JPH0249315B2 - SOSUISEICHIKANKIOJUSURUHORUFUIRINOYOBISONOSAKUTAI - Google Patents

SOSUISEICHIKANKIOJUSURUHORUFUIRINOYOBISONOSAKUTAI

Info

Publication number
JPH0249315B2
JPH0249315B2 JP56127717A JP12771781A JPH0249315B2 JP H0249315 B2 JPH0249315 B2 JP H0249315B2 JP 56127717 A JP56127717 A JP 56127717A JP 12771781 A JP12771781 A JP 12771781A JP H0249315 B2 JPH0249315 B2 JP H0249315B2
Authority
JP
Japan
Prior art keywords
complex
porphyrin
iron
oxygen
tetra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56127717A
Other languages
Japanese (ja)
Other versions
JPS5829787A (en
Inventor
Etsuo Hasegawa
Hidetoshi Tsuchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seisan Kaihatsu Kagaku Kenkyusho
Original Assignee
Seisan Kaihatsu Kagaku Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seisan Kaihatsu Kagaku Kenkyusho filed Critical Seisan Kaihatsu Kagaku Kenkyusho
Priority to JP56127717A priority Critical patent/JPH0249315B2/en
Publication of JPS5829787A publication Critical patent/JPS5829787A/en
Publication of JPH0249315B2 publication Critical patent/JPH0249315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は疎水性置換基を有するポルフイリン
およびその錯体に関する。 ヘモグロビンやミオグロビンの鉄()ポルフ
イリン錯体は酸素分子を可逆的に吸脱着する。こ
のような天然のポルフイリン鉄()錯体と類似
の酸素吸脱着機能を持つ錯体を合成するために、
従来、多くの研究が発表されている。その例とし
ては、J.P.Collman、Accounts of Chemical
Research 10 265(1977);F.Basolo、B.M.
HoffmanおよびJ.A.Ibers、ibid.、 384(1975)
などである。特に、室温条件下で安定な酸素錯体
が生成できると報告されているポルフイリン鉄
()錯体として鉄()−5,10,15,20−テト
ラ〔α,α,α,α−(O−ピバラジドフエニ
ル)〕ポルフイリン錯体(J.P.Collman他Journal
of American Chemical Society 97 1427
(1975)参照)がある。しかし、この錯体は少量
でも水が共存すると、直ぐに酸化されるため、酸
素錯体を生成できなくなるのである。このため室
温で、水が共存していても酸素錯体を与える鉄
()ポルフイリン錯体の開発が継続して推進さ
れている。 本出願人は水中、室温という生理的条件下にお
いて前述の鉄()−5,10,15,20−テトラ
〔α,α,α,α−(O−ピバラミドフエニル)〕
ポルフイリン(以下、Fe()Tpiv PP)錯体が
安定な酸素錯体を与え、酸素キヤリヤーとして働
くようにするために、該錯体を例えばABA型ブ
ロツク共重合体の疎水性ブロツクB部に埋め込ん
だり、あるいはリン脂質の疎水性二重層膜中に包
装させると水またはT+ 3による酸化が禁止され所
要の機能を発揮させることができることを見い出
し、既に出願している(特開昭55−38812号およ
び特開昭57−206613号)。 本発明者らは、上記の考えを発展させ、Tpiv
PPのピバロイル基を、他のより疎水性の高い置
換基に代えることによつて該ポルフイリンの疎水
的性質を増大させれば、より有効な酸素運搬体を
得供できるであろうと考え、本発明を完成するに
至つた。 この発明の化合物は一般式 (ここで、Rは炭素数17ないし25のアルキル基、
ベンジル基、またはシクロヘキシル基)で示され
る疎水性置換基を有するポルフイリン(メソ−テ
トラ〔α,α,α,α−(O−置換アミドフエニ
ル)〕ポルフイリンおよびこれに中心鉄が配位し
た錯体、すなわち、式 で示される鉄錯体、並びに該中心鉄が2価の状態
にありかつ塩基性軸配位子が1つまたは2つ配置
した錯体すなわち式 (ここで、Lは塩基性軸配位子、xおよびyは0
または1であつてx+yは1または2)で示され
る錯体である。 式(A)で示されるポルフイリンを製造するために
は、既知の方法(前記のJ.P.Collman他の
Journal of the American Chemical Society記
載の方法)によつて5,10,15,20−テトラ
〔α,α,α,α−(O−アミノフエニル)〕ポル
フイリンに所定の酸塩化物(R−COCl)(ここ
で、Rは上記定義の通り)を4倍モル以上の割合
で反応させる。反応温度は普通0℃ないし室温で
ある。 こうして得た式(A)のポルフイリンに常法により
中心鉄を導入することによつて式(B)で示される鉄
錯体すなわち5,10,15,20−メソ−テトラ
〔α,α,α,α−(O−置換アミドフエニル)〕
ポルフイナート鉄が得られる。 式(C)で示される錯体を得るためには式(B)で示さ
れる鉄錯体の中心鉄を適当な還元剤により軸配位
子Lの存在下で常法により還元する。この塩基性
軸配位子Lとしては式 (ここで、Raは当該イミダゾールの配位を阻害
しない基好ましくは水素、メチル基、エチル基お
よびプロピル基(異性体を含む)、Rb〜Rdは水素
または任意の置換基例えばアルキル基、トリチル
基、カルボン酸エステル基)で示されるイミダゾ
ール、または式 (ここで、ReおよびRiはRaと同様の基、Rf〜Rh
はRb〜Rdとの同様の基)で示されるピリジンが
ある。 式(C)で示される錯体は酸素と接すると、これを
軸配位子Lの一つと代つて配位させ、酸素錯体を
生成する。これは脱気下に酸素を脱着する。この
酸素吸脱着は可逆的に繰り返しおこなうことやで
き、酸素吸脱着剤、酸素運搬体として作用する。 実施例 1 (A) 既知の方法により、メソ−テトラ(O−アミ
ノフエニル)ポルフイリン(4異性体の混合
物)を合成し、シリカゲルカラム(アセトン/
エーテル=1/1容量)を用いてα,α,α,
α−異性体を流出・単離した。 (B) メソ−テトラ〔α,α,α,α−(O−アミ
ノフエニル)〕ポルフイリン約0.3grを含むアセ
トンエーテル(1/1)溶液約300mlを氷冷撹
拌した。これに乾燥ピリジン2ml、次いで塩化
ステアロイル2.5mlを加え、氷冷下で1時間撹
拌後、室温下で2時間撹拌した。蒸発させて得
た残渣をCHCl3200mlに溶解し、希アンモニア
水で洗浄後、水洗し、ゼライトで処理し、水洗
した。これをNa2SO4で脱水処理した後、ろ過
し、ろ液を浴温30℃以下で蒸発乾固した。これ
をシリカゲルカラムにて分画精製し、ベンゼ
ン/エーテル(7/3)(容量/容量)流出の
目的部を集め、これを蒸発乾固した。再度、シ
リカゲルカラムによる精製をおこなつた。収量
約0.56gr(収率約90%)。これを、更に、シリカ
ゲルカラムで精製した(BioBeads SX−8,
ベンゼン)。電場脱着マススペクトル測定:M
+1(1403)(C92H122N8O4の分子量1402)。元
素分析値(重量%):C78.66(78.7)、H8.52
(8.7)、N7.60(8.0)但し、括弧内の値は
C92H122N8O4に対する計算値を示す。13C−核
磁気共鳴スペクトル(溶媒CDCl3、TMS基準)
δ(ppm):170.5(1)、147.0(2)、138.0(3)、134.8
(4)、131.6(5)、129.8(6)、122.8(7)、121.1(8)、
115.0(9)、37.0(10)、31.8(11)、29.4、29.2及び28.9
(12、13、14)、25.0(15)、22.6(16)、14.0(17)
但し、括弧内の数値は下記の炭素を示す。 実施例 2 実施例1で合成したメソ−テトラ〔α,α,
α,α−(O−ステアロイルアミドフエニル)〕ポ
ルフイン0.33grを乾燥テトラヒドロフラン25mlに
溶解し、N2置換を行つた。これに、2,6−ル
チジン0.1ml、次いで臭化第一鉄(FeBr2)0.3gr
を加え、加熱下に還流させた。2時間後、さらに
FeBr2を0.1gr添加し、2時間加熱後、蒸発乾固
し、残固体を、クロロホルムを流出溶媒として、
塩基性アルミナカラムで精製をおこない、流出液
に0.2mlの濃HBrを加え振盪後、水洗した。クロ
ロホルム層をNa2SO4で脱水処理した後、蒸発乾
固し、一旦減圧乾燥した。これをゲルカラム精製
した(BioBeads SX−8、ベンゼン)。薄層クロ
マトグラフイー(メルクシリカゲルプレート、ベ
ンゼン/エーテル=1/1):Rf=0.89(モノスポ
ツト)。電場脱着マススペクトル測定:M+1=
1457(C92H120N8O4Fe1の分子量1456)。元素分析
値(重量%):C71.50(71.9)、H7.61(7.8)、N7.03
(7.3)但し、括弧内の値は、C92H120N8C4FeBrに
対する計算値を示す。赤外吸収スペクトル
(KBrデイスク、cm-1):2930、2860(Vas、Vs
(CH2))、1680(アミドI吸収帯)、1580(VC=C(フ
エニル核)、760(δCH2(面外)(O−置換フエニル
核)。 実施例 3 実施例2で合成した鉄−メソ−テトラ〔α,
α,α,α−(O−ステアロイルアミドフエニ
ル)〕ポルフイン・Br 3×10-6モルおよび1,
2−ジメチルイミダゾール(以下、1,2−
DMeImと記す)1.5×10-7モルをトルエン7mlに
溶解し、N2ガスで置換した後、過剰のNaS2O4
含む水5mlを加えて充分振盪し、静置した。ベン
ゼン層を分離、脱酸素処理したモレキユラーシー
ゴス4Åで脱水し、所望のFe()ポルフイリン
錯体(式(C)に相当)の乾燥ベンセン(但し、
10-4Mの水を混入)溶液を調製した。この可視吸
収スペクトルを第1図の曲線aで示す。これは
λmax560nm、535nm(肩)を持つ5配位型デオ
キシ錯体すなわち、Fe()−メソ−テトラ〔α,
α,α,α−(O−ステアロイルアミドフエニ
ル)〕ポルフイン−モノ(1,2−ジメチルイミ
ダゾール)錯体である。これに酸素ガスを接触さ
せたところ、スペクトル変化が直ちに観測され、
λmax549nm(酸素錯体)を得た(曲線b)。可視
吸収スペクトルの経時変化から、25℃におけるこ
の酸素錯体の安定性は20分以上であつた。また、
−10℃におけるこの酸素錯体の安定性は1時間以
上であつた。 実施例 4 実施例3において、トルエンの代りにベンゼン
を用い更に、ポリ(スチレン)0.1grを添加した
以外は、同様にしてFe()デオキシ錯体溶液を
調製した。これを凍結乾燥処理してベンゼンを除
去し錯体の分散したポリスチレン粒子を得た。こ
れに、窒素ガス飽和水10mlを添加し、固体粒子分
散水を調製した。これは第2図の曲線cに示す様
に、N2下においては、5配位型デオキシ体(Fe
()−メソ−テトラ〔α,α,α,α−(O−ス
テアロイルアミドフエニル)〕ポルフイン−モノ
−(1,2−ジメチルイミダゾール)錯体)に相
当するスペクトル(λmax560nm、532nm(肩))
を得た。この固体分散水にO2ガスを導入した所、
直ちに酸素化錯体のスペクトル(λmax550nm)
に変化した(曲線d)。これに、COガスを導入し
た所、直ちにFe()CO錯体に相当するスペク
トル(λmax530nm)を与えた(曲線e)。25℃、
水中における酸素錯体の安定性は、10時間以上で
あつた。 実施例 5 実施例1(B)において、塩化ステアロイルの代り
に塩化シクロヘキサンカルボン酸を用いた以外
は、同様の手法に従い、5,10,15,20−テトラ
(α,α,α,α−(O−シクロヘキサノイルアミ
ドフエニル))ポルフイリンを合成した。元素分
析値(重量%):C77.13(77.6、H6.71(6.6)、
N10.22(10.1)但し、括弧内の値は、C72H74N8O4
に対する計算値を示す。電場脱着マススペクト
ル:M+1=1115(分子量1114)。 実施例 6 実施例5において合成した5,10,15,20−テ
トラ(α,α,α,α−(O−シクロヘキサノイ
ルアミドフエニル))ポルフインに、実施例2に
従い中心鉄を導入した。元素分析値(重量%):
C68.87(69.2)、H5.71(5.8)、N8.82(8.9)、但し、
括弧内の値は、C72H74N8O4FeBrに対する計算値
を示す。 実施例 7 実施例1(B)において、塩化ステアロイルの代り
に、塩化フエニル酢酸を用いた以外は同様の手法
に従い5,10,15,20−テトラ(α,α,α,α
−(O−フエニルアセチルアミドフエニル))ポル
フイリンを合成した後、実施例2に従い中心鉄を
導入した。電場脱着マススペクトル:M+1=
1200(C76H56N8O4Feの分子量1200)。元素分析値
(重量%):C70.92(71.3、H4.65(4.4)、N8.41
(8.8)。但し、括弧内の数値は、
C72H56N8O4FeBrに対する計算値を示す。 実施例 8 実施例1(B)において、塩化ステアロイルの代り
に塩化セロトイル(
This invention relates to porphyrins having hydrophobic substituents and complexes thereof. Iron ()porphyrin complexes in hemoglobin and myoglobin reversibly adsorb and desorb oxygen molecules. In order to synthesize a complex with an oxygen adsorption/desorption function similar to such a natural porphyrin iron() complex,
Many studies have been published so far. Examples include J.P. Collman, Accounts of Chemical
Research 10 265 (1977); F. Basolo, B.M.
Hoffman and JAIbers, ibid., 8 384 (1975)
etc. In particular, iron()-5,10,15,20-tetra [α, α, α, α-(O-pyrin barazidophenyl)] porphyrin complex (JPCollman et al. Journal
of American Chemical Society 97 1427
(1975)). However, if even a small amount of water coexists with this complex, it will be immediately oxidized, making it impossible to generate an oxygen complex. For this reason, the development of iron()porphyrin complexes that provide oxygen complexes even in the coexistence of water at room temperature is being promoted. The applicant has obtained the above-mentioned iron()-5,10,15,20-tetra[α,α,α,α-(O-pivalamidophenyl)] under physiological conditions of water and room temperature.
In order for the porphyrin (hereinafter referred to as Fe()Tpiv PP) complex to provide a stable oxygen complex and act as an oxygen carrier, the complex may be embedded, for example, in the hydrophobic block B part of an ABA type block copolymer, or We have discovered that packaging phospholipids in a hydrophobic double-layer membrane inhibits oxidation by water or T + 3 and allows the required functions to be exerted, and we have already filed applications (Japanese Patent Application Laid-Open No. 55-38812 and (No. 57-206613). The inventors developed the above idea and developed Tpiv
We believe that a more effective oxygen carrier can be provided by increasing the hydrophobicity of the porphyrin by replacing the pivaloyl group of PP with another more hydrophobic substituent, and have developed the present invention. I was able to complete it. The compounds of this invention have the general formula (Here, R is an alkyl group having 17 to 25 carbon atoms,
Porphyrin (meso-tetra [α, α, α, α-(O-substituted amidophenyl)] porphyrin having a hydrophobic substituent represented by a benzyl group or a cyclohexyl group) and a complex in which a central iron is coordinated to the porphyrin, i.e. ,formula Iron complexes represented by, as well as complexes in which the central iron is in a divalent state and one or two basic axial ligands are arranged, that is, the formula (Here, L is a basic axial ligand, x and y are 0
or 1, and x+y is a complex represented by 1 or 2). In order to produce the porphyrin represented by formula (A), known methods (see J.P. Collman et al., supra.
A specified acid chloride (R-COCl) ( Here, R is as defined above) is reacted at a ratio of 4 times the mole or more. The reaction temperature is usually 0°C to room temperature. By introducing a central iron into the thus obtained porphyrin of formula (A) by a conventional method, an iron complex represented by formula (B), namely 5,10,15,20-meso-tetra [α, α, α, α-(O-substituted amidophenyl)]
Iron porphynate is obtained. In order to obtain the complex represented by formula (C), the central iron of the iron complex represented by formula (B) is reduced by a conventional method in the presence of the axial ligand L using a suitable reducing agent. This basic axial ligand L has the formula (Here, R a is a group that does not inhibit the coordination of the imidazole, preferably hydrogen, methyl group, ethyl group, and propyl group (including isomers), and R b to R d are hydrogen or any substituent such as an alkyl group. , trityl group, carboxylic acid ester group), or the formula (Here, R e and R i are the same groups as R a , R f ~ R h
is a pyridine represented by R b to R d (similar groups). When the complex represented by formula (C) comes into contact with oxygen, it coordinates with one of the axial ligands L to form an oxygen complex. This desorbs oxygen under degassing. This oxygen adsorption/desorption can be repeated reversibly and acts as an oxygen adsorption/desorption agent and an oxygen carrier. Example 1 (A) Meso-tetra(O-aminophenyl)porphyrin (mixture of 4 isomers) was synthesized by a known method and subjected to silica gel column (acetone/
ether = 1/1 volume) using α, α, α,
The α-isomer was eluted and isolated. (B) About 300 ml of an acetone ether (1/1) solution containing about 0.3 gr of meso-tetra[α,α,α,α-(O-aminophenyl)]porphyrin was stirred under ice cooling. To this was added 2 ml of dry pyridine and then 2.5 ml of stearoyl chloride, and the mixture was stirred for 1 hour under ice-cooling and then for 2 hours at room temperature. The residue obtained by evaporation was dissolved in 200 ml of CHCl 3 and washed with dilute aqueous ammonia, then with water, treated with gelite, and washed with water. This was dehydrated with Na 2 SO 4 and then filtered, and the filtrate was evaporated to dryness at a bath temperature of 30° C. or less. This was fractionated and purified using a silica gel column, and the desired portion of the benzene/ether (7/3) (volume/volume) flow was collected and evaporated to dryness. Purification using a silica gel column was performed again. Yield approximately 0.56gr (yield approximately 90%). This was further purified using a silica gel column (BioBeads SX-8,
benzene). Electric field desorption mass spectrum measurement: M
+1 ( 1403) ( molecular weight of C92H122N8O4 1402). Elemental analysis value (weight%): C78.66 (78.7), H8.52
(8.7), N7.60 (8.0) However, the values in parentheses are
Calculated values for C 92 H 122 N 8 O 4 are shown. 13C-Nuclear magnetic resonance spectrum (solvent CDCl 3 , TMS standard)
δ (ppm): 170.5(1), 147.0(2), 138.0(3), 134.8
(4), 131.6(5), 129.8(6), 122.8(7), 121.1(8),
115.0(9), 37.0(10), 31.8(11), 29.4, 29.2 and 28.9
(12, 13, 14), 25.0 (15), 22.6 (16), 14.0 (17)
However, the numbers in parentheses indicate the following carbons. Example 2 Meso-tetra [α, α,
0.33 gr of α,α-(O-stearoylamidophenyl)]porphine was dissolved in 25 ml of dry tetrahydrofuran and replaced with N2 . To this was added 0.1 ml of 2,6-lutidine, then 0.3 gr of ferrous bromide (FeBr 2 ).
was added and heated to reflux. 2 hours later, more
Add 0.1 gr of FeBr 2 , heat for 2 hours, evaporate to dryness, and remove the remaining solid using chloroform as the eluent solvent.
Purification was performed using a basic alumina column, and 0.2 ml of concentrated HBr was added to the effluent, followed by shaking and washing with water. The chloroform layer was dehydrated with Na 2 SO 4 , evaporated to dryness, and once dried under reduced pressure. This was purified by gel column (BioBeads SX-8, benzene). Thin layer chromatography (Merck silica gel plate, benzene/ether = 1/1): Rf = 0.89 (monospot). Electric field desorption mass spectrum measurement: M+1=
1457 (molecular weight of C92H120N8O4Fe1 1456 ) . Elemental analysis value (weight%): C71.50 (71.9), H7.61 (7.8), N7.03
(7.3) However, the values in parentheses indicate calculated values for C 92 H 120 N 8 C 4 FeBr. Infrared absorption spectrum (KBr disc, cm -1 ): 2930, 2860 (Vas, Vs
(CH 2 )), 1680 (Amide I absorption band), 1580 (V C=C (phenyl nucleus), 760 (δCH 2 (out-of-plane) (O-substituted phenyl nucleus). Example 3 Synthesized in Example 2 Iron-meso-tetra [α,
α,α,α-(O-stearoylamidophenyl)]porphin・Br 3×10 -6 mol and 1,
2-dimethylimidazole (hereinafter referred to as 1,2-
After dissolving 1.5×10 -7 mol of toluene (denoted as DMeIm) in 7 ml of toluene and purging with N 2 gas, 5 ml of water containing excess NaS 2 O 4 was added, thoroughly shaken, and allowed to stand. The benzene layer was separated and dehydrated with deoxygenated Molecular Sigos 4Å, and the desired Fe()porphyrin complex (corresponding to formula (C)) was dried with benzene (however,
10 -4 M water) solution was prepared. This visible absorption spectrum is shown by curve a in FIG. This is a five-coordinated deoxy complex with λmax of 560 nm and 535 nm (shoulder), namely Fe()-meso-tetra[α,
α,α,α-(O-stearoylamidophenyl)]porphine-mono(1,2-dimethylimidazole) complex. When oxygen gas was brought into contact with this, a change in the spectrum was immediately observed.
λmax 549 nm (oxygen complex) was obtained (curve b). From the time course of the visible absorption spectrum, the stability of this oxygen complex at 25°C was over 20 minutes. Also,
The stability of this oxygen complex at -10°C was over 1 hour. Example 4 A Fe()deoxy complex solution was prepared in the same manner as in Example 3, except that benzene was used instead of toluene and 0.1 gr of poly(styrene) was added. This was freeze-dried to remove benzene and obtain polystyrene particles in which the complex was dispersed. To this, 10 ml of nitrogen gas saturated water was added to prepare solid particle dispersion water. As shown in curve c in Figure 2, under N2 , the 5-coordinated deoxy form (Fe
Spectrum corresponding to ()-meso-tetra[α,α,α,α-(O-stearoylamidophenyl)]porphine-mono-(1,2-dimethylimidazole) complex) (λmax 560 nm, 532 nm (shoulder))
I got it. When O 2 gas was introduced into this solid dispersion water,
Spectrum of immediately oxygenated complex (λmax550nm)
(curve d). When CO gas was introduced into this, a spectrum (λmax 530 nm) corresponding to the Fe()CO complex was immediately given (curve e). 25℃,
The stability of the oxygen complex in water was more than 10 hours. Example 5 5,10,15,20-tetra(α,α,α,α-( O-cyclohexanoylamidophenyl))porphyrin was synthesized. Elemental analysis value (weight%): C77.13 (77.6, H6.71 (6.6),
N10.22 (10.1) However, the values in parentheses are C 72 H 74 N 8 O 4
The calculated value for is shown. Electric field desorption mass spectrum: M+1=1115 (molecular weight 1114). Example 6 A central iron was introduced into the 5,10,15,20-tetra(α,α,α,α-(O-cyclohexanoylamidophenyl))porphine synthesized in Example 5 according to Example 2. . Elemental analysis value (weight%):
C68.87 (69.2), H5.71 (5.8), N8.82 (8.9), however,
Values in parentheses indicate calculated values for C72H74N8O4FeBr . Example 7 5,10,15,20-tetra (α, α, α, α
After synthesizing -(O-phenylacetylamidophenyl))porphyrin, a central iron was introduced according to Example 2. Electric field desorption mass spectrum: M+1=
1200 (molecular weight of C76H56N8O4Fe 1200) . Elemental analysis value (weight%): C70.92 (71.3, H4.65 (4.4), N8.41
(8.8). However, the numbers in parentheses are
Calculated values for C 72 H 56 N 8 O 4 FeBr are shown. Example 8 In Example 1(B), serotoyl chloride (

【式】)5.0gr を用いた以外は、同様の反応を行い、精製した。
元素分析値(重量%):C81.53(81.21、H10.61
(10.7)、N5.02(5.1)、括弧内の値は、
C148H234N8O4の計算値を示す。これに、実施例
2に従い、中心鉄を導入した。元素分析値(重量
%):C76.18(76.6)、H10.37(10.1)、N4.81(4.8)

但し括弧内の値は、C148H232N8O4FeBrの計算値
を示す。 実施例 9 (A) 実施例1(B)において、塩化ステアロイルの代
りに、塩化アラキドイルを用いた以外は、全く
同様の方法に従いメソ−テトラ(α,α,α,
α−o−アラキドイルアミドフエニル)ポルフ
インを合成した。元素分析値(重量%):
C79.43(79.22)、H8.66(8.84)、N7.01(7.39)(た
だし、括弧内の値は、C100H138N8O4に対する
計算値を示す。) (B) 実施例2において、メソ−テトラ(α,α,
α,α−o−ステアロイルアミドフエニル)ポ
ルフイリンの代わりに、上記(B)で合成したポル
フイリンを用いた以外は、全く同様の方法によ
り鉄−メソ−テトラ(α,α,α,α−o−ア
ラキドイルアミドフエニル)ポルフイリン・
Brを合成した。元素分析値(重量%):C72.30
(72.79)、H8.53(8.31)、N6.50(6.79)、(ただ
し、括弧内の値は、C100H136N8O4FeBrに対す
る計算値を示す) 実施例 10 実施例6、7、8、9において合成した鉄ポル
フイリン錯体を用い、実施例3および実施例4と
同様にして酸素錯体の安定性を評価した。結果を
以下の表1に示す。
[Formula]) The same reaction was carried out and purified except that 5.0gr was used.
Elemental analysis value (weight%): C81.53 (81.21, H10.61
(10.7), N5.02 (5.1), values in parentheses are
Calculated values of C 148 H 234 N 8 O 4 are shown. A central iron was introduced into this according to Example 2. Elemental analysis value (weight%): C76.18 (76.6), H10.37 (10.1), N4.81 (4.8)
,
However, the values in parentheses indicate calculated values for C 148 H 232 N 8 O 4 FeBr. Example 9 (A) Meso-tetra (α, α, α,
α-o-arachidoylamidophenyl)porphine was synthesized. Elemental analysis value (weight%):
C79.43 (79.22), H8.66 (8.84), N7.01 (7.39) (However, the values in parentheses indicate the calculated values for C 100 H 138 N 8 O 4. ) (B) Example 2 In, meso-tetra (α, α,
Iron-meso-tetra (α, α, α, α-o −Arachidoylamide phenyl)porphyrin・
Synthesized Br. Elemental analysis value (weight%): C72.30
(72.79), H8.53 (8.31), N6.50 (6.79), (However, the values in parentheses indicate the calculated values for C 100 H 136 N 8 O 4 FeBr) Example 10 Examples 6 and 7 The stability of the oxygen complex was evaluated in the same manner as in Examples 3 and 4 using the iron porphyrin complexes synthesized in , 8 and 9. The results are shown in Table 1 below.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの発明のポルフイリン
鉄錯体の酸素化前後における可視吸収スペクトル
を示すグラフ。
FIGS. 1 and 2 are graphs showing visible absorption spectra of the porphyrin iron complex of the present invention before and after oxygenation.

Claims (1)

【特許請求の範囲】 1 一般式 (ここで、Rは炭素原子数17ないし25のアルキル
基、ベンジル基、またはシクロヘキシル基)で示
される疎水性置換基を有するポルフイリン、また
はその鉄イオン配位錯体、または該鉄イオンが2
価の状態にあつてかつそれに塩基性軸配位子が配
位した錯体。 2 塩基性軸配位子がイミダゾール誘導体または
ピリジン誘導体である特許請求の範囲第1項記載
の錯体。
[Claims] 1. General formula (Here, R is an alkyl group having 17 to 25 carbon atoms, a benzyl group, or a cyclohexyl group), or its iron ion coordination complex, or its iron ion
A complex that is in a valent state and has a basic axial ligand coordinated to it. 2. The complex according to claim 1, wherein the basic axial ligand is an imidazole derivative or a pyridine derivative.
JP56127717A 1981-08-17 1981-08-17 SOSUISEICHIKANKIOJUSURUHORUFUIRINOYOBISONOSAKUTAI Expired - Lifetime JPH0249315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56127717A JPH0249315B2 (en) 1981-08-17 1981-08-17 SOSUISEICHIKANKIOJUSURUHORUFUIRINOYOBISONOSAKUTAI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56127717A JPH0249315B2 (en) 1981-08-17 1981-08-17 SOSUISEICHIKANKIOJUSURUHORUFUIRINOYOBISONOSAKUTAI

Publications (2)

Publication Number Publication Date
JPS5829787A JPS5829787A (en) 1983-02-22
JPH0249315B2 true JPH0249315B2 (en) 1990-10-29

Family

ID=14966958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56127717A Expired - Lifetime JPH0249315B2 (en) 1981-08-17 1981-08-17 SOSUISEICHIKANKIOJUSURUHORUFUIRINOYOBISONOSAKUTAI

Country Status (1)

Country Link
JP (1) JPH0249315B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8429845D0 (en) * 1984-11-26 1985-01-03 Efamol Ltd Porphyrins & cancer treatment
JP3816767B2 (en) * 2001-07-30 2006-08-30 独立行政法人科学技術振興機構 Porphyrin metal complex and oxygen infusion containing it

Also Published As

Publication number Publication date
JPS5829787A (en) 1983-02-22

Similar Documents

Publication Publication Date Title
Almog et al. Synthesis of “capped porphyrins”
JPH0249315B2 (en) SOSUISEICHIKANKIOJUSURUHORUFUIRINOYOBISONOSAKUTAI
JP3312953B2 (en) Tetraphenylporphyrin metal complex having 2-position side chain and method for producing the same
EP0066884B1 (en) Oxygen-adsorbing and desorbing agent
US4735634A (en) Pillared cobalt complexes for oxygen separation
JP3816767B2 (en) Porphyrin metal complex and oxygen infusion containing it
US5194603A (en) 5,10,15,20-tetra(2',6'-dipivaloyloxyphenyl)porphinato metal complex
JP3405741B2 (en) Porphyrin metal complexes with proximal bases
Inaba et al. Synthesis of a complementary dimer from mono (imidazolyl)-substituted cobalt (II) porphyrin as a new artificial T-form hemoglobin
JP3455174B2 (en) Substituted tetraphenylporphyrin compounds having a basic axial ligand
JP3390035B2 (en) Porphyrin metal complexes with dialkylglycerophosphocholine groups
Utsuno et al. Chiroptical properties of trigonal-bipyramidal complexes of copper (II), nickel (II), and cobalt (II) containing an optically active tetraamine
JP2008031103A (en) Porphyrin compound having histidine derivative bonded thereto and artificial oxygen carrier comprising the same
JP3582994B2 (en) Tetranaphthylporphyrin and its metal complexes
JPH0375551B2 (en)
JPH0354670B2 (en)
JPS635010B2 (en)
JPS5810132B2 (en) Oxygen adsorption/desorption agent
JPH0262292B2 (en)
JP3256742B2 (en) Porphyrin dimer using imidazolyl porphyrin metal complex as monomer
JP3604556B2 (en) Amphiphilic tetraphenylporphyrin metal complex having a side chain at two positions and method for producing the same
JPH0458481B2 (en)
JPS61174286A (en) Use of shiff base-cobalt complex as oxygen adsorbent and desorption agent
JPH0375550B2 (en)
TW202228836A (en) Method of separating carbon dioxide