JPH0249531Y2 - - Google Patents

Info

Publication number
JPH0249531Y2
JPH0249531Y2 JP19935483U JP19935483U JPH0249531Y2 JP H0249531 Y2 JPH0249531 Y2 JP H0249531Y2 JP 19935483 U JP19935483 U JP 19935483U JP 19935483 U JP19935483 U JP 19935483U JP H0249531 Y2 JPH0249531 Y2 JP H0249531Y2
Authority
JP
Japan
Prior art keywords
rotating arm
main body
rotational force
telescope main
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19935483U
Other languages
Japanese (ja)
Other versions
JPS60109008U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19935483U priority Critical patent/JPS60109008U/en
Publication of JPS60109008U publication Critical patent/JPS60109008U/en
Application granted granted Critical
Publication of JPH0249531Y2 publication Critical patent/JPH0249531Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Details Of Measuring And Other Instruments (AREA)

Description

【考案の詳細な説明】 技術分野 この考案は、望遠鏡本体部を粗動および微動し
て視準軸を合わせる測量機に関するものである。
[Detailed Description of the Invention] Technical Field This invention relates to a survey instrument that adjusts the sighting axis by coarsely and finely moving the main body of the telescope.

従来技術 レベル、トランシツト等の測量機は、視準軸を
正確に合わせるため、望遠鏡本体部を鉛直軸ある
いは水平軸を中心として粗動および微動回転させ
ている。
BACKGROUND OF THE INVENTION In order to accurately align the sighting axis, surveying instruments such as Rebel and Transit rotate the telescope main body coarsely and finely around a vertical or horizontal axis.

従来、この種の測量機の望遠鏡本体部を粗動お
よび微動させる機構としては第1図に示すような
レベルに適用されているものがある。図示しない
三脚に固定された下盤部1の軸受部1aに望遠鏡
本体部2と一体的に設けられた鉛直回転軸2aが
回転自在に装着されるとともに、軸受部1aの外
周に回動アーム3が下盤部1および望遠鏡本体部
2に上下両面で当接し所定の回転力量で回動可能
に装着されている。望遠鏡本体部2の粗動および
微動は、回動アーム3の上下両面とそれぞれ望遠
鏡本体部2および下盤部1との間の摩擦力の差に
よつて行なわれている。すなわち、摩擦力の差を
適切にとることにより、所定の回転力量以上を回
動アーム3に与えると回動アーム3は下盤部1と
の間で摺動回転し望遠鏡本体部2と一体に回転
し、所定の回転力量以下の場合には望遠鏡本体部
2との間で相対的摺動が行なわれ、望遠鏡本体部
2のみが回動する。前者が粗動であり、後者が微
動である。
Conventionally, as a mechanism for coarsely and finely moving the telescope main body of this type of surveying instrument, there is a mechanism applied to the level shown in FIG. A vertical rotation shaft 2a integrally provided with the telescope main body 2 is rotatably attached to a bearing 1a of a lower plate 1 fixed to a tripod (not shown), and a rotation arm 3 is attached to the outer periphery of the bearing 1a. is attached to the lower plate part 1 and the telescope main body part 2 on both upper and lower surfaces so as to be rotatable with a predetermined amount of rotational force. Coarse and fine movements of the telescope main body 2 are performed by the difference in frictional forces between the upper and lower surfaces of the rotating arm 3 and the telescope main body 2 and the lower plate 1, respectively. That is, by appropriately adjusting the difference in frictional force, when a predetermined amount of rotational force or more is applied to the rotating arm 3, the rotating arm 3 slides and rotates between the lower plate 1 and the telescope main body 2. When it rotates and the amount of rotational force is less than a predetermined amount, relative sliding occurs between the telescope main body 2 and only the telescope main body 2 rotates. The former is gross movement, and the latter is fine movement.

しかしながら、このような機構の測量機の場合
には回動アーム3の上下両面の摩擦力の差をつけ
るため、下盤部1との接触面積を大きくとらなけ
ればならず、回動アーム3が大きくなり、また所
定の回転力量を大きな値に設定しなければなら
ず、視準軸調整に操作力を必要とするとともに微
動あるいは粗動させる回転力量にばらつきがある
という問題がある。
However, in the case of a surveying instrument with such a mechanism, in order to create a difference in the frictional force between the upper and lower surfaces of the rotating arm 3, the contact area with the lower plate part 1 must be made large, and the rotating arm 3 is In addition, there is a problem in that the predetermined amount of rotational force must be set to a large value, an operating force is required to adjust the collimation axis, and there is variation in the amount of rotational force for fine or coarse movement.

また、他の従来例としては、微動の際に回動ア
ームを下盤と固定するクランプを設けるものがあ
る。この回転力量は、軸と軸受との螺合および油
等によつて決まり、一般に小さな値でよい。しか
しながら、部品点数が増加するとともにクランプ
操作など操作力が悪くなるという問題点がある。
Further, as another conventional example, there is one that is provided with a clamp that fixes the rotating arm to the lower plate during fine movement. The amount of rotational force is determined by the screw engagement between the shaft and the bearing, oil, etc., and generally a small value may be sufficient. However, there is a problem that as the number of parts increases, the operating force such as clamp operation becomes worse.

目 的 そこで、この考案はこのような従来技術の問題
点に鑑みてなされたもので、安定した小さな回転
力量で操作できる操作性がよくコンパクトな測量
機を提供することを目的としている。
Purpose This invention was devised in view of the problems of the prior art, and the purpose is to provide a compact surveying instrument with good operability that can be operated with a stable and small amount of rotational force.

構 成 この目的を達成するため、軸受部外周面に対し
軸受部中心に向う付勢力を与えるバネ手段を回動
アームに設ける構成としている。
Configuration In order to achieve this objective, the rotary arm is provided with a spring means that applies a biasing force toward the center of the bearing against the outer circumferential surface of the bearing.

以下、図面に基づいてこの考案を説明する。 This invention will be explained below based on the drawings.

第2図〜第5図は、この考案をレベルに適用し
た一実施例を示す図である。図中10は、望遠鏡
本体部で、三脚の架台20上に下盤30を介して
回動自在に設けられている。下盤30は、一般に
3個の調整螺子31で水平調整ができるようにな
つている。下盤30には軸受部32が形成され、
そこには望遠鏡本体部10と一体的に設けられた
鉛直回転軸11が回転自在に装着されている。ま
た、軸受部32の外周には回動アーム40が回動
可能に装着されている。この回動アーム40は、
アーム部41と環状部42と一体に形成されてお
り、環状部42の内周面42aには、軸受部32
の中心に向う付勢力を与えるバネ手段が設けられ
ており、このバネ手段である垂43が内周面42
aと同心的に内周面42aから張り出して形成さ
れている。この垂43には軸方向に沿うすりわり
43aが少なくとも1個設けられて十分なバネ性
を与えている。さらに、この環状部42には中心
に向う螺子44が先端を垂43に当接可能にして
適宜個数設けられており、回動アーム40のガタ
つき、あるいは垂43のバネ力を調整できる。こ
のような構造をした回動アーム40は一般に合成
樹脂によつて一体に成形されるけれども、合成樹
脂に限定されるものでもなく、また垂43を別部
品とすることもできる。
FIGS. 2 to 5 are diagrams showing an example in which this invention is applied to a level. Reference numeral 10 in the figure indicates a telescope main body, which is rotatably provided on a tripod mount 20 via a lower plate 30. The lower plate 30 can generally be horizontally adjusted using three adjustment screws 31. A bearing portion 32 is formed on the lower plate 30,
A vertical rotation shaft 11 provided integrally with the telescope main body 10 is rotatably mounted there. Further, a rotating arm 40 is rotatably mounted on the outer periphery of the bearing portion 32. This rotating arm 40 is
The arm part 41 and the annular part 42 are integrally formed, and the bearing part 32 is formed on the inner peripheral surface 42a of the annular part 42.
A spring means is provided which applies a biasing force toward the center of the inner circumferential surface 42.
It is formed to protrude from the inner circumferential surface 42a concentrically with a. This hanging 43 is provided with at least one slot 43a along the axial direction to provide sufficient springiness. Further, an appropriate number of screws 44 facing the center are provided in this annular portion 42 so that the tips thereof can come into contact with the hangings 43, so that the wobbling of the rotating arm 40 or the spring force of the hangings 43 can be adjusted. Although the rotating arm 40 having such a structure is generally integrally molded from synthetic resin, it is not limited to synthetic resin, and the hanging arm 43 can be made as a separate component.

12は望遠鏡本体部10と一体的であるスカー
ト部で、下盤30のほぼ全体および回動アーム4
1を覆つている。このスカート部12には鉛直回
転軸11と垂直な面内で進退動自在に微動螺子1
3が螺合され、微動螺子13の先端が回動アーム
40のアーム部41に常時当接するように回動ア
ーム40に固定されたスプリング45はスカート
部12に形成された突起部12aに係止されてい
る(第4図参照)。このスプリング45の強さは、
バネ手段である垂43の中心方向への付勢力によ
る摩擦力、すなわち回転力量以上に設定されてい
る。
Reference numeral 12 denotes a skirt portion that is integral with the telescope main body 10 and covers almost the entire lower plate 30 and the rotating arm 4.
It covers 1. This skirt portion 12 has a fine adjustment screw 1 that can freely move forward and backward in a plane perpendicular to the vertical rotation axis 11.
3 are screwed together, and the spring 45 is fixed to the rotating arm 40 so that the tip of the fine adjustment screw 13 is always in contact with the arm part 41 of the rotating arm 40. The spring 45 is locked to the protrusion 12a formed on the skirt part 12. (See Figure 4). The strength of this spring 45 is
The frictional force due to the biasing force toward the center of the spring means 43 is set to be greater than the amount of rotational force.

作 用 次に、このような測量機の使用について説明す
るとともに考案の作用について説明する。
Function Next, we will explain the use of such a surveying instrument and explain the function of the device.

まず、三脚20上の下盤30の水平を調整螺子
31を回動させることにより出しておく。次に望
遠鏡本体部10を手で持ち、目標物への視準軸を
大まかに合わせる。このように粗動は望遠鏡本体
部10を直接手で握り回動させる。その後、微動
螺子13を回動させ進退動させることにより望遠
鏡本体部10を微動させ、正確な視準軸調整を行
なう。
First, the lower plate 30 on the tripod 20 is leveled by rotating the adjusting screw 31. Next, hold the telescope body 10 in your hand and roughly align the sighting axis with the target object. In this way, for coarse movement, the telescope main body 10 is held and rotated directly by hand. Thereafter, by rotating the fine adjustment screw 13 and moving it forward and backward, the telescope main body 10 is finely moved to perform accurate collimation axis adjustment.

粗動および微動について第4図を参照して詳細
に説明する。まず、粗動の場合にはつぎのような
動作をする。望遠鏡本体部10を時計方向と反対
側に回動させると、微動螺子13の先端は回動ア
ーム40を押し、回動アーム40が一体となつて
回動する。望遠鏡本体部10を時計方向に回動さ
せると、回動アーム40はアーム部41が微動螺
子13の先端に常時当接するようにスプリング4
5で付勢されており、このスプリング45のバネ
力が、垂43と軸受部32との摩擦力より大きい
ため、回動アーム40が同じく時計方向に回動さ
れる。この摩擦力が所定の回転力量となるが、従
来の回動アームの上下の面での面同士の摩擦力に
比べ小さくすることができるし、また、螺子44
を進退させることによりバネ力すなわち摩擦力を
変えることができる。
Coarse movement and fine movement will be explained in detail with reference to FIG. 4. First, in the case of coarse movement, the following operation is performed. When the telescope main body 10 is rotated in the opposite clockwise direction, the tip of the fine adjustment screw 13 pushes the rotation arm 40, and the rotation arm 40 rotates together. When the telescope body 10 is rotated clockwise, the rotation arm 40 is moved by the spring 4 so that the arm 41 is always in contact with the tip of the fine adjustment screw 13.
5, and since the spring force of this spring 45 is greater than the frictional force between the hanging portion 43 and the bearing portion 32, the rotating arm 40 is similarly rotated clockwise. This frictional force becomes a predetermined amount of rotational force, but it can be made smaller than the frictional force between the upper and lower surfaces of the conventional rotating arm.
The spring force, that is, the frictional force, can be changed by moving forward and backward.

次に微動の場合には、次のような動作をする。
この微動は望遠鏡本体部10をわずかに回動させ
ればよい。そこで、微動螺子13を右に回わす
と、スカート部12の内側に向つて微動螺子13
が進入する。しかし、微動螺子13が進入して回
動アーム40を押す力は、設定された回転力量と
なる回動アーム40の摩擦力より小さいため、回
動アーム40は軸受部32の外周面との間で相対
的移動がない。したがつて、進入した量に相当す
る分だけ、回動アーム40から反力を受けて望遠
鏡本体部10が時計方向に回動する。逆に微動螺
子13を左に回わすと、微動螺子13の先端は回
動アーム40のアーム部41から離れようとす
る。しかし、スプリング45が常時アーム部41
と微動螺子13の先端を当接させようとしてお
り、回動アーム40は前述のように回動しないた
め、スプリング45が突起部12aを押して望遠
鏡本体部10が微動螺子13の後退分に相当する
回動角だけ反時計方向に回動する。
Next, in the case of slight tremors, the following actions are taken.
This slight movement can be achieved by slightly rotating the telescope main body 10. Therefore, when the fine movement screw 13 is turned to the right, the fine movement screw 13 moves toward the inside of the skirt portion 12.
enters. However, since the force of the fine adjustment screw 13 entering and pushing the rotating arm 40 is smaller than the frictional force of the rotating arm 40 that produces the set amount of rotational force, the rotating arm 40 is There is no relative movement. Therefore, the telescope main body 10 rotates clockwise by receiving a reaction force from the rotation arm 40 by an amount corresponding to the amount of intrusion. Conversely, when the fine adjustment screw 13 is turned to the left, the tip of the fine adjustment screw 13 tends to separate from the arm portion 41 of the rotation arm 40. However, the spring 45 is always
The tip of the fine adjustment screw 13 is about to come into contact with the tip of the fine adjustment screw 13, and since the rotation arm 40 does not rotate as described above, the spring 45 pushes the protrusion 12a and the telescope main body 10 corresponds to the retraction of the fine adjustment screw 13. Rotates counterclockwise by the rotation angle.

なお、以上は測量機のレベルのような鉛直回転
軸のものについて説明したが、トランシツトのよ
うな水平回転軸のようなものにもこの考案が適用
されうることは勿論である。
Although the above description has been made regarding a device with a vertical rotation axis such as a level of a surveying instrument, it goes without saying that this invention can also be applied to a device with a horizontal rotation axis such as a transit.

効 果 以上説明してきたように、この考案の測量機
は、回転力量を小さく設定できるため、粗動ある
いは微動の際に動き出す回転力量のばらつきが小
さく安定している。また、回転力量を小さく設定
できるため、アーム部の長さも短かくてもよい
し、環状部は小さくしかもクランプなどの部品の
追加もないので回動アームを小さくできる。した
がつて、測量機自体を小型、軽量にすることがで
きる。このようなことから、この測量機は操作性
に優れている。
Effects As explained above, in the surveying instrument of this invention, the amount of rotational force can be set small, so the variation in the amount of rotational force that starts moving during coarse or fine movement is small and stable. Furthermore, since the amount of rotational force can be set small, the length of the arm portion can be shortened, and since the annular portion is small and there is no need to add parts such as a clamp, the rotating arm can be made small. Therefore, the surveying instrument itself can be made smaller and lighter. For these reasons, this surveying instrument has excellent operability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の測量機の一部断面図、第2図は
この考案の測量機の全体斜視図、第3図は第2図
の−断面図、第4図は第2図の−断面
図、第5図はこの考案の測量機の回動アームの部
分斜視図である。 10……望遠鏡本体部、11……鉛直回転軸
(回転軸)、12……スカート部、12a……突起
部、13……微動螺子、30……下盤、32……
軸受部、40……回動アーム、41……アーム
部、42……環状部、42a……内周面、43…
…垂(バネ手段)、43a……すりわり、44…
…螺子、45……スプリング。
Figure 1 is a partial sectional view of a conventional surveying instrument, Figure 2 is an overall perspective view of the surveying instrument of this invention, Figure 3 is a cross-sectional view of Figure 2, and Figure 4 is a cross-sectional view of Figure 2. 5 are partial perspective views of the rotating arm of the surveying instrument of this invention. DESCRIPTION OF SYMBOLS 10...Telescope main body part, 11...Vertical rotation axis (rotation axis), 12...Skirt part, 12a...Protrusion part, 13...Fine screw, 30...Lower plate, 32...
Bearing part, 40... Rotating arm, 41... Arm part, 42... Annular part, 42a... Inner peripheral surface, 43...
...Tare (spring means), 43a...Suriwari, 44...
...screw, 45...spring.

Claims (1)

【実用新案登録請求の範囲】 (1) 軸受部に望遠鏡本体部と一体的に設けられた
回転軸を回転自在に装着し、前記軸受部外周に
回動アームを所定の回転力量で回動可能に装着
し、前記望遠鏡本体部に進退動自在に螺合され
た微動螺子と前記回動アームとが常時当接する
ように係合させ、前記望遠鏡本体部を前記回転
力量以上で回動させ、前記回動アームを協動さ
せて粗動させ、前記微動螺子を進退動させて前
記望遠鏡本体部を前記回転力量以下で微動させ
る測量機において、 前記回動アームには、前記軸受部外周面に対
し該軸受部中心に向う付勢力を与え、前記回転
力量を決定するバネ手段が設けられたことを特
徴とする測量機。 (2) バネ手段は、回動アームの軸受部外周面と対
面する内周面と同心的に垂が前記内周面から張
り出して形成されかつ該垂に軸方向に沿う少な
くとも1個のすりわりが設けられたことを特徴
とする測量機。
[Claims for Utility Model Registration] (1) A rotating shaft integrally provided with the telescope main body is rotatably mounted on a bearing, and a rotating arm can be rotated with a predetermined amount of rotational force around the outer periphery of the bearing. a fine adjustment screw screwed into the telescope main body so as to be movable forward and backward, and the rotating arm are engaged so as to be in constant contact with each other, and the telescope main body is rotated with the amount of rotational force or more; In a surveying instrument that causes a rotating arm to move coarsely in cooperation and moves the fine adjustment screw forward and backward to slightly move the telescope main body with less than the amount of rotational force, the rotating arm includes: A surveying instrument characterized in that a spring means is provided for applying a biasing force toward the center of the bearing portion and determining the amount of rotational force. (2) The spring means has at least one slot extending from the inner circumferential surface concentrically with the inner circumferential surface facing the outer circumferential surface of the bearing portion of the rotating arm and extending from the inner circumferential surface, and axially extending along the bow. A surveying instrument characterized by being equipped with.
JP19935483U 1983-12-28 1983-12-28 surveying machine Granted JPS60109008U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19935483U JPS60109008U (en) 1983-12-28 1983-12-28 surveying machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19935483U JPS60109008U (en) 1983-12-28 1983-12-28 surveying machine

Publications (2)

Publication Number Publication Date
JPS60109008U JPS60109008U (en) 1985-07-24
JPH0249531Y2 true JPH0249531Y2 (en) 1990-12-27

Family

ID=30759197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19935483U Granted JPS60109008U (en) 1983-12-28 1983-12-28 surveying machine

Country Status (1)

Country Link
JP (1) JPS60109008U (en)

Also Published As

Publication number Publication date
JPS60109008U (en) 1985-07-24

Similar Documents

Publication Publication Date Title
JP3930941B2 (en) Theodolite orientation drive
JP3104385B2 (en) Coarse / fine movement device of surveying instrument
GB2075676A (en) Gyroscopic surveying means and method of operating such means
JPH0249531Y2 (en)
CA1076345A (en) Theodolite adjusting means
JPH08210838A (en) Measuring instrument scale plate rotation device
JP2006522285A (en) HEIGHT ADJUSTMENT DEVICE AND OPTICAL SYSTEM SUPPORT DEVICE HAVING HEIGHT ADJUSTMENT DEVICE
CN210196861U (en) Virtual tracking camera shooting holder
JPH05184543A (en) Slit adjusting device for slit-lamp microscope
CN211118353U (en) Base device for precision adjustment of vision camera
JPS6119584Y2 (en)
JPH0348556Y2 (en)
JPH069298Y2 (en) Clamping device such as surveying instrument on leveling table
JPS6336329Y2 (en)
JP2541873Y2 (en) Helmet
CN115348396B (en) Optical axis adjusting mechanism and monitoring equipment
JPS6231843Y2 (en)
JPH0548088Y2 (en)
JP2606065Y2 (en) Surveying instrument with telescope with balance mechanism
JPS6036902Y2 (en) Tuning knob attachment device
JPH0843699A (en) Aligning adjusting mechanism for optical element
JPH0412417Y2 (en)
JPS5853803Y2 (en) Monitor - TV vertical swing device
JP3069892B2 (en) Angle indexing mechanism for surveying instruments
JPH0217356Y2 (en)