JPH0249517A - Artificial sphagnum moss - Google Patents

Artificial sphagnum moss

Info

Publication number
JPH0249517A
JPH0249517A JP63199643A JP19964388A JPH0249517A JP H0249517 A JPH0249517 A JP H0249517A JP 63199643 A JP63199643 A JP 63199643A JP 19964388 A JP19964388 A JP 19964388A JP H0249517 A JPH0249517 A JP H0249517A
Authority
JP
Japan
Prior art keywords
sphagnum moss
water
polystyrene foam
sulfonated
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63199643A
Other languages
Japanese (ja)
Inventor
Norio Ohara
大原 詔雄
Yukiko Oohara
大原 征子
Naoichi Sakota
直一 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKOTA KAGAKU KAIHATSU KENKYUSHO KK
Asahi Chemical Co Ltd
Asahi Kagaku Kogyo Co Ltd
Original Assignee
SAKOTA KAGAKU KAIHATSU KENKYUSHO KK
Asahi Chemical Co Ltd
Asahi Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKOTA KAGAKU KAIHATSU KENKYUSHO KK, Asahi Chemical Co Ltd, Asahi Kagaku Kogyo Co Ltd filed Critical SAKOTA KAGAKU KAIHATSU KENKYUSHO KK
Priority to JP63199643A priority Critical patent/JPH0249517A/en
Publication of JPH0249517A publication Critical patent/JPH0249517A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02P60/216

Abstract

PURPOSE:To provide an artificial sphagnum moss outstanding in water resistance, water retentivity, appearance, hand touch and water absorption rate, comprising a foam derivative produced by sulfonation of a PS foam to its interior. CONSTITUTION:A PS foam is made to react, using e.g., fuming sulfuric acid, pref. at 95-100 deg.C for 72-240hr to effect sulfonation to its interior. The resultant PS foam derivative (its salt, if needed) is the main constituent of the objective artificial sphagnum moss.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は人工水苔に関し、その目的とする所は優れた吸
水性、保水性、外観および手触りを有する人工水苔を提
供することである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to artificial sphagnum moss, and its purpose is to provide an artificial sphagnum moss that has excellent water absorption, water retention, appearance, and feel. .

〔従来の技術〕[Conventional technology]

従来、一般家庭および産業上の利用分野、および農業分
野において使用される天然水苔は、最近その需要が大き
くなり国内生産だけでは、需要に追い付かず、価格の高
騰に伴い、供給量の増大を各方面から強く要望されてい
る。
Demand for natural sphagnum moss, which has traditionally been used in general households, industrial applications, and agriculture, has increased recently, and domestic production alone cannot keep up with the demand. It is strongly requested from all quarters.

しかし、天然に産するものであり、その供給に制限があ
る。
However, since it is a naturally occurring product, its supply is limited.

このような状況から、最近各種の人工水苔が開発され、
市販されているが、水苔としては、優れた嵩高性、吸水
性、保水性、通気性などをバランスよく具備したものが
要求される。更に望ましくは、吸水速度が大きく、触感
に優れることも要求される。
Under these circumstances, various types of artificial sphagnum moss have been developed recently.
Although it is commercially available, sphagnum moss is required to have a good balance of bulk, water absorption, water retention, and air permeability. More desirably, it is also required to have a high water absorption rate and excellent tactility.

この水苔の特性について、鉢植用水苔を例にとって更に
若干説明すると以下の通りである。
The characteristics of this sphagnum moss will be further explained below using potted sphagnum moss as an example.

鉢植用植込材料として要求される基本的性能は、優れた
吸水性、保水性はもとより、特に鉢植用としては、鉢内
の上・下層間における保有水分量の均一性と通気性、特
に鉢の下層部における通気性が極めて重要である。
The basic performance required for potted plants is not only excellent water absorption and water retention, but also uniformity of moisture content and air permeability between the upper and lower layers of the pot, especially for potted plants. Air permeability in the lower layer is extremely important.

鉢の上部から潅水した場合、水は上層から下層へ順次流
下するため、通常、鉢上層部の保有水は少なく、下層部
が多くなる。従って、保水比の大きい材料が望ましい。
When watering from the top of the pot, the water flows down from the top layer to the bottom layer, so normally the upper layer of the pot holds less water, and the lower layer holds more water. Therefore, a material with a high water retention ratio is desirable.

さらに下層部での通気性が必要であり、上・下層間の保
水差が少なくても通気性が不十分であれば根への酸素供
給が阻害され、植物に悪影響を及ぼす。
Furthermore, ventilation is required in the lower layer, and even if the water retention difference between the upper and lower layers is small, if the ventilation is insufficient, oxygen supply to the roots will be inhibited, which will have a negative impact on the plants.

この際、通気性が少ない場合は、酸素量の不足が発生す
る。
At this time, if the air permeability is low, a shortage of oxygen will occur.

而して、従来の人工水苔は、主として親水性且つ水不溶
性のポリマー、例えばポリエチレンオキサイド、ポリア
クリル酸ソーダ、ポリビニルアルコール等の架橋物から
調製されている。
Conventional artificial sphagnum moss is mainly prepared from crosslinked products of hydrophilic and water-insoluble polymers such as polyethylene oxide, sodium polyacrylate, and polyvinyl alcohol.

このような従来の人工水苔は、吸水性および保水性が不
十分であり、またその外観および手触も満足出来るもの
ではない。加えてその吸水速度も特に大きいとは言い難
い。
Such conventional artificial sphagnum moss has insufficient water absorption and water retention properties, and its appearance and feel are also unsatisfactory. In addition, it is difficult to say that its water absorption rate is particularly high.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明が解決しようとする課題は上記従来の人工水苔の
有する各難点を解決することであり、更に詳しくは吸水
性、保水性、通気性、外観、吸水速度いずれに於いても
優れた特性を有する水苔を開発することである。
The problem to be solved by the present invention is to solve each of the drawbacks of the conventional artificial sphagnum moss mentioned above, and more specifically, it has excellent properties in terms of water absorption, water retention, air permeability, appearance, and water absorption rate. The goal is to develop sphagnum moss that has the following properties.

〔課題を解決するための手段〕[Means to solve the problem]

この課題はポリスチレン発泡体を発煙硫酸、クロロまた
はフルオロスルホン酸及び三酸化硫黄(SO8)の少な
くとも1種によりスルホン化し、更に必要に応じ塩とな
したものを水苔として使用することにより解決される。
This problem can be solved by sulfonating polystyrene foam with at least one of fuming sulfuric acid, chloro or fluorosulfonic acid, and sulfur trioxide (SO8), and using the resulting product as a salt as sphagnum moss. .

即ち本発明はポリスチレン発泡体を積極的に内部までス
ルホン化剤でスルホン化し、必要に応じ更に塩となした
スルホン化ポリスチレン発泡体を主成分として成る人工
水苔に係るものである。
That is, the present invention relates to an artificial sphagnum moss which is mainly composed of sulfonated polystyrene foam, which is actively sulfonated to the inside with a sulfonating agent and further converted into salt if necessary.

〔発明の構成並びに作用〕[Structure and operation of the invention]

本発明の人工水苔は次の2つの点で特徴ずけられる。即
ち (1)ポリスチレン発泡体を上記スルホン化剤の少なく
とも1種で、発泡体内部まで積極的にスルホン化するこ
と (2)更に必要に応じて有機塩または無機塩とすること である。
The artificial sphagnum moss of the present invention is characterized by the following two points. That is, (1) the polystyrene foam is actively sulfonated to the inside of the foam with at least one of the above-mentioned sulfonating agents, and (2) the polystyrene foam is further treated with an organic salt or an inorganic salt as necessary.

ポリスチレン発泡体に、上記の如く発煙硫酸、クロロま
たはフルオロスルホン酸、及び二酸化硫黄の少なくとも
1種で処理してスルホン化を行うことは従来殆ど知られ
ておらず、わずかに三酸化硫黄を用いてポリスチレン発
泡体の表面だけをスルホン化したものが、土壌改良剤と
して使用出来ることが知られているにすぎない。元来ポ
リスチレン発泡体は殆ど独立気孔から成る発泡体であり
、この発泡体をスルホン化してもその表面だけしかスル
ホン化出来ないであろうというのがこの種業界での通説
となっている。
It has not been known to date that polystyrene foam can be sulfonated by treating it with at least one of fuming sulfuric acid, chloro or fluorosulfonic acid, and sulfur dioxide as described above, and it has been known that sulfonation can be carried out by treating polystyrene foam with at least one of fuming sulfuric acid, chloro or fluorosulfonic acid, and sulfur dioxide. It is only known that polystyrene foams with sulfonated surfaces can be used as soil conditioners. Originally, polystyrene foam is a foam consisting of almost closed pores, and it is a common belief in this type of industry that even if this foam is sulfonated, only the surface thereof will be sulfonated.

しかるに本発明者の研究に依れば、スルホン化剤でポリ
スチレン発泡体を積極的に内部までスルホン化してみる
と、実に驚くべきことにポリスチレン発泡体の個々のセ
ル構造を何等損傷することなく殆ど内部までスルホン化
出来ることが見出され、しかも内部までスルホン化され
たポリスチレン発泡体は、表面だけスルホン化されたも
のに比し、水苔として著しく優れた特性を有することが
見出された。
However, according to the research of the present inventor, when polystyrene foam was actively sulfonated to the inside with a sulfonating agent, it was surprisingly possible to sulfonate the polystyrene foam without damaging its individual cell structure in any way. It has been found that polystyrene foam can be sulfonated to the inside, and it has also been found that polystyrene foam that has been sulfonated to the inside has significantly superior properties as a sphagnum moss, compared to one that is sulfonated only on the surface.

またスルホン化ポリスチレン発泡体を塩となしてもスル
ホン化ポリスチレン発泡体とほぼ同等の特性を発揮する
ことも併せ見出され、これ等の新しい事実に基づいて本
発明が完成されたものである。
It has also been discovered that even when the sulfonated polystyrene foam is converted into a salt, it exhibits almost the same properties as the sulfonated polystyrene foam, and the present invention was completed based on these new facts.

本発明に用いられるポリスチレンは単独重合体をはじめ
、ブタジェン、アクリロニトリルなどとの共重合体も用
いることもできるが、スチレン含量の多いもの程本発明
の効果が発揮されやすい。
The polystyrene used in the present invention may be a homopolymer or a copolymer with butadiene, acrylonitrile, etc., but the effects of the present invention are more likely to be exhibited as the polystyrene content is higher.

向上記共重合体に於けるスチレンと他のモノマーとの割
合は通常他のモノマーが40モル%以下好ましくは10
〜20モル%程度である。共重合体の形態としてもブロ
ック共重合、グラフト共重合をはじめその他ランダム共
重合等特に制限はない。
The ratio of styrene to other monomers in the above copolymer is usually 40 mol% or less, preferably 10
It is about 20 mol%. There are no particular limitations on the form of the copolymer, including block copolymerization, graft copolymerization, and other random copolymerization.

本発明に於いてはこれ等ポリスチレンを発泡せしめたも
のを使用することを必須とする。発泡しているかぎり各
種のポリスチレン発泡体が使用出来、特にポリスチレン
発泡体そのものを使用することが好ましく、ポリスチレ
ン発泡体を粉砕したものは避けることが好ましい。ポリ
スチレン発泡体としては安価で容易に入手できる梱包用
材料のシート状、リボン状、塊状などのいわゆる緩衝材
をはじめ、断熱材用の板状やケース、画体、容器などの
成形体やあるいは使用済みのポリスチレン発泡体を利用
することも可能である。
In the present invention, it is essential to use foamed polystyrene. Various polystyrene foams can be used as long as they are foamed, and it is particularly preferable to use the polystyrene foam itself, and it is preferable to avoid pulverized polystyrene foams. Polystyrene foam can be used in packaging materials that are cheap and easily available, such as cushioning materials such as sheets, ribbons, and lumps, as well as molded objects such as plates for insulation, cases, objects, containers, etc. It is also possible to utilize already finished polystyrene foam.

本発明に於いてはスルホン化処理を施すものはポリスチ
レン発泡体であり、スチレンモノマーに該処理を施して
から重合(共重合も含む)せしめても、所期の目的は達
成されない。またポリスチレンをスルホン化してから発
泡せしめても充分なる発泡体とすることは出来ない。た
とえばスチレンスルホン酸ソーダーを重合したものは水
溶性である。
In the present invention, it is the polystyrene foam that is subjected to the sulfonation treatment, and even if the styrene monomer is subjected to the treatment and then polymerized (including copolymerization), the intended purpose will not be achieved. Further, even if polystyrene is sulfonated and then foamed, a sufficient foam cannot be obtained. For example, polymerized sodium styrene sulfonate is water-soluble.

特に本発明に於いてはポリスチレン発泡体を使用するた
め、断熱材や緩衝材として使用されて来た従来の廃物を
も使用出来、廃物利用の新しい用途を開発した点でも大
きな意味がある。
In particular, since the present invention uses polystyrene foam, conventional waste materials that have been used as insulation and cushioning materials can also be used, which is significant in that it has developed a new use for waste materials.

本発明に用いられる発煙硫酸は20〜30%発煙硫酸で
市販品をそのまま使用することが出来る。
The fuming sulfuric acid used in the present invention is 20 to 30% oleum, and a commercially available product can be used as is.

またクロロスルホン酸が一般的であるが、フルオロスル
ホン酸を使用することもできる。三酸化硫黄としては液
体二酸化硫黄を用いるが、気体状態で反応させることも
可能である。ポリスチレン発泡体とこれらの酸との反応
条件は該発泡体の内部まで積極的にスルホン化出来る条
件が採用される。
Although chlorosulfonic acid is commonly used, fluorosulfonic acid can also be used. Although liquid sulfur dioxide is used as sulfur trioxide, it is also possible to react in a gaseous state. Conditions for the reaction between the polystyrene foam and these acids are such that the inside of the foam can be positively sulfonated.

内部までスルホン化出来るかぎり特に限定されないが、
たとえば、通常ば90〜100°C好ましくは95〜1
00°Cでは3〜8時間程度、常温では72時間以上好
ましくは72〜240時間程度反応させると、生成物の
硫黄含量はいずれのスルホン化剤の場合でも16〜21
%とほぼ内部までスルホン化された範囲に到達する。
There is no particular limitation as long as the inside can be sulfonated, but
For example, usually 90-100°C, preferably 95-1
When the reaction is carried out for about 3 to 8 hours at 00°C, and for more than 72 hours, preferably for about 72 to 240 hours at room temperature, the sulfur content of the product will be 16 to 21 for any sulfonating agent.
% and reach a sulfonated range almost to the inside.

スルホン化剤で処理したポリスチレン発泡体は硫酸イオ
ンが検出されなくなるまで水洗し必要に応じ中和して塩
として、常法に従って乾燥し、更に必要に応じ適宜な大
きさ並びに形状に調整して本発明の水苔となすものであ
る。
The polystyrene foam treated with the sulfonating agent is washed with water until sulfate ions are no longer detected, neutralized as necessary to form a salt, dried according to a conventional method, and further adjusted to an appropriate size and shape as necessary for production. This is the invention of sphagnum moss.

中和して塩となす方法自体は何等限定されず、常法に従
って行えば良い。この際の中和剤は通常アルカリが使用
され、中和に使用されるアルカリとしては、一般のアル
カリおよびアルカリ土類金属の水酸化物あるいはアンモ
ニアやアルキルアミンたとえばエタノールアミンの如き
有機アミン類が好ましく使用される。
The method of neutralizing to form a salt is not limited in any way, and may be carried out according to a conventional method. The neutralizing agent in this case is usually an alkali, and the alkali used for neutralization is preferably a common alkali or alkaline earth metal hydroxide, or ammonia or an alkyl amine, such as an organic amine such as ethanolamine. used.

本発明によるスルホン化ポリスチレン発泡体、またはそ
の塩は原料のポリスチレン発泡体と同じくセル構造を有
する固体である。例えば参考図1に原料ポリスチレン発
泡体と、これを内部までスルホン化した本発明のスルホ
ン化ポリスチレン発泡体の夫々の顕微鏡写真(倍率10
0倍)を示す。
The sulfonated polystyrene foam or its salt according to the present invention is a solid having a cell structure like the raw material polystyrene foam. For example, reference Fig. 1 shows micrographs (magnification: 10
0 times).

但し参考図1(A)は原料を同図(B)は本発明の発泡
体を示し、参考図1 (A)のポリスチレン発泡体は旭
化成■製「アスバック」である。また参考図2も同じこ
とを意味し、同図(A)は市販ビーズ状ポリスチレン発
泡体であり、同図(B)はこれの内部までのスルホン化
物である。
However, Reference Figure 1 (A) shows the raw material, Figure 1 (B) shows the foam of the present invention, and the polystyrene foam in Reference Figure 1 (A) is "Asback" manufactured by Asahi Kasei ■. Reference Figure 2 also means the same thing; Figure (A) is a commercially available bead-shaped polystyrene foam, and Figure (B) is a sulfonated product up to the inside thereof.

この参考図1〜2から明らかな通り、セル構造はいずれ
も殆ど変化がなく、もとのセル構造を有したままで内部
までスルホン化されていることが明らかに判明する。
As is clear from these Reference Figures 1 and 2, there is almost no change in the cell structure in any case, and it is clearly revealed that the cell structure is sulfonated to the inside while maintaining the original cell structure.

また本発明のスルホン化ポリスチレン発泡体及びその塩
は親水性ではあるが水不溶性である。
Furthermore, the sulfonated polystyrene foam and its salts of the present invention are hydrophilic but water-insoluble.

また原料のポリスチレン発泡体が疏水性であるのに対し
て、スルホン化ポリスチレン発泡体、またはその塩(以
下単にスルホン化ポリスチレン発泡体という)は親水性
であり、しかもこれを構成するセル構造のセル自体が親
水性となるために速やかに水を吸水保持でき、その吸水
量は自重の20〜80倍程度にも達する。このように吸
水量が大きく、セル構造を有し、吸収した水が放出され
やすいために、本発明によるスルホン化ポリスチレン発
泡体は保水性に優れ、吸収保持された水は植物により容
易に利用されるに至るのである。
In addition, while the raw material polystyrene foam is hydrophobic, sulfonated polystyrene foam or its salt (hereinafter simply referred to as sulfonated polystyrene foam) is hydrophilic, and the cell structure that makes up the foam is hydrophilic. Because it itself is hydrophilic, it can quickly absorb and retain water, and its water absorption amount reaches about 20 to 80 times its own weight. As described above, the sulfonated polystyrene foam of the present invention has a high water absorption capacity, has a cellular structure, and easily releases the absorbed water, so the sulfonated polystyrene foam according to the present invention has excellent water retention properties, and the absorbed and retained water can be easily used by plants. This leads to

−船釣に、水苔としては植物の養分である窒素(アンモ
ニア)、カリウム、マグネシウム、カルシウム、マンガ
ン、鉄、銅、亜鉛等の吸着保持が良好であることが好ま
しいとされている。一方、本発明によるスルホン化ポリ
スチレン発泡体は4.5〜6ミリグラム当量/gの大き
なカチオン交換容量を持ち、容易にかつ速やかに吸水で
きるセル構造を有する故に、養分であるイオンが容易に
セル内部まで入り込んでイオン交換され吸着保持される
。またカチオン交換はスルホン酸基によるものであるた
めに、吸着保持された養分は容易に溶脱することなく充
分に利用される。このように本発明によるスルホン化ポ
リスチレン発泡体はこれ等養分の保持能力が著しく向上
したものとなっている。
- For boat fishing, it is said that it is preferable that sphagnum moss has good adsorption and retention of plant nutrients such as nitrogen (ammonia), potassium, magnesium, calcium, manganese, iron, copper, and zinc. On the other hand, the sulfonated polystyrene foam according to the present invention has a large cation exchange capacity of 4.5 to 6 milligram equivalents/g and has a cell structure that can easily and quickly absorb water. It enters the water, undergoes ion exchange, and is retained by adsorption. Furthermore, since cation exchange is performed by sulfonic acid groups, the adsorbed and retained nutrients are not easily leached out and are fully utilized. As described above, the sulfonated polystyrene foam according to the present invention has a significantly improved ability to retain these nutrients.

また本発明水苔は吸水した時に乾燥時の体積の2.5〜
3倍程度まで膨張するので、水分を十分に保持している
にも拘らず空隙部分が多くなり、この空隙に基づく空気
量が多くなり、十分なる水分があるにも拘らず通気性が
良好となる。
In addition, when the sphagnum moss of the present invention absorbs water, it has a volume of 2.5 to 2.5% of its dry volume.
Because it expands to about three times its size, there are many voids even though it retains sufficient moisture, and the amount of air created by these voids increases, resulting in good breathability even though there is sufficient moisture. Become.

本発明に於いては、このポリスチレン発泡体を用いて水
苔とするものであるが、この際の水苔の形状は特に限定
されない。たとえば具体的には、細紐状、小片状、シー
ト状、リング状、チューブ状、粒状、粉状等であり、特
に好ましいものは細紐状である。また粒状でも良く、ポ
リスチレン発泡体を粉砕して使用することも可能である
In the present invention, this polystyrene foam is used to make sphagnum moss, but the shape of the sphagnum moss is not particularly limited. For example, specifically, the shape is a thin string, a small piece, a sheet, a ring, a tube, a granule, a powder, etc., and a thin string is particularly preferable. It may also be in granular form, and it is also possible to use it by crushing polystyrene foam.

〔発明の効果〕〔Effect of the invention〕

本発明によるスルホン化ポリスチレン発泡体は原則とし
て原料であるポリスチレン発泡体の形状に左右されるこ
となく広く各種のものが使用できる。特に廃品または工
場から排出されるポリスチレン発泡体の切端でも原料と
して利用出来るので非常に安価に製造でき、産業上極め
て有意義なものである。
In principle, a wide variety of sulfonated polystyrene foams can be used as the sulfonated polystyrene foam according to the present invention, regardless of the shape of the raw material polystyrene foam. In particular, scraps or cut ends of polystyrene foam discharged from factories can be used as raw materials, so they can be produced at a very low cost and are extremely meaningful industrially.

〔実施例〕〔Example〕

次に実施例によって本発明を更に詳細に説明するが、本
発明は実施例に限定されるものでない。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the Examples.

実施例1 500IIdlのフラスコに紐状ポリスチレン発泡体(
旭化成■製「アスパック」)3gと25%発煙硫酸50
IIIl!を入れ、ポリスチレンの表面が発煙硫酸でぬ
れるように振りまぜる。次いでフラスコに冷却管を付け
、外気を遮断し、沸騰水浴中で8時間反応させる。未反
応発煙硫酸を回収し、反応物を水中に投入する。濾過後
、洗浄液に硫酸イオンの認められなくなるまで水洗した
後、105°Cにて恒量まで乾燥させ、S含量20.0
%のスルホン化ポリスチレン発泡体5.77gを得た。
Example 1 String polystyrene foam (
Asahi Kasei ■ "Aspac") 3g and 25% oleum 50
IIIl! and shake it so that the surface of the polystyrene gets wet with the fuming sulfuric acid. Next, a condenser was attached to the flask, outside air was shut off, and the reaction was allowed to take place in a boiling water bath for 8 hours. Unreacted fuming sulfuric acid is collected and the reactant is poured into water. After filtration, the washing solution was washed with water until no sulfate ions were observed, and then dried at 105°C to a constant weight, and the S content was 20.0.
% sulfonated polystyrene foam was obtained.

S含量より内部までスルホン化されていることが判明す
る。これはそのまま水苔として使用出来るものである。
It is clear from the S content that the inside is sulfonated. This can be used as is as sphagnum moss.

第3図はこの際の反応時間と得られたスルホン化ポリス
チレン発泡体のS含量との関係を示したもので、数時間
の反応でスルホン化は一定値に達し、その値はポリスチ
レン発泡体のフェニル核のすべてにスルホン酸基が1個
は置換していることをよく示している。但しイオウの定
量は試料を無水炭酸ナトリウムおよび過酸化ナトリウム
でアルカリ溶融し、イオウを硫酸バリウムとして沈澱さ
せる方法に従って行った。
Figure 3 shows the relationship between the reaction time and the S content of the obtained sulfonated polystyrene foam.The sulfonation reaches a certain value after several hours of reaction, and that value is the same as that of the polystyrene foam. This clearly shows that all phenyl nuclei are substituted with at least one sulfonic acid group. However, the quantification of sulfur was carried out according to a method in which the sample was melted in an alkali with anhydrous sodium carbonate and sodium peroxide, and the sulfur was precipitated as barium sulfate.

実施例2 5I!、三角フラスコにS字形ポリスチレン発泡体(旭
化成■製「アスパック」)20gと25%発煙硫酸50
0gを入れ外気を遮断する。ポリスチレンの表面がぬれ
るように振りまぜながら、7日間室温にて反応させた。
Example 2 5I! In an Erlenmeyer flask, add 20 g of S-shaped polystyrene foam (Asahi Kasei's "Aspac") and 50 g of 25% oleum.
0g and shut off outside air. The reaction was allowed to proceed at room temperature for 7 days while shaking the polystyrene to wet the surface.

以下実施例1の未反応発煙硫酸の回収から同様の操作を
行う。S含量17.8%のスルホン化ポリスチレン発泡
体35.9gを得た。
Thereafter, the same operations as in Example 1 are carried out, starting from the recovery of unreacted fuming sulfuric acid. 35.9 g of sulfonated polystyrene foam with an S content of 17.8% was obtained.

尚第4図は室温でのスルホン化の場合のS含量と反応時
間との関係を示す。ここに得た発泡体は、そのまま水苔
として使用出来るものである。
FIG. 4 shows the relationship between S content and reaction time in the case of sulfonation at room temperature. The foam thus obtained can be used as is as sphagnum moss.

実施例3 200 rtrllフラスコに紐状ポリスチレン発泡体
(旭化成■製「アスパック」)3.0gと501dlク
ロロスルホン酸を入れ、冷却器を付け、外気を遮断し、
沸騰水浴中にて8時間反応させた。反応後クロロスルホ
ン酸を回収し、反応物を水中に入れる。
Example 3 3.0 g of string polystyrene foam (Asahi Kasei's "Aspac") and 501 dl of chlorosulfonic acid were placed in a 200 rtll flask, a cooler was attached, and outside air was shut off.
The reaction was carried out in a boiling water bath for 8 hours. After the reaction, the chlorosulfonic acid is recovered and the reactant is placed in water.

反応物を約60℃の温水で洗浄液が中性になるまで洗い
、100〜110°Cにて恒量まで乾燥させる。S含量
16.4%のスルホン化ポリスチレン発泡体4.84g
を得た。これはそのまま水苔として使用出来る。
The reaction product is washed with warm water at about 60°C until the washing solution becomes neutral, and dried at 100-110°C to a constant weight. 4.84 g of sulfonated polystyrene foam with S content of 16.4%
I got it. This can be used as is as sphagnum moss.

実施例4 500 mR三角フラスコに市販ビーズ状ポリスチレン
発泡体2.2gと三酸化硫黄(303) 10.9gを
入れ、外気を遮断し、室温にて10日間反応させた。反
応後、反応物を水中に投入する。洗浄液に硫酸イオンが
検出されなくなるまで水洗した後、105°Cで恒量ま
で乾燥させる。S含量20,6%のスルホン化ポリスチ
レン発泡体4.64 gを得た。これはそのまま水苔と
して使用出来るものである。
Example 4 2.2 g of commercially available bead-shaped polystyrene foam and 10.9 g of sulfur trioxide (303) were placed in a 500 mR Erlenmeyer flask, the outside air was shut off, and the flask was allowed to react at room temperature for 10 days. After the reaction, the reactants are poured into water. After washing with water until sulfate ions are no longer detected in the washing solution, it is dried at 105°C to a constant weight. 4.64 g of sulfonated polystyrene foam with an S content of 20.6% was obtained. This can be used as is as sphagnum moss.

実施例5 径50醒×長さ150凱のカラムに、紐状ポリスチレン
発泡体(旭化成■製「アスパソク」)3gを充填し、カ
ラムの一端をアスピレターに他の端を三酸化硫黄30g
の入ったフラスコに連結する。そしてアスピレターにて
カラム内をわずかに減圧とし、三酸化硫黄をカラム内に
導入してポリスチレン発泡体と接触させ、7日間スルホ
ン化反応を行った。反応後の操作は実施例4と同様に行
った。S含量19.38%のスルホン化ポリスチレン発
泡体6,1gを得た。これはそのまま水苔として使用出
来るものである。
Example 5 A column with a diameter of 50 mm and a length of 150 mm was filled with 3 g of string-like polystyrene foam (Asahi Kasei's "Aspa Soku"), one end of the column was filled with an aspirator, and the other end was filled with 30 g of sulfur trioxide.
Connect it to the flask containing the. Then, the pressure inside the column was slightly reduced using an aspirator, and sulfur trioxide was introduced into the column and brought into contact with the polystyrene foam to carry out a sulfonation reaction for 7 days. The operations after the reaction were carried out in the same manner as in Example 4. 6.1 g of sulfonated polystyrene foam with an S content of 19.38% was obtained. This can be used as is as sphagnum moss.

実施例6 実施例2で得られたスルホン化ポリスチレン発泡体2g
を2%塩化カルシウム(CaCβ22H20)水溶液2
00 ml中に浸漬し、−夜放置後、濾過し、水洗した
後105°Cで乾燥させ、Ca含量9.47%のカルシ
ウム塩2.2gを得た。これを粒度4〜10メツシユの
粒状に粉砕して水苔を得た。
Example 6 2 g of sulfonated polystyrene foam obtained in Example 2
2% calcium chloride (CaCβ22H20) aqueous solution 2
00 ml, left overnight, filtered, washed with water, and dried at 105°C to obtain 2.2 g of calcium salt with a Ca content of 9.47%. This was ground into particles with a particle size of 4 to 10 mesh to obtain sphagnum moss.

実施例7〜10 上記実施例6に於いて、塩化カルシウム水溶液に代えて
夫々苛性ソーダ、苛性カリ、塩化マグネシウム、アンモ
ニアの夫々の水溶液を使用し、その他はすべて同様に処
理した。
Examples 7 to 10 In Example 6 above, aqueous solutions of caustic soda, caustic potash, magnesium chloride, and ammonia were used in place of the aqueous calcium chloride solution, and all other treatments were carried out in the same manner.

実施例1〜10で得られた水苔について、その性質を測
定した。この結果を第1表に示した。尚重量法によるS
含量が滴定法によるS含量より常にわずかに大きな値を
示していることは、遊離スルホン酸以外にスルホンによ
る架橋が生じていることを示す。
The properties of the sphagnum moss obtained in Examples 1 to 10 were measured. The results are shown in Table 1. S by gravimetric method
The fact that the S content is always slightly higher than the S content determined by titration indicates that crosslinking by sulfones occurs in addition to free sulfonic acids.

1)  BaSO4としての重量法による測定値を示す
1) The values measured by gravimetric method as BaSO4 are shown.

2)遊離スルホン酸基を0.I NNaOHで滴定し、
その消費量より求めた値を示す。
2) Free sulfonic acid groups are reduced to 0. Titrate with INNaOH,
The value calculated from the consumption amount is shown.

3) カチオン交換容量:水苔を粉末としその1gを取
り、内径15肛×長さ250mmのカラムに充填し、5
%無水硫酸ナトリウム溶液を流し、流出液を0.IN規
定NaOHで滴定し、その消費量よりカチオン交換容量
を求めた。
3) Cation exchange capacity: Powder sphagnum moss, take 1 g of it, fill it in a column with an inner diameter of 15 mm and a length of 250 mm.
% anhydrous sodium sulfate solution and drain the effluent to 0.0%. Titration was performed with IN specified NaOH, and the cation exchange capacity was determined from the amount consumed.

但し水苔が塩の場合は、塩酸によって遊離スルホン酸と
した後、上記の方法と同様の操作を行って求めた。
However, when the sphagnum moss is a salt, the free sulfonic acid was converted to free sulfonic acid with hydrochloric acid, and then the same procedure as described above was performed to obtain the free sulfonic acid.

4)水苔を水に一夜浸漬後、濾過し、その重量を測定し
て次式によって求めた。
4) Sphagnum moss was soaked in water overnight, filtered, and its weight was measured using the following formula.

5)乾燥時と吸水時の体積を測定し、次式から求めた。5) The volume when dry and when water is absorbed was measured and calculated from the following formula.

実施例11 (カチオン吸着量の測定) 実施例2及び6の水苔を夫々粉末とし、1gを内径15
mmX長さ250mmのカラムに充填し、測定しようと
するカチオンを含む溶液を流し、流水液中に含まれるカ
チオンの量を測定し、最初に加えたカチオンの量から流
出したカチオンの量を差引いてカチオンの吸着量とした
。各種カチオンの吸着量を第2表に示した。
Example 11 (Measurement of cation adsorption amount) Each of the sphagnum moss of Examples 2 and 6 was powdered, and 1 g was powdered with an inner diameter of 15
Fill a column with a length of 250 mm x 250 mm, flow a solution containing the cation to be measured, measure the amount of cations contained in the flowing water, and subtract the amount of cations that flowed out from the amount of cations added at the beginning. It was taken as the adsorption amount of cations. The adsorption amounts of various cations are shown in Table 2.

第2表 実施例I2 水苔1gを水に浸漬し、所定の浸漬時間後の吸水量を測
定した。但し浸漬時間O分時の吸水量の測定は次の様に
行った。即ちロート上に目の細かい金網をのせ、その金
網上に水苔1gを秤り取り、その上から精製水を100
 td注ぎ、その直後の吸水量を測定した。浸漬時間と
吸水量との関係を第3図に示した。第3図から明らかな
ように、発泡ポリスチレンスルフォン酸、又はその塩か
らなる本発明の水苔は、天然の水苔や、人工水苔よりも
、吸水速度が速く、又瞬時に吸水能力一杯の水を吸水す
ることが判る。
Table 2 Example I2 1 g of sphagnum moss was immersed in water, and the amount of water absorbed after a predetermined immersion time was measured. However, the amount of water absorbed at the immersion time of O minutes was measured as follows. That is, place a fine wire mesh on top of the funnel, weigh out 1 g of sphagnum moss on the wire mesh, and pour 100 g of purified water on top.
td was poured, and the amount of water absorbed immediately after that was measured. The relationship between immersion time and water absorption amount is shown in Figure 3. As is clear from FIG. 3, the sphagnum moss of the present invention made of expanded polystyrene sulfonic acid or its salt has a faster water absorption rate than natural sphagnum moss or artificial sphagnum moss, and instantly reaches its full water absorption capacity. It turns out that it absorbs water.

但し第3図中(1)は実施例1の、(2)は実施例9、
(3)は天然水苔、(4)は市販の人工水苔を表す。
However, in FIG. 3, (1) is of Example 1, (2) is of Example 9,
(3) represents natural sphagnum moss, and (4) represents commercially available artificial sphagnum moss.

実施例I3 水苔1gを取り水に浸漬して十分に吸水させ、余分の水
は濾過して除く。これを10(1+fiビーカーに移し
30℃恒温箱に放置し、一定装置した後、水苔の蒸発し
ないで残存している保持水量を測定した。そして水苔が
最初に保持している水量を100とし、一定紋置時間後
の保持水量をそれとの比率で示し、保持水量率として表
現し、次式により計算した。
Example I3 1 g of sphagnum moss is soaked in water to absorb sufficient water, and excess water is removed by filtration. This was transferred to a 10 (1+fi) beaker and left in a 30℃ constant temperature box, and after being kept in a constant state, the amount of retained water remaining without evaporation of the sphagnum moss was measured. The amount of water retained after a certain period of incubation was expressed as a ratio, expressed as a percentage of retained water, and calculated using the following formula.

放置時間と保持水量率との関係を第4図に示した。The relationship between the standing time and the retained water rate is shown in Figure 4.

但し第4図中(1)は実施例4の、(2)は実施例2の
、(3)は天然の水苔を、(4)は天然の山苔を、(5
)は市販の人工水苔を示す。
However, in Figure 4, (1) is from Example 4, (2) is from Example 2, (3) is natural sphagnum moss, (4) is natural mountain moss, and (5) is natural sphagnum moss.
) indicates commercially available artificial sphagnum moss.

実施例14 観葉植物であるポトスの植え換え時には、よく用土とし
て水苔が利用されている。そこで本発明実施例6の水苔
を用いて植え換えを行った。同時に水苔を使用した植え
換えも行い比較した。使用したポトスは高さ約20cm
の大きさであり、鉢の大きさは直径18CIX高さ20
CI11であった。実施例6の水苔によって植え換えた
ポトスは水苔によるポトスと同様に良好な生育を示した
Example 14 Sphagnum moss is often used as soil when replanting pothos, which is an ornamental plant. Therefore, replanting was performed using the sphagnum moss of Example 6 of the present invention. At the same time, we also replanted the plants using sphagnum moss and compared them. The pothos I used was about 20cm tall.
The size of the pot is 18 cm in diameter and 20 cm in height.
It was CI11. The pothos plants replanted using sphagnum moss in Example 6 showed good growth, similar to the pothos plants using sphagnum moss.

実施例15 鉢による植物栽培においては、培土の表面に水苔を敷き
つめることにより、培土の乾燥や、培土の固くしまるこ
とが防止され、その為に水苔がしばしば用いられる。そ
こで5月中旬にさつきを植え換える時点より本発明の実
施例6の水苔を培土の表面に敷きつめ、生育及び土の乾
燥度合を観察した、生育は良好であり、又、土の乾燥は
水苔よりも遅れがちであった。
Example 15 When cultivating plants in pots, spreading sphagnum moss on the surface of the soil prevents the soil from drying out or becoming hard, and sphagnum moss is often used for this purpose. Therefore, from the time when Satsuki was replanted in mid-May, the sphagnum moss of Example 6 of the present invention was spread on the surface of the soil, and the growth and degree of dryness of the soil were observed. It tended to lag behind moss.

【図面の簡単な説明】 第1〜2図はポリスチレン発泡体をスルホン化する際の
硫黄含量と反応時間との関係を示すグラフである。また
第3図は各種水苔の吸水量と時間との関係を、第4図は
保持水量と時間との関係を示すグラフである。 (以上) 特許出願人  旭化学工業株式会社 株式会社迫田化学開発研究所 反応・時開 (時開) 第 ? 図 反癌・待開 (日) ′/先5石時n(今) 2十 rr^ 1λO 時川
BRIEF DESCRIPTION OF THE DRAWINGS Figures 1 and 2 are graphs showing the relationship between sulfur content and reaction time when polystyrene foam is sulfonated. Further, FIG. 3 is a graph showing the relationship between the amount of water absorbed by various types of sphagnum moss and time, and FIG. 4 is a graph showing the relationship between the amount of retained water and time. (The above) Patent applicant: Asahi Chemical Industry Co., Ltd. Sakoda Chemical Development Laboratory Co., Ltd. Reaction/Time-opening (Time-opening) No.? Figure anti-cancer/wait open (Sunday) '/5 stone time n (now) 20rr^ 1λO Tokikawa

Claims (1)

【特許請求の範囲】[Claims] (1)ポリスチレン発泡体をその内部までスルホン化し
、必要に応じ更に塩となして得られるポリスチレン発泡
体の誘導体を主成分として成ることを特徴とする人工水
苔。
(1) An artificial sphagnum moss characterized by comprising as a main component a polystyrene foam derivative obtained by sulfonating the inside of the polystyrene foam and further converting it into a salt if necessary.
JP63199643A 1988-08-09 1988-08-09 Artificial sphagnum moss Pending JPH0249517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63199643A JPH0249517A (en) 1988-08-09 1988-08-09 Artificial sphagnum moss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63199643A JPH0249517A (en) 1988-08-09 1988-08-09 Artificial sphagnum moss

Publications (1)

Publication Number Publication Date
JPH0249517A true JPH0249517A (en) 1990-02-19

Family

ID=16411262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63199643A Pending JPH0249517A (en) 1988-08-09 1988-08-09 Artificial sphagnum moss

Country Status (1)

Country Link
JP (1) JPH0249517A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255744A (en) * 1988-08-22 1990-02-26 Sakota Kagaku Kaihatsu Kenkyusho:Kk Preparation of sulfonated polystyrene foam
JPH02120339A (en) * 1988-10-28 1990-05-08 Sakota Kagaku Kaihatsu Kenkyusho:Kk Production of water-absorptive resin
JP2002543224A (en) * 1999-04-23 2002-12-17 ダニスコ フィンランド オイ Sulfonated polymer resin and its preparation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255744A (en) * 1988-08-22 1990-02-26 Sakota Kagaku Kaihatsu Kenkyusho:Kk Preparation of sulfonated polystyrene foam
JPH02120339A (en) * 1988-10-28 1990-05-08 Sakota Kagaku Kaihatsu Kenkyusho:Kk Production of water-absorptive resin
JP2002543224A (en) * 1999-04-23 2002-12-17 ダニスコ フィンランド オイ Sulfonated polymer resin and its preparation

Similar Documents

Publication Publication Date Title
Johnson Effect of soluble salts on water absorption by gel‐forming soil conditioners
CN101132856B (en) Agglomerates of precipitated silica, method for their preparation and their use as filter medium in gas filtration
Bowman et al. Fertilizer salts reduce hydration of polyacrylamide gels and affect physical properties of gel-amended container media
PT1879932E (en) Water-swellable hybrid material with inorganic additives and process for its preparation
US11352559B2 (en) Method for improving water retention in a soil
Wu et al. Preparation and characterization of cellulose acetate‐coated compound fertilizer with controlled‐release and water‐retention
CA1170472A (en) Fertilisers comprising a hydrogel and nutrient laden ion exchangers
Ali et al. Controlled-release fertilizers: advances and challenges
RU2009714C1 (en) Process of manufacturing pelletized sorbing material for lithium recovery from salt brines
JPH0249517A (en) Artificial sphagnum moss
CN105418337B (en) The slow release fertilizer and preparation method thereof of heavy metal in soil ion concentration can be reduced
Woodhouse et al. Effects of solube salts and fertilizers on water storage by gelforming soil conditioners
CN111465444A (en) Urea-containing composition for brine formation
Shen et al. Effects of temperature and pH on adsorption isotherms for cupric and cadmium ions in their single and binary solutions using corncob particles as adsorbent
JPS60153940A (en) Adsorbent of dissolved fluorine ion
Su et al. Preparation and performance study of AEEA/SA porous salt-resistant superabsorbent polymer
JPH02175787A (en) Soil conditioner
JPH0257121A (en) Artificial culture medium
CN103819263A (en) Method of foaming glass loaded phosphorus-nitrogen slow release fertilizer
JPH02120339A (en) Production of water-absorptive resin
JP4621480B2 (en) Water-retaining agent for plant growth comprising a hydrogel-forming polymer
JPH0255744A (en) Preparation of sulfonated polystyrene foam
JP2000324948A (en) Water-retaining agent and water-retaining material for cut flower
KR100912095B1 (en) Ion-exchange type lithium adsorbent using uf membrane filter and method for preparing the same
CN110746636A (en) Temperature-sensitive sodium alginate/cellulose ether composite hydrogel and preparation method and application thereof