JPH0249580B2 - JIDOTOKAKI - Google Patents

JIDOTOKAKI

Info

Publication number
JPH0249580B2
JPH0249580B2 JP10080681A JP10080681A JPH0249580B2 JP H0249580 B2 JPH0249580 B2 JP H0249580B2 JP 10080681 A JP10080681 A JP 10080681A JP 10080681 A JP10080681 A JP 10080681A JP H0249580 B2 JPH0249580 B2 JP H0249580B2
Authority
JP
Japan
Prior art keywords
circuit
signal
subtracting
output
integrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10080681A
Other languages
Japanese (ja)
Other versions
JPS583334A (en
Inventor
Tadayoshi Enomoto
Masaaki Yasumoto
Tsutomu Ishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP10080681A priority Critical patent/JPH0249580B2/en
Publication of JPS583334A publication Critical patent/JPS583334A/en
Publication of JPH0249580B2 publication Critical patent/JPH0249580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03038Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a non-recursive structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【発明の詳細な説明】 本発明はアナログ回路により構成され、集積化
に適した自動等化器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic equalizer constructed of analog circuits and suitable for integration.

従来用いられていた自動等化器はデジタル自動
等化器であつて、システムの大形化、大消費電力
高価格、信頼性、狭帯域が大きな問題であつた。
Conventionally used automatic equalizers are digital automatic equalizers, which have major problems such as large system size, high power consumption, high price, reliability, and narrow band.

以下、第1図を参照して、従来のデジタル自動
等化器の構成と動作を説明する。1はデジタル自
動等化器の入力端子で、送信信号が印加される。
該送信信号は本来デジタル信号であるが、伝送路
中で符号間干渉により、信号波形は歪んでアナロ
グ化されてしまう。2はNビツトのアナログ−デ
ジタル変換器(以下、A/Dコンバータと言う)
で、歪を生じた該送信信号をNビツトのデジタル
信号に変換する。3はNビツトの記憶回路で、記
憶要素4−K(K=1,2,……,M,Mは自然
数)は該Nビツトのデジタル遅延信号を順次保持
記憶する。5−K(K=1,2,……,M)はそ
れぞれ該記憶要素4−Kより出力される該Nビツ
トのデジタル遅延信号にNビツトのデジタル重み
係数をかけ算する2N+1ビツトのデジタル乗算
回路である。6−k(k=1,2,……,M)も
該5−kと同様なデジタル乗算回路、7−k(k
=1,2,……,M)は該デジタル乗算回路6−
kの出力を用いて重み係数を修正する重み係数修
正回路である。8は該デジタル乗算回路5−kの
各出力を加算するデジタル加算回路で、加算結果
が本デジタル自動等化器の出力となり、端子9よ
り得られる。10は該デジタル加算回路の出力を
入力として、送信信号の推定値を得るデジタル判
定回路、11は該デジタル判定回路の入力信号と
出力信号の差を抽出するデジタル減算回路であ
る。
The configuration and operation of a conventional digital automatic equalizer will be described below with reference to FIG. 1 is an input terminal of a digital automatic equalizer, to which a transmission signal is applied.
The transmitted signal is originally a digital signal, but due to intersymbol interference in the transmission path, the signal waveform is distorted and converted into an analog signal. 2 is an N-bit analog-to-digital converter (hereinafter referred to as A/D converter)
Then, the distorted transmission signal is converted into an N-bit digital signal. 3 is an N-bit storage circuit, and a storage element 4-K (K=1, 2, . . . , M, M are natural numbers) sequentially holds and stores the N-bit digital delay signal. 5-K (K=1, 2, . . . , M) is a 2N+1-bit digital multiplication circuit that multiplies the N-bit digital delay signal output from the storage element 4-K by an N-bit digital weighting coefficient. It is. 6-k (k=1, 2, ..., M) is also a digital multiplication circuit similar to 5-k, and 7-k (k
=1, 2, ..., M) is the digital multiplication circuit 6-
This is a weighting coefficient modification circuit that modifies the weighting coefficient using the output of k. 8 is a digital addition circuit that adds each output of the digital multiplication circuit 5-k, and the addition result becomes the output of this digital automatic equalizer and is obtained from a terminal 9. Reference numeral 10 designates a digital determination circuit that receives the output of the digital addition circuit as an input and obtains an estimated value of the transmitted signal, and reference numeral 11 designates a digital subtraction circuit that extracts the difference between the input signal and output signal of the digital determination circuit.

以上、従来のデジタル自動等化器の構成を述べ
た。該等化器の構成要素、即ち、2,3,4,5
−k,6−k,7−k,8,10,11は全て、
それぞれが大規模なデジタル集積回路であるから
消費電力が大きく、高価格となる。従つて、これ
らの多数の集積回路をさらに半導体チツプ上に集
積化することは、チツプ面積、消費電力、歩留
り、信頼性等の点から全く不可能である。この結
果、現在までは、各構成要素である2,3,…
…,11を多数のプリント板上に配列し、配線す
ることを余儀なくされていたためシステムが大形
化し、大量生産に不適当で、高価格化を来す等多
くの欠点があつた。さらに、各構成要素での信号
処理はビツト毎に行なうため、デジタル処理の体
質的な欠点、即ち、演算速度が極めて遅いという
決定的な弱点があるため、高速、広帯域のデータ
伝送への応用へは全く不可能であつた。
The configuration of the conventional digital automatic equalizer has been described above. The components of the equalizer, namely 2, 3, 4, 5
-k, 6-k, 7-k, 8, 10, 11 are all
Since each is a large-scale digital integrated circuit, it consumes a lot of power and is expensive. Therefore, it is completely impossible to further integrate a large number of these integrated circuits onto a semiconductor chip from the viewpoint of chip area, power consumption, yield, reliability, etc. As a result, until now, each component 2, 3,...
. . , 11 had to be arranged on a large number of printed boards and wired, resulting in a large system, unsuitable for mass production, and high prices, among other drawbacks. Furthermore, since signal processing in each component is performed bit by bit, there is a fundamental drawback of digital processing, namely extremely slow calculation speed. was completely impossible.

本発明の目的は上記従来のデジタル自動等化器
の多くの問題点を一挙に解決するアナログ自動等
化器を提供することにある。
An object of the present invention is to provide an analog automatic equalizer that solves many of the problems of the conventional digital automatic equalizers mentioned above all at once.

本発明によれば、多相位相変調または多相多値
変調を含む直交振幅変調によるデータ信号を入力
とするタツプ付き信号遅延手段と、該タツプ付き
信号遅延手段の各タツプより得られる遅延信号に
それぞれ定められた重み係数をもつて重み付けし
重み付けされた各信号を加算するために設けられ
たFETと積分回路と減算回路とを備えた畳み込
み演算手段と、検出された誤差信号の平均値を算
出する減算回路と積分回路とを備えた積分手段と
該畳み込み演算手段の出力信号より該積分手段の
出力を差し引くために設けられた減算回路と積分
回路とを備えた第1の減算手段と、該第1の減算
手段の出力を入力として送信信号の推定値を得る
判定手段と、該判定手段の入力と出力との差を抽
出する減算回路と積分回路とを備えた第2の減算
手段と、前記各タツプより得られる遅延信号に該
第2の減算手段の出力を乗算し、該乗算結果によ
り前記各定められた重み係数を修正するために設
けられたFETと積分回路と減算回路とを備えた
重み係数修正手段とを具備していることを特徴と
する自動等化器が得られる。
According to the present invention, there is provided a signal delay means with taps which inputs a data signal by quadrature amplitude modulation including polyphase phase modulation or polyphase multilevel modulation, and a delayed signal obtained from each tap of the signal delay means with taps. Convolution calculation means comprising an FET, an integration circuit, and a subtraction circuit provided for weighting each weighted signal with a predetermined weighting coefficient and adding the weighted signals, and calculating the average value of the detected error signals. a first subtracting means comprising a subtracting circuit and an integrating circuit provided for subtracting the output of the integrating means from the output signal of the convolution calculating means; a second subtraction means comprising: a determination means for inputting the output of the first subtraction means to obtain an estimated value of the transmitted signal; and a subtraction circuit and an integration circuit for extracting the difference between the input and output of the determination means; A FET, an integrating circuit, and a subtracting circuit are provided for multiplying the delayed signal obtained from each of the taps by the output of the second subtracting means, and correcting each of the predetermined weighting coefficients based on the multiplication result. An automatic equalizer is obtained, characterized in that it is equipped with a weighting coefficient correction means.

本発明の自動等化器は従来のデジタル自動等化
器に必要なA/Dコンバータは不要となる上、各
構成要素である畳み込み演算手段、判定手段、減
算手段、オフセツト除去手段、重み係数修正手段
はアナログ回路であるから、デジタル自動等化器
の各構成要素に比べ、極めて小形化される。従つ
て、本発明によれば、自動等化器の小形化、信号
処理の高速化、低消費電力化が達成できる。さら
に、基本的には集積化に不適当な抵抗を一切用い
る必要はないから、小さな一片の半導体上に自動
等化器を容易に集積化できる上、量産性に富み、
低価格、高信頼性の自動等化器の実現が可能とな
る。さらにデジタル等化器のようにビツト毎の演
算をする必要がないから、演算時間を極めて短縮
できる。従つて、高速駆動できるから、従来、不
可能であつた高帯域のデータ通信分野まで自動等
化器の応用範囲を拡大することが可能となる。以
下、本発明について図面を用いて説明する。
The automatic equalizer of the present invention does not require the A/D converter required for conventional digital automatic equalizers, and also eliminates the need for each component, such as a convolution calculation means, a determination means, a subtraction means, an offset removal means, and a weighting coefficient correction. Since the means is an analog circuit, it is extremely compact compared to each component of a digital automatic equalizer. Therefore, according to the present invention, it is possible to reduce the size of the automatic equalizer, increase the speed of signal processing, and reduce power consumption. Furthermore, since there is basically no need to use any resistance that is inappropriate for integration, an automatic equalizer can be easily integrated on a small piece of semiconductor, and it is highly suitable for mass production.
It becomes possible to realize a low-cost, highly reliable automatic equalizer. Furthermore, unlike a digital equalizer, there is no need to perform a calculation for each bit, so the calculation time can be extremely shortened. Therefore, since it can be driven at high speed, it becomes possible to expand the range of applications of the automatic equalizer to the field of high-band data communication, which was previously impossible. Hereinafter, the present invention will be explained using the drawings.

第2図は本発明の自動等化器の実施例装置を示
すブロツク図である。21は多相位相変調または
多相多値変調を含む直交振幅変調によるデータ信
号を入力する端子、22は信号遅延手段、23は
畳み込み演算手段、24は第1の減算手段、25
は積分手段、26は判定手段、27は第2の減算
手段、28−k(k=1,2,……,M)は重み
係数修正手段、29は本自動等化器の出力端子で
ある。該信号遅延手段は、互いに一定期間だけ異
なるk個(k=1,2,……,M,Mは整数)の
遅延信号が得られるように構成されたk個のタツ
プ付き電荷転送素子などの信号遅延線等で構成さ
れる。該畳み込み演算手段23は、該信号遅延手
段22の各タツプより得られる遅延信号と対応す
る該重み係数修正手段28−kの出力、即ち、重
み係数を互いに乗算する乗算回路23−k(k=
1,2……,M)と該各乗算回路23−kの出力
を加算する加算回路231を備えており、該信号
遅延手段22とで非巡回形フイルタを構成する。
該積分手段25は該第2の減算手段27の出力、
即ち、誤差信号を遂次積分し、端子29より得ら
れる本自動等化器の出力信号のオフセツト成分を
除去するような信号を出力する。該第1の減算手
段24はオフセツト成分が重畳された該畳み込み
演算手段23の出力より該積分手段25の出力を
差し引くことによりオフセツト成分を除去して本
自動等化器の出力信号とする。なお以下の説明で
は、便宜上、該積分手段25と該第1の減算手段
24の縦続構成をオフセツト除去手段と呼ぶ。該
判定手段26は該第1の減算手段24の出力を入
力として送信信号(前記直交振幅変調などにより
歪を受ける以前の信号)の推定値を得る機能を備
え、コンパレータ等で構成することができる。該
第2の減算手段27は該判定手段26の入力と出
力の差、即ち誤差信号を抽出する。該重み係数修
正手段28−k(k=1,2,……,M)は前記
重み係数から該遅延信号と該第2の減算手段27
の出力との乗算結果を差し引くことにより重み係
数を修正する働きを持つており、該遅延信号と該
第2の減算手段27の出力を乗算する乗算回路2
81−kと該乗算回路281−kの出力を積分す
る積分回路282−kとを備えている。以上、本
発明による自動等化器の構成を説明した。このよ
うに構成された自動等化器では該第2の減算手段
27より得られる誤差信号の大きさに応じ、かつ
誤差信号の二乗平均が最小となるように、該重み
係数が修正されると共に、オフセツト成分が除去
された出力信号を得ることができる。即ち、前記
送信信号が再現される。
FIG. 2 is a block diagram showing an embodiment of the automatic equalizer of the present invention. 21 is a terminal for inputting a data signal by quadrature amplitude modulation including polyphase phase modulation or polyphase multilevel modulation; 22 is signal delay means; 23 is convolution calculation means; 24 is first subtraction means; 25
26 is an integration means, 26 is a judgment means, 27 is a second subtraction means, 28-k (k=1, 2, . . . , M) is a weighting coefficient correction means, and 29 is an output terminal of the automatic equalizer. . The signal delay means includes k charge transfer devices with taps configured to obtain k delayed signals (k=1, 2, . . . , M, M is an integer) that differ from each other by a certain period of time. Consists of signal delay lines, etc. The convolution calculation means 23 outputs the output of the weighting coefficient correction means 28-k corresponding to the delayed signal obtained from each tap of the signal delaying means 22, that is, a multiplication circuit 23-k (k=
1, 2 . . . , M) and the outputs of the respective multiplier circuits 23-k.
The integrating means 25 receives the output of the second subtracting means 27,
That is, the error signal is successively integrated, and a signal that removes the offset component of the output signal of the automatic equalizer obtained from the terminal 29 is output. The first subtracting means 24 removes the offset component by subtracting the output of the integrating means 25 from the output of the convolution calculating means 23 on which the offset component is superimposed, thereby obtaining an output signal of the automatic equalizer. In the following description, for convenience, the cascade configuration of the integrating means 25 and the first subtracting means 24 will be referred to as offset removing means. The determining means 26 has a function of receiving the output of the first subtracting means 24 as an input and obtains an estimated value of the transmitted signal (a signal before being distorted by the quadrature amplitude modulation, etc.), and can be composed of a comparator or the like. . The second subtracting means 27 extracts the difference between the input and output of the determining means 26, that is, an error signal. The weighting coefficient correction means 28-k (k=1, 2, . . . , M) calculates the delayed signal and the second subtraction means 27 from the weighting coefficients.
The multiplication circuit 2 has the function of correcting the weighting coefficient by subtracting the result of multiplication with the output of the second subtracting means 27, and multiplies the delayed signal by the output of the second subtracting means 27.
81-k and an integrating circuit 282-k that integrates the output of the multiplier circuit 281-k. The configuration of the automatic equalizer according to the present invention has been described above. In the automatic equalizer configured in this way, the weighting coefficient is modified according to the magnitude of the error signal obtained from the second subtraction means 27 and so that the root mean square of the error signal is minimized. , an output signal from which the offset component has been removed can be obtained. That is, the transmitted signal is reproduced.

次に本発明の自動等化器の各構成要素について
詳細に説明する。第3図は前記畳み込み演算手段
の実施例であり、第2図の23に対応している。
31−k(k=1,2,3,……,M)は対応す
る前記信号遅延手段の各遅延信号が出力されるタ
ツプに接続される端子、32−k(k=1,2,
……,M)は対応する前記重み係数修正手段の出
力端子と接続される端子、33は直流電源に接続
される端子、34は本畳み込み演算手段の出力端
子である。35−k(k=1,2,……,M)と
36−k(k=1,2,……,M)は互いに全く
等しいかあるいは極めて近い電気的特性を備えた
電界効果トランジスタ(以下FETという)で3
5−kおよび36−kの一方の拡散層が前記端子
32−kに接続されている。37は演算増幅器
(以後OP Ampという)371とコンデンサ37
2とスイツチ373とを備えた積分回路である。
38はOP Amp381とコンデンサ382とス
イツチ383を備えた積分回路で、該積分回路3
7と全く等しいか極めて近い電気的特性を備えて
おり、該スイツチ373と383は連動して周期
的に開閉する。39はコンデンサ391とスイツ
チ392,393,394,395とを備えた減
算回路、40はOP Amp401とコンデンサ4
02とスイツチ403とを備えた積分回路であ
る。該スイツチ392と393と403は連動し
て周期的に開閉する。同様に該スイツチ394と
395も連動して周期的に開閉する。なお該端子
31−k,32−k,該FET35−k,36−
kが一対を形成し、対応する遅延信号に対応する
重み付けを行なう。例えば端子31−1から
FET35−1のゲートへ対応する遅延信号が印
加され、端子32−1からFET35−1の一方
の拡散層とFET36−1の一方の拡散層へ対応
する重み係数が印加される。次に本畳み込み演算
手段の動作を概略する。簡単のために、まず
FET35−1と36−1に注目して重み付けの
機能を説明する。該端子31−1は直流バイアス
に重畳された前記遅延信号が印加されているもの
とすれば、該端子33へは該直流バイアスに等し
い電位の電源に接続される。該端子32−1へは
前述のごとく対応する重み係数修正手段の出力、
即ち、重み係数を印加する。なおこれらの端子3
1−1,32−1,33への前記信号の範囲は該
FET35−1と36−1が常に直線領域(3極
管領域)で動作する範囲内とする。今該スイツチ
373と383を閉じてコンデンサ372と37
3の電荷を十分に放電させる。次に該スイツチ3
73と383を開けると、該FET35−1およ
び36−2に流れるドレイン電流はそれぞれ該コ
ンデンサ372および382において時間ととも
に積分され、直線的に変化する電圧が該積分回路
37と38の出力端子に生ずる。この時該減算回
路39のスイツチ394と395を開いておき、
スイツチ392と393を閉じておけば、該コン
デンサ391は充電され、該コンデンサ391の
両端の電圧差は該積分回路37と38の出力電圧
の差に等しい。次に該スイツチ392と393を
開いた後該スイツチ373と383を再び閉じれ
ば、該コンデンサ372と382はリセツトさ
れ、これまで積分された電荷が放電される。なお
該コンデンサ391に蓄積された電荷によつて生
ずる該コンデンサ391の両端の電位は該端子3
1−1に印加された遅延信号と該端子32−1に
印加された重み係数の乗算結果に比例しており、
比例定数は該FET35−1と36−1の電気的
特性と、コンデンサ372と382の容量値と、
該スイツチ373と383が開いてから該スイツ
チ392と393が開くまでの期間等で決る。以
上の説明から明らかなように、FET35−1,
36−1、積分回路37,38、減算回路39と
でアナログ乗算回路が実現されることがわかる。
なお該スイツチ392と393と連動して、該積
分回路40のスイツチ403も開閉しているの
で、該コンデンサ402の電荷は放電されてい
る。次に該スイツチ403が開いている期間該ス
イツチ394と395を閉じれば、該コンデンサ
391に蓄積された電荷は全部該コンデンサ40
2へ移動する。従つて、前記比例定数および該コ
ンデンサ391と402の容量比で決る比例定数
を合せ持つた前記遅延信号に重み付けされた結果
が該積分回路40の出力端子34に現われる。な
お前述の説明から明らかなように該積分回路40
は該コンデンサ402と391の比で、該畳み込
み演算手段のゲインを調整することができる上、
端子34に接続される手段に対するバツフア回路
の機能をも備えている。以下同様な条件をもつて
FET35−kのゲート端子31−kおよび端子
32−kにそれぞれ対応した遅延信号と重み係数
を印加すれば、対応する該FET35−kおよび
36−k(k=1,2,……,M)にそれぞれド
レイン電流が流れる。従つて該FET35−kの
ドレイン電流の和および該FET36−kのドレ
イン電流の和がそれぞれ該コンデンサ372およ
び382で積分されるから、本畳み込み演算手段
は重み付けされた各遅延信号を加算する機能をも
持つことになる。以上の説明から明らかなよう
に、抵抗をいつさい使用せずに畳み込み演算手段
を得ることができる。
Next, each component of the automatic equalizer of the present invention will be explained in detail. FIG. 3 shows an embodiment of the convolution calculation means, and corresponds to 23 in FIG.
31-k (k=1, 2, 3, . . . , M) is a terminal connected to a tap from which each delayed signal of the corresponding signal delay means is output; 32-k (k=1, 2,
..., M) is a terminal connected to the output terminal of the corresponding weighting coefficient correction means, 33 is a terminal connected to a DC power supply, and 34 is an output terminal of the present convolution calculation means. 35-k (k = 1, 2, ..., M) and 36-k (k = 1, 2, ..., M) are field-effect transistors (hereinafter referred to as (called FET)
One of the diffusion layers 5-k and 36-k is connected to the terminal 32-k. 37 is an operational amplifier (hereinafter referred to as OP Amp) 371 and a capacitor 37
2 and a switch 373.
38 is an integrating circuit equipped with an OP Amp 381, a capacitor 382, and a switch 383;
7, and the switches 373 and 383 are opened and closed periodically in conjunction with each other. 39 is a subtraction circuit equipped with a capacitor 391 and switches 392, 393, 394, and 395, and 40 is an OP Amp 401 and a capacitor 4.
02 and a switch 403. The switches 392, 393, and 403 are interlocked and periodically opened and closed. Similarly, the switches 394 and 395 are also periodically opened and closed in conjunction with each other. In addition, the terminals 31-k, 32-k, the FETs 35-k, 36-
k form a pair and weight the corresponding delayed signals accordingly. For example, from terminal 31-1
A corresponding delay signal is applied to the gate of FET 35-1, and a corresponding weighting coefficient is applied from terminal 32-1 to one diffusion layer of FET 35-1 and one diffusion layer of FET 36-1. Next, the operation of the present convolution calculation means will be summarized. For simplicity, first
The weighting function will be explained focusing on FETs 35-1 and 36-1. Assuming that the delayed signal superimposed on the DC bias is applied to the terminal 31-1, the terminal 33 is connected to a power supply having a potential equal to the DC bias. The terminal 32-1 receives the output of the corresponding weighting coefficient correction means as described above;
That is, a weighting coefficient is applied. Note that these terminals 3
The range of the signals to 1-1, 32-1, 33 is
It is assumed that the FETs 35-1 and 36-1 always operate in a linear region (triode region). Now close the switches 373 and 383 and close the capacitors 372 and 37.
3. Sufficiently discharge the charge. Next, switch 3
73 and 383, the drain currents flowing through the FETs 35-1 and 36-2 are integrated over time in the capacitors 372 and 382, respectively, and a linearly varying voltage is produced at the output terminals of the integrating circuits 37 and 38. . At this time, the switches 394 and 395 of the subtraction circuit 39 are opened,
With switches 392 and 393 closed, capacitor 391 is charged and the voltage difference across capacitor 391 is equal to the difference between the output voltages of integrating circuits 37 and 38. If the switches 392 and 393 are then opened and the switches 373 and 383 are closed again, the capacitors 372 and 382 are reset and the previously integrated charge is discharged. Note that the potential across the capacitor 391 caused by the charge accumulated in the capacitor 391 is the terminal 3.
It is proportional to the multiplication result of the delay signal applied to terminal 1-1 and the weighting coefficient applied to terminal 32-1,
The proportionality constant is based on the electrical characteristics of the FETs 35-1 and 36-1, the capacitance values of the capacitors 372 and 382,
It is determined by the period from when the switches 373 and 383 open to when the switches 392 and 393 open. As is clear from the above explanation, FET35-1,
36-1, the integrating circuits 37 and 38, and the subtracting circuit 39 realize an analog multiplication circuit.
Note that the switch 403 of the integrating circuit 40 is also opened and closed in conjunction with the switches 392 and 393, so that the charge in the capacitor 402 is discharged. Next, when the switches 394 and 395 are closed while the switch 403 is open, all the charge accumulated in the capacitor 391 is transferred to the capacitor 40.
Move to 2. Therefore, a weighted result of the delayed signal having both the proportionality constant and the proportionality constant determined by the capacitance ratio of the capacitors 391 and 402 appears at the output terminal 34 of the integrating circuit 40. Note that, as is clear from the above description, the integration circuit 40
is the ratio of the capacitors 402 and 391, and the gain of the convolution calculation means can be adjusted;
It also has the function of a buffer circuit for the means connected to the terminal 34. With similar conditions below
By applying the corresponding delay signals and weighting coefficients to the gate terminal 31-k and terminal 32-k of the FET 35-k, the corresponding FETs 35-k and 36-k (k=1, 2, ..., M) A drain current flows through each. Therefore, since the sum of the drain currents of the FET 35-k and the sum of the drain currents of the FET 36-k are integrated by the capacitors 372 and 382, respectively, the present convolution calculation means has the function of adding the weighted delay signals. You will also have As is clear from the above description, the convolution calculation means can be obtained without using any resistors.

第2図で示した積分手段24と第1の減算手段
25を備えたオフセツト除去手段の具体的な実施
例を第4図に示す。41は前記誤差信号が印加さ
れる端子、42は該畳み込み演算手段の出力が印
加される端子、43は本オフセツト除去手段の出
力、即ち、本発明の自動等化器の出力を得る端子
である。第4図から明らかなように、本オフセツ
ト除去手段は減算回路44と積分回路45とを備
えた積分手段48および減算手路46と積分回路
47とを備えた第1の減算手段49との縦続接続
で構成される。該減算回路44はコンデンサ44
1、連動して周期的に開閉するスイツチ442と
443、同じく連動して周期的に開閉するスイツ
チ444と445とを備え、該積分回路45は
OP Amp451とコンデンサ452を備えてい
る。該減算回路46はコンデンサ461、連動し
て周期的に開閉するスイツチ462と463、同
じく連動して周期的に開閉するスイツチ464と
465とを備え、該積分回路47はOP Amp4
71とコンデンサ472と該スイツチ462,4
63と連動して周期的に開閉するスイツチ473
とを備えている。
FIG. 4 shows a specific embodiment of the offset removing means including the integrating means 24 and the first subtracting means 25 shown in FIG. 41 is a terminal to which the error signal is applied, 42 is a terminal to which the output of the convolution calculation means is applied, and 43 is a terminal for obtaining the output of the offset removing means, that is, the output of the automatic equalizer of the present invention. . As is clear from FIG. 4, this offset removing means is connected in series with an integrating means 48 having a subtracting circuit 44 and an integrating circuit 45 and a first subtracting means 49 having a subtracting circuit 46 and an integrating circuit 47. Consists of connections. The subtraction circuit 44 is a capacitor 44
1. Switches 442 and 443 are interlocked and periodically opened and closed, and switches 444 and 445 are also interlocked and periodically opened and closed.
It is equipped with OP Amp451 and capacitor 452. The subtracting circuit 46 includes a capacitor 461, switches 462 and 463 that are linked and opened and closed periodically, and switches 464 and 465 that are also linked and opened and closed periodically.
71, the capacitor 472, and the switch 462, 4
switch 473 that opens and closes periodically in conjunction with switch 63
It is equipped with

次に本オフセツト除去手段の動作と原理を説明
する。該減算回路44の入力端子41へ前記誤差
信号を印加し、該スイツチ442と443を閉じ
ると、該コンデンサ441は充電される。次に該
スイツチ442と443を開いた後、スイツチ4
44と445を閉じる。該スイツチ444と44
5を閉じた瞬間、該スイツチ444側の該コンデ
ンサの電位は該端子41へ印加した誤差信号と大
きさは等しいが、極性は反転する。即ち、このよ
うに構成された減算回路は本質的に極性反転回路
の働きをする。なお該スイツチ444と445が
閉じている期間、該コンデンサ441に蓄積され
た電荷は該積分回路45の該コンデンサ452に
転送され、積算される。以上述べた工程を順次繰
り返えすことにより、端子41へ印加された信号
が順次加算され、該積分回路45より出力され
る。
Next, the operation and principle of this offset removing means will be explained. When the error signal is applied to the input terminal 41 of the subtraction circuit 44 and the switches 442 and 443 are closed, the capacitor 441 is charged. Next, after opening the switches 442 and 443, switch 4
44 and 445 are closed. The switches 444 and 44
5 is closed, the potential of the capacitor on the switch 444 side is equal in magnitude to the error signal applied to the terminal 41, but the polarity is reversed. That is, the subtraction circuit configured in this manner essentially functions as a polarity inversion circuit. Note that while the switches 444 and 445 are closed, the charge accumulated in the capacitor 441 is transferred to the capacitor 452 of the integrating circuit 45 and integrated. By sequentially repeating the steps described above, the signals applied to the terminal 41 are sequentially added and output from the integrating circuit 45.

なお該積分手段48の増幅率あるいは減衰率は
該コンデンサ441と452の比で与えられる。
該減算回路46のスイツチ464と465が開い
ている期間、スイツチ462,463および47
3を閉じれば、端子42へ印加された信号、即
ち、前記畳み込み演算手段の出力信号と該積分回
路45の出力信号との差が該コンデンサ461の
両端に生ずる。次に該スイツチ462,463お
よび473を開いた後、該スイツチ464と46
5を閉じれば、該コンデンサ461に蓄積された
電荷は、スイツチ473の開閉により、すでに電
荷の放電が完了しているコンデンサ472へ全部
転送される。従つて該第1の減算手段49によ
り、端子42へ印加された信号、即ち、前記畳み
込み演算手段の出力信号から、該積分手段48の
出力を差し引いた信号を得ることができる。なお
該第1の減算手段の増幅率はコンデンサ461と
472の比で与えられる。以上の動作を繰り返え
すことにより、最終的には該積分回路45の出力
は前記信号遅延手段、畳み込み演算手段、判定手
段、第2の減算手段等で発生するオフセツトが除
去され、該第1の減算手段よりオフセツトのない
本発明の自動等化器の出力が得られるような電位
に設定される。以上説明したように、第4図の該
オフセツト除去手段は第3図で示した該畳み込み
演算手段と同様、抵抗を一切使用する必要がな
い。
Note that the amplification factor or attenuation factor of the integrating means 48 is given by the ratio of the capacitors 441 and 452.
During the period when the switches 464 and 465 of the subtraction circuit 46 are open, the switches 462, 463 and 47
3, the difference between the signal applied to the terminal 42, that is, the output signal of the convolution calculation means and the output signal of the integrating circuit 45, is generated across the capacitor 461. Next, after opening the switches 462, 463 and 473, the switches 464 and 46 are opened.
5 is closed, the charges accumulated in the capacitor 461 are all transferred to the capacitor 472, which has already been discharged, by opening and closing the switch 473. Therefore, the first subtracting means 49 can obtain a signal obtained by subtracting the output of the integrating means 48 from the signal applied to the terminal 42, that is, the output signal of the convolution calculating means. Note that the amplification factor of the first subtraction means is given by the ratio of capacitors 461 and 472. By repeating the above operations, the output of the integrating circuit 45 is finally free of offsets generated by the signal delay means, convolution calculation means, determination means, second subtraction means, etc. The potential is set so that an offset-free output of the automatic equalizer of the present invention can be obtained by the subtracting means. As explained above, the offset removing means shown in FIG. 4 does not require the use of any resistance, similar to the convolution calculation means shown in FIG.

第5図は第2図に示した第2の減算手段の具体
的実施例を前記判定手段と合せて示したものであ
る。該第2の減算手段56は減算回路54と積分
回路55とを備えており、第4図で説明した第1
の減算手段49と基本的構成は全く同一である。
51は前記オフセツト除去手段の出力、即ち、本
発明の自動等化器の出力を印加する端子、52は
判定手段53の入力と出力信号の差、即ち、前記
誤差信号を得る端子である。該減算回路54はコ
ンデンサ541、連動して周期的に開閉するスイ
ツチ542と543、同じく連動して周期的に開
閉するスイツチ544と545とを備え、該積分
回路55はOP Amp551とコンデンサ552
と前記スイツチ542,543と連動して周期的
に開閉するスイツチ553とを備えている。コン
パレータ等を用いても構成できる判定手段53は
端子51へ印加される自動等化器の出力より、前
記送信信号の推定値を発生する。該第2の減算手
段56は該判定手段53の入力信号と出力信号の
差を演算して誤差信号を発生する。なお該減算手
段56のゲインは該コンデンサ541と552の
比で適宜与えられる。
FIG. 5 shows a specific embodiment of the second subtraction means shown in FIG. 2 together with the determination means. The second subtraction means 56 includes a subtraction circuit 54 and an integration circuit 55, and the second subtraction means 56 includes a subtraction circuit 54 and an integration circuit 55.
The basic structure is exactly the same as that of the subtracting means 49.
Reference numeral 51 is a terminal to which the output of the offset removing means, that is, the output of the automatic equalizer of the present invention is applied, and 52 is a terminal for obtaining the difference between the input and output signals of the determining means 53, that is, the error signal. The subtracting circuit 54 includes a capacitor 541, switches 542 and 543 that are linked and opened and closed periodically, and switches 544 and 545 that are also linked and opened and closed periodically.The integration circuit 55 includes an OP Amp 551 and a capacitor 552.
and a switch 553 that opens and closes periodically in conjunction with the switches 542 and 543. The determining means 53, which can be configured using a comparator or the like, generates an estimated value of the transmission signal from the output of the automatic equalizer applied to the terminal 51. The second subtracting means 56 calculates the difference between the input signal and the output signal of the determining means 53 to generate an error signal. Note that the gain of the subtracting means 56 is appropriately given by the ratio of the capacitors 541 and 552.

第2図に示した重み係数修正手段28−k(k
=1,2,……,M)の具体的実施例を第6図に
示す。なお同図は前記1個の遅延信号と該遅延信
号に対応する1個の重み係数に対応するものであ
り、本発明の自動等化器を構成する場合、遅延信
号毎にそれぞれ本図に示した重み係数修正手段が
準備される。61は前記遅延手段の対応するタツ
プより得られる遅延信号が印加される端子、62
は前記第2の減算手段の出力信号、即ち、誤差信
号が印加される端子、63は前記遅延信号が重畳
されている直流バイアス電圧と等しい電圧の直流
電源に接続される端子である。66と66は互い
に全く等しいかあるいは極めて近い電気的特性を
備えたFETで、該FET65の一方の拡散層およ
び該FET66の一方の拡散層は共通端子62に
接続されている。67はOP Amp671とコン
デンサ672とスイツチ673とを備えた積分回
路である。68はOP Amp681とコンデンサ
682とスイツチ683を備えた積分回路で、該
積分回路67と全く等しいか、極めて近い電気的
特性を備えている。なお該スイツチ673と68
3は連動して周期的に開閉する。69はコンデン
サ691、連動して周期的に開閉するスイツチ6
92と693、同様に連動して周期的に開閉する
スイツチ694と695、とを備えた減算回路で
ある。以上述べた各要素61,62,63,6
5,66,67,68,69で構成される部分は
第3図に示した要素、例えば31−1,32−
1,33,35−1,36−1,37,38,3
9で構成される部分と全く同一な回路構成であ
り、端子61の信号即ち、遅延信号と端子62の
信号、即ち、誤差信号をかけ算する機能を備えた
乗算回路である。なお前記と同様、端子61,6
2,63に印加される信号の範囲はいずれも該
FET65と66が直線領域で動作する範囲内に
限定される。70はOP Amp701とコンデン
サ702とを備えた積分回路で、該コンデンサ6
91に蓄積された電荷を該コンデンサ702で積
分する機能を持つている。さらに具体的には、該
コンデンサ702に記憶されている重み係数か
ら、該コンデンサ691に蓄積されている遅延信
号と誤差信号の乗算結果を遂次減算することによ
り、重み係数の修正を施すことができる。従つて
修正された重み係数は端子64を介し、前記対応
する畳み込み演算回路の入力端子(第3図の端子
32−k)へ印加される。
Weighting coefficient correction means 28-k (k
=1, 2, . . . , M) is shown in FIG. Note that this figure corresponds to the one delayed signal and one weighting coefficient corresponding to the delayed signal, and when configuring the automatic equalizer of the present invention, the values shown in this figure are for each delayed signal. A weighting coefficient correction means is prepared. 61 is a terminal to which a delayed signal obtained from the corresponding tap of the delay means is applied; 62
is a terminal to which the output signal of the second subtracting means, that is, the error signal is applied, and 63 is a terminal connected to a DC power supply having a voltage equal to the DC bias voltage on which the delay signal is superimposed. FETs 66 and 66 have electrical characteristics that are exactly the same or very close to each other, and one diffusion layer of the FET 65 and one diffusion layer of the FET 66 are connected to the common terminal 62. 67 is an integrating circuit including an OP Amp 671, a capacitor 672, and a switch 673. Reference numeral 68 denotes an integrating circuit including an OP Amp 681, a capacitor 682, and a switch 683, and has electrical characteristics that are exactly the same as or extremely similar to those of the integrating circuit 67. In addition, the switches 673 and 68
3 opens and closes periodically in conjunction with each other. 69 is a capacitor 691, and a switch 6 that opens and closes periodically in conjunction with it.
This is a subtraction circuit comprising switches 92 and 693, and switches 694 and 695 which similarly open and close periodically in conjunction with each other. Each element 61, 62, 63, 6 mentioned above
5, 66, 67, 68, 69 are the elements shown in FIG. 3, for example 31-1, 32-
1, 33, 35-1, 36-1, 37, 38, 3
9, and is a multiplication circuit having a function of multiplying the signal at the terminal 61, that is, the delay signal, and the signal at the terminal 62, that is, the error signal. Note that, similar to the above, the terminals 61, 6
The range of signals applied to 2 and 63 are both applicable.
It is limited to a range where FETs 65 and 66 operate in a linear region. 70 is an integrating circuit including an OP Amp 701 and a capacitor 702;
The capacitor 702 has a function of integrating the charge accumulated in the capacitor 91. More specifically, the weighting coefficient can be corrected by successively subtracting the multiplication result of the delay signal and error signal stored in the capacitor 691 from the weighting coefficient stored in the capacitor 702. can. The modified weighting coefficients are therefore applied via terminal 64 to the input terminal (terminal 32-k in FIG. 3) of the corresponding convolution arithmetic circuit.

以上説明したように、本発明によれば、信号遅
延手段および畳み込み演算手段の手段を構成する
減算回路と積分回路は抵抗を含まない小形のアナ
ログ回路であり、トランジスタを用いればスイツ
チも容易に実現できるから、消費電力が少なく、
量産性に富み、低価格で、かつ高信頼性の自動等
化器を容易に集積化することができる。スイツチ
とコンデンサとで構成され、2入力端子、2出力
端子を備えた該減算回路は信号をいずれの端子に
印加するかあるいは出力信号をいずれの端子から
得るかより、反転減算回路、正転減算回路あるい
は極性反転回路としての機能がある。従つて、極
性反転器を全く必要としないから、回路の大幅な
簡略化が実現される。さらに、抵抗が不要である
から、各手段の歪特性は向上する上、コンデンサ
比で与えられる正確なゲインも得ることができ
る。さらにデジタル等化器のようにビツト毎の演
算をする必要がないから、演算時間を極めて短縮
した高速動作が可能となる。したがつて、従来不
可能であつた高帯域のデータ通信分野まで自動等
化器の応用範囲を拡大することができる。
As explained above, according to the present invention, the subtraction circuit and the integration circuit that constitute the signal delay means and the convolution calculation means are small analog circuits that do not include resistors, and a switch can be easily realized by using transistors. Because it can, it consumes less power,
It is possible to easily integrate an automatic equalizer that is mass-producible, inexpensive, and highly reliable. This subtraction circuit, which is composed of a switch and a capacitor and has two input terminals and two output terminals, is an inverting subtraction circuit and a forward subtraction circuit depending on which terminal the signal is applied to or the output signal is obtained from. It functions as a circuit or a polarity inversion circuit. Therefore, since no polarity inverter is required, the circuit can be greatly simplified. Furthermore, since no resistor is required, the distortion characteristics of each means are improved, and an accurate gain given by the capacitor ratio can also be obtained. Furthermore, unlike a digital equalizer, there is no need to perform arithmetic operations for each bit, so high-speed operation with an extremely shortened calculation time is possible. Therefore, the range of application of the automatic equalizer can be expanded to the field of high-band data communication, which was previously impossible.

なお上記説明で具体的な実施例をあげて説明し
たが、各構成要素が抵抗を用いずに実現され、自
動等化器の機能が達成されれば、実施例に用いた
回路構成に限定されることなく、その他多くの変
形回路に拡張される。また本発明の実施例では第
1の減算手段により畳み込み演算手段の出力から
積分手段の出力を差し引いてオフセツト成分を除
去するように述べた。しかしこの方法を用いずに
判定手段の判定閾値、即ち、リフアレンスレベル
を推定量だけシフトすることにより、オフセツト
成分が除去され、これによつても本発明を実施す
ることができる。なお該判定閾値は該積分手段の
出力より得ることが可能である。
Although the above explanation has been given with reference to a specific example, the circuit configuration is not limited to the one used in the example as long as each component is realized without using a resistor and the function of an automatic equalizer is achieved. It can be extended to many other modified circuits without any modification. Furthermore, in the embodiment of the present invention, it has been described that the output of the integrating means is subtracted from the output of the convolution calculating means by the first subtracting means to remove the offset component. However, by shifting the judgment threshold of the judgment means, that is, the reference level, by an estimated amount without using this method, the offset component can be removed, and the present invention can also be practiced in this way. Note that the determination threshold value can be obtained from the output of the integrating means.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のデジタル自動等化器の構成を示
したもので、2はA/Dコンバータ、3はデジタ
ル遅延信号の記憶素子、4−kはNビツトの記憶
要素、5−kと6−kはデジタル乗算回路、7−
kはデジタル重み係数修正回路、8は加算回路、
10は判定回路、11は減算回路である。第2図
は集積化に適した本発明のアナログ自動等化器の
ブロツク図で、22は信号遅延手段、23は畳み
込み演算手段、24は第1の減算手段、25は積
分手段、26は判定手段、27は第2の減算手
段、28−kは重み係数修正手段である。第3図
は畳み込み演算手段の具体的な実施例で、35−
kと36−kはFET、37と38は積分回路、
39は減算回路、40は積分回路である。第4図
はオフセツトを除去する積分手段と第1の減算手
段の具体的な回路構成を示している。同図におい
て44と46は減算回路、45と47は積分回路
である。第5図は判定手段と第2の減算手段の実
施具体例で53は判定手段、54は減算回路、5
5は積分回路である。第6図は重み係数修正手段
の具体的な実施例であり、65と66はFET、
67と68は積分回路、69は減算回路、70は
積分回路である。
Figure 1 shows the configuration of a conventional digital automatic equalizer, in which 2 is an A/D converter, 3 is a storage element for digital delayed signals, 4-k is an N-bit storage element, 5-k and 6 -k is a digital multiplication circuit, 7-
k is a digital weighting coefficient correction circuit, 8 is an addition circuit,
10 is a determination circuit, and 11 is a subtraction circuit. FIG. 2 is a block diagram of an analog automatic equalizer of the present invention suitable for integration, in which 22 is a signal delay means, 23 is a convolution operation means, 24 is a first subtraction means, 25 is an integration means, and 26 is a judgment means. 27 is a second subtraction means, and 28-k is a weighting coefficient correction means. FIG. 3 shows a concrete example of the convolution calculation means, 35-
k and 36-k are FETs, 37 and 38 are integral circuits,
39 is a subtraction circuit, and 40 is an integration circuit. FIG. 4 shows a specific circuit configuration of the integrating means for removing the offset and the first subtracting means. In the figure, 44 and 46 are subtraction circuits, and 45 and 47 are integration circuits. FIG. 5 shows a concrete example of the determination means and the second subtraction means, 53 is the determination means, 54 is the subtraction circuit, 5
5 is an integrating circuit. FIG. 6 shows a specific example of the weighting coefficient correction means, in which 65 and 66 are FETs,
67 and 68 are integration circuits, 69 is a subtraction circuit, and 70 is an integration circuit.

Claims (1)

【特許請求の範囲】 1 多相位相変調または多相多値変調を含む直交
振幅変調によるデータ信号を入力とするタツプ付
き信号遅延手段と、該タツプ付き信号遅延手段の
各タツプより得られる遅延信号にそれぞれ定めら
れた重み付けし、重み付けされた各信号を加算す
るために設けられたFETと積分回路と減算回路
とを備えた畳み込み演算手段と、検出された誤差
信号の平均値を算出する減算回路と積分回路とを
備えた積分手段と、該畳み込み演算手段の出力信
号より該積分手段の出力を差し引くために設けら
れた減算回路と積分回路とを備えた第1の減算手
段と、該第1の減算手段の出力を入力として送信
信号の推定値を得る判定手段と、該判定手段の入
力と出力との差を抽出する減算回路と積分回路と
を備えた第2の減算手段と、前記各タツプより得
られる遅延信号に該第2の減算手段の出力を乗算
し、該乗算結果により前記各定められた重み係数
を修正するために設けられたFETと積分回路と
減算回路とを備えた重み係数修正手段とを具備し
ていることを特徴とする自動等化器。 2 前記減算回路と前記積分回路が基本構成素子
としての抵抗を一切含まない第1項記載の自動等
化器。
[Scope of Claims] 1. Signal delay means with taps that receives as input a data signal by quadrature amplitude modulation including polyphase phase modulation or polyphase multilevel modulation, and delayed signals obtained from each tap of the signal delay means with taps. a convolution calculation means comprising an FET, an integration circuit, and a subtraction circuit provided for adding the respective weighted signals, and a subtraction circuit for calculating the average value of the detected error signals. and an integrating circuit; a first subtracting means comprising a subtracting circuit and an integrating circuit provided for subtracting the output of the integrating means from the output signal of the convolution calculation means; a second subtracting means comprising a subtracting circuit and an integrating circuit for extracting the difference between the input and output of the determining means; A weight comprising an FET, an integrating circuit, and a subtracting circuit provided for multiplying the delayed signal obtained from the tap by the output of the second subtracting means and correcting each of the predetermined weighting coefficients based on the multiplication result. An automatic equalizer comprising coefficient correction means. 2. The automatic equalizer according to claim 1, wherein the subtraction circuit and the integration circuit do not include any resistance as a basic component.
JP10080681A 1981-06-29 1981-06-29 JIDOTOKAKI Expired - Lifetime JPH0249580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10080681A JPH0249580B2 (en) 1981-06-29 1981-06-29 JIDOTOKAKI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10080681A JPH0249580B2 (en) 1981-06-29 1981-06-29 JIDOTOKAKI

Publications (2)

Publication Number Publication Date
JPS583334A JPS583334A (en) 1983-01-10
JPH0249580B2 true JPH0249580B2 (en) 1990-10-30

Family

ID=14283617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10080681A Expired - Lifetime JPH0249580B2 (en) 1981-06-29 1981-06-29 JIDOTOKAKI

Country Status (1)

Country Link
JP (1) JPH0249580B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1188626B (en) * 1986-03-25 1988-01-20 Gte Telecom Spa BLIND ADAPTIVE EQUALIZATION METHOD AND DEVICE

Also Published As

Publication number Publication date
JPS583334A (en) 1983-01-10

Similar Documents

Publication Publication Date Title
US7049860B2 (en) Method and circuit for controlling a resistance of a field effect transistor configured to conduct a signal with a varying voltage
US4543534A (en) Offset compensated switched capacitor circuits
US5410195A (en) Ripple-free phase detector using two sample-and-hold circuits
EP0078674B1 (en) Programmable transversal filter and method of filtering a signal
JPS5835670A (en) Offset compensation for integrator having capacitors to be switched
JP2593080B2 (en) Differential reset stabilizing latch
JPH0380365B2 (en)
US3987293A (en) Programmable general purpose analog filter
EP0047098B1 (en) Adjustable attenuator circuit
JPH0311038B2 (en)
CA2230366A1 (en) Digital processing device for an analog signal to be restored in analog form
Vallancourt et al. Sampled-current circuits
JPS5946131B2 (en) encoding circuit
JPS6057611B2 (en) Charge transfer device subtraction circuit
JP2021516410A (en) Single transistor multiplier and how
JP2592449B2 (en) Waveform equalizer
JPS5858846B2 (en) Shingouseikei Cairo
US5736757A (en) Charge-domain generation and replication devices
JPH0249580B2 (en) JIDOTOKAKI
CN107508575B (en) Analog finite impulse response filter
JPH037910B2 (en)
US20050231398A1 (en) Time-mode analog computation circuits and methods
US4429239A (en) Combined phase detector and low pass filter
CN109214085B (en) Analog finite impulse response filter
JPS6327894B2 (en)