the same conditions as in Example 2, except that the reaction temperature was 85° C. and the reaction time was 90 minutes. After the reaction was completed, the same treatment as in Example 1 was carried out, and the amount of dry solid obtained was 76.5 g.

分析値より、亜硫酸ナトリウムに対するクロロメタンス
ルホン酸ナトリウムの収率は95.3%であった。
According to the analytical values, the yield of sodium chloromethane sulfonate based on sodium sulfite was 95.3%.

実施例4 1.2−ジクロロエタンのかわりに、1.4−ジクロロ
ブテン−2を125g用い反応温度を110℃1反応時
間を120分間とした以外は実施例2と同様の条件にて
反応を行った。
Example 4 A reaction was carried out under the same conditions as in Example 2, except that 125 g of 1,4-dichlorobutene-2 was used instead of 1,2-dichloroethane, and the reaction temperature was 110°C and the reaction time was 120 minutes. Ta.

反応完結後、実施例1と同様の処理をおこなったところ
乾燥固形物88.1gが得られた。
After the reaction was completed, the same treatment as in Example 1 was carried out to obtain 88.1 g of dry solid matter.

分析値より、亜硫酸ナトリウムに対する1−クロロ−2
−ブテニルスルホン酸ナトリウムの収率は87%であっ
た。
From the analytical values, 1-chloro-2 relative to sodium sulfite
The yield of sodium -butenylsulfonate was 87%.

比較例1 40wt%エタノール水溶液630m1の代わりに、9
5wt%エタノール水溶液360g、亜硫酸ナトリウム
43.75gの代わりに、87゜5g、蒸留水166m
1の代わりに324 g、を用い、反応時間は24時間
とした以外は、実施例1と同様の条件にて反応を行った
Comparative Example 1 Instead of 630ml of 40wt% ethanol aqueous solution, 9
Instead of 360 g of 5 wt% ethanol aqueous solution and 43.75 g of sodium sulfite, 87°5 g and 166 m of distilled water were added.
The reaction was carried out under the same conditions as in Example 1, except that 324 g was used instead of 1 and the reaction time was 24 hours.

24時間経過後もオートクレーブ内容液は白濁していた
。オートクレーブ内容液を30゛Cに冷却後、遠心濾過
し、濾滓を分析したところ、無機態硫黄の含有量は22
wt%であった。これは、濾滓の大部分が亜硫酸ナトリ
ウムであることを示している。
Even after 24 hours had passed, the autoclave contents remained cloudy. After cooling the autoclave contents to 30°C, it was centrifugally filtered and the filter residue was analyzed, and the content of inorganic sulfur was found to be 22.
It was wt%. This indicates that most of the filter cake is sodium sulfite.

上記の濾液について実施例1と同様な処理を行なったと
ころ、71.6gの乾燥固形物が得られた。
When the above filtrate was treated in the same manner as in Example 1, 71.6 g of dry solid was obtained.

この固形物の分析値より、亜硫酸ナトリウムに対する2
−クロロエタンスルホン酸ナトリウムの収率は31.2
%、エタンジスルホン酸ナトリウムの収率は1.7%と
なった。
From the analysis value of this solid, 2
-The yield of sodium chloroethanesulfonate is 31.2
%, and the yield of sodium ethanedisulfonate was 1.7%.

比較例2 実施例1と同様の装置に1.2−ジクロロエタン198
 g、相聞移動触媒として5gの臭化テトラブチルアン
モニウム、および純度96wt%の亜硫酸ナトリウム1
31gを蒸留水600gに溶解した水溶液を張り込み、
110℃で1時間、反応させた。
Comparative Example 2 1,2-dichloroethane 198 was added to the same apparatus as in Example 1.
g, 5 g of tetrabutylammonium bromide as a phase transfer catalyst, and 96 wt% purity of sodium sulfite 1
Pour an aqueous solution of 31g dissolved in 600g of distilled water,
The reaction was carried out at 110°C for 1 hour.

反応後、内容液に白濁は見られなかったが、撹拌を停止
すると、2液層に分離した。
After the reaction, no cloudiness was observed in the content liquid, but when stirring was stopped, it separated into two liquid layers.

オートクレーブを水槽に浸漬して30’Cに冷却し、内
容液を分液ロートに入れ下層を分離した後、」二層につ
いて実施例1と同様の操作で乾燥させた結果、201.
5gの固形物が得られた。
The autoclave was immersed in a water tank and cooled to 30'C, the contents were put into a separating funnel to separate the lower layer, and the two layers were dried in the same manner as in Example 1.
5 g of solid was obtained.

この固形物の分析値より、亜硫酸ナトリウムに対する2
−クロロエタンスルホン酸ナトリウムの収率は34.5
%、エタンジスルホン酸ナトリウムの収率は61.5%
となった。
From the analysis value of this solid, 2
-Yield of sodium chloroethanesulfonate is 34.5
%, the yield of sodium ethanedisulfonate is 61.5%
It became.

特許出願人   東ソー株式会社 手続ネ市正書 昭和63年 8月25日Patent applicant: Tosoh Corporation Procedure Ne City Official Book August 25, 1986

Claims (1)

【特許請求の範囲】[Claims] 常温乃至130℃で水と混和する極性溶媒を10〜45
wt%含有する水溶液中で、有機ジクロライドと亜硫酸
塩を該反応水溶液の沸点以上の温度で反応させることを
特徴とする有機モノクロロスルホン酸塩の製造方法。
10 to 45% of polar solvents that are miscible with water at room temperature to 130°C
A method for producing an organic monochlorosulfonate, which comprises reacting an organic dichloride and a sulfite in an aqueous solution containing wt% at a temperature higher than the boiling point of the reaction aqueous solution.
JP19890988A 1988-08-11 1988-08-11 Production of organic monochlorosulfonate Pending JPH0249761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19890988A JPH0249761A (en) 1988-08-11 1988-08-11 Production of organic monochlorosulfonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19890988A JPH0249761A (en) 1988-08-11 1988-08-11 Production of organic monochlorosulfonate

Publications (1)

Publication Number Publication Date
JPH0249761A true JPH0249761A (en) 1990-02-20

Family

ID=16398963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19890988A Pending JPH0249761A (en) 1988-08-11 1988-08-11 Production of organic monochlorosulfonate

Country Status (1)

Country Link
JP (1) JPH0249761A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50135029A (en) * 1974-04-15 1975-10-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50135029A (en) * 1974-04-15 1975-10-25

Similar Documents

Publication Publication Date Title
Kraus et al. Chemistry of the trimethyltin group
JPH0419212B2 (en)
JPS58201738A (en) Polyalkylation of hexitols and anhydrohexitols
JPS6213345B2 (en)
JPS5835514B2 (en) Method for producing triallyl isocyanurate
JPH0249761A (en) Production of organic monochlorosulfonate
CN106336340B (en) Synthesis method of o-bromobenzotrifluoride
JPH04145061A (en) Production of highly pure 4,4&#39;-dihydroxydiphenyl sulfone
JPH0499743A (en) Production of high-quality tetrabromobisphenol a
JPS6322040A (en) Synthesis of mono- or dihydroxyfluoroalkane
EP0032275B1 (en) Process for the preparation of substituted 2-hydroxy-benzophenones
US2734084A (en) Synthesis of l-halo-z
JPS5944302B2 (en) Mutual separation method of threonine and allothreonine
JPS6034558B2 (en) Method for producing N,N&#39;-bis-trimethylsilyl urea
CN108997107A (en) A kind of synthetic method of alpha-brominated ethyl isobutyrate
CN114276223B (en) Synthetic method of alpha-iodine-alpha-trifluoromethyl arylethanone
EP0478417B1 (en) Process for the synthesis of monohalogeno-alkyl-ferrocenes
FR2615185A1 (en) PROCESS FOR THE PREPARATION OF TRIFLUOROMETHYLTOLUENE FROM HALOMETHYLBENZOTRIFLUORIDE
FR2667600A1 (en) PROCESS FOR THE SYNTHESIS OF MONOHALOGENOALCANOYLFERROCENES
JPS6116252B2 (en)
JP3486634B2 (en) Alkali metal salt of dihydroxydiphenyl sulfone
SU1745714A1 (en) Method of 4,4-diphenylbutyne-1 synthesis
KR101081115B1 (en) Preparation method of -carotene
FR2458532A1 (en) PROCESS FOR THE PRODUCTION OF DIFLUOROIODACETYL FLUORIDE FROM 1,2-DIIODOTETRAFLUORETHANE
EP4048657A1 (en) Processes for making tetrazolinone compounds