JPH0249309A - Biaxially oriented polyester film for capacitor - Google Patents

Biaxially oriented polyester film for capacitor

Info

Publication number
JPH0249309A
JPH0249309A JP19864488A JP19864488A JPH0249309A JP H0249309 A JPH0249309 A JP H0249309A JP 19864488 A JP19864488 A JP 19864488A JP 19864488 A JP19864488 A JP 19864488A JP H0249309 A JPH0249309 A JP H0249309A
Authority
JP
Japan
Prior art keywords
film
temperature
capacitor
temp
biaxially oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19864488A
Other languages
Japanese (ja)
Other versions
JP2519300B2 (en
Inventor
Shigehiro Masuda
成裕 増田
Atsushi Hashimoto
淳 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diafoil Co Ltd
Original Assignee
Diafoil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diafoil Co Ltd filed Critical Diafoil Co Ltd
Priority to JP63198644A priority Critical patent/JP2519300B2/en
Publication of JPH0249309A publication Critical patent/JPH0249309A/en
Application granted granted Critical
Publication of JP2519300B2 publication Critical patent/JP2519300B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PURPOSE:To raise the max. service temp. and increase the electrostatic capacity by constituting over a certain amount of glycol component from 1.4-cyclohexane dimethanol, and over a certain amount of acid component from terephthalic acid. CONSTITUTION:A biaxially oriented polyester film for capacitor is a one fixed thermally. Over 97mol% glycol component of this polyester is 1.4-cyclohexane dimethanol, and over 90mol% acid components consist of terephthalic acid. Concerning the temp. dependency of dielectric tangential, in particular, the rising temp. at high temp. shifts to the high temp. side compared with that of polyethylene phthalate, so that a capacitor using this film can have a higher set max. service temp. Also the dielectric factor is in the same degree as polyethylene terephthalate, and biaxial stretching makes it thinner to several mums, so that capacitor using this film can have a large electrostatic capacity while remaining small-sized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、優れた電気的性質を有するコンデンサ用二軸
配向ポリエステルフィルムに関?、6゜〔従来の技術お
よび本発明が解決しようとする問題点〕現在、コンデン
サ用絶縁材料・誘電材料として二軸配向したポリエチレ
ンテレフタレートが広く用いられている。これはポリエ
チレンテレフタレートが、1μm程度の厚みまで薄くで
きること、誘電率(ε)が約3./とオレフィンに較べ
大きいこと等の理由によシ、比較的大きな容量を持つコ
ンデンサをコンパクトに作れる利点によるものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a biaxially oriented polyester film for capacitors having excellent electrical properties. , 6. [Prior art and problems to be solved by the present invention] Currently, biaxially oriented polyethylene terephthalate is widely used as an insulating material and dielectric material for capacitors. This is because polyethylene terephthalate can be made as thin as about 1 μm and has a dielectric constant (ε) of about 3. This is due to the fact that it is larger than olefin, and also because it has the advantage of being able to make a capacitor with a relatively large capacity compactly.

しかしながら、その使用温度範囲は、誘電正接(tan
δ)の温度依存性が大きいため、特に高温側で制約がき
びしくなる。ポリエチレンテレツメレートフィルムでI
d/K)(zの交番電圧を印加した場合、室温からgo
℃位までは温度が上昇するに従ってtanδは徐々に小
さくなるが、tro’cを越えてからは、温度の上昇に
伴い急激にtanδは大きくなってゆく。
However, its operating temperature range is limited by the dielectric loss tangent (tan
Since the temperature dependence of δ) is large, restrictions are particularly severe on the high temperature side. I with polyethylene teletumerate film
d/K) (When an alternating voltage of z is applied, the temperature rises from room temperature to
Tan δ gradually decreases as the temperature rises up to about 0.degree. C., but after exceeding tro'c, tan δ rapidly increases as the temperature rises.

コンデンサの誘電損率はtanδが大きくなると熱とし
てコスするエネルギーが多くなシコンデンサは発熱しさ
らにtanδが大きくなってゆく。
As the dielectric loss factor of a capacitor increases, as tan δ increases, the capacitor dissipates more energy as heat, and the capacitor generates heat, further increasing tan δ.

この悪循環の結果コンデンサは暴走し、最終的に熱破損
に至る。このため、ポリエチレンテレフタレートフィル
ムを絶縁材料・誘電材料とするコンデンサの最高使用温
度は、go℃程度に設定されている。したがって、これ
以上の温度テハポリエチレンテレフタレートフィルムコ
ンデンサは使用し難く、セラミックコンデンサなどを使
わざるを得ない。ところがセラミックコンデンサは、一
般に薄膜化が困難で静電容量が小さく、フィルム巻込型
構造のコンデンサーと較べ同じ容量を与えるためには体
積が大きいものとなる。近年、電気機器が小型化される
傾向のなかで、コンデンサ自体も小型で静電容量が犬き
く、シかもtanδの立ち上シ温度が高く最高使用温度
の高いものが要求されているが、これを満足するような
素材は従来知られていなかった。
As a result of this vicious cycle, the capacitor runs out of control, eventually leading to thermal damage. For this reason, the maximum operating temperature of capacitors using polyethylene terephthalate film as an insulating material/dielectric material is set at about 0.degree. Therefore, it is difficult to use a polyethylene terephthalate film capacitor at a temperature higher than this, and a ceramic capacitor or the like must be used. However, it is generally difficult to make ceramic capacitors thin and their capacitance is small, and compared to capacitors with a film-wrapped structure, they require a larger volume to provide the same capacitance. In recent years, as electrical equipment has become smaller, there has been a demand for capacitors that are smaller, have higher capacitance, have a higher tanδ start-up temperature, and have a higher maximum operating temperature. A material that satisfies these requirements was previously unknown.

〔問題点全解決するための手段〕[Means to solve all problems]

本発明者らは、ある特定のポリエステルフィルムがコン
デンサ用フィルムとして有用であることを見出し、本発
明を完成するに至った。
The present inventors have discovered that a certain polyester film is useful as a capacitor film, and have completed the present invention.

すなわち本発明の要旨は、極限粘度が0.り5以上であ
シ、熱固定されてなるポリエステルフィルムであって、
該ポリエステルのグリコール成分の77モル係以上が/
、F−シクロへキサンジメタツール、酸成分のデ0モモ
ル係上がテレフタル酸で構成されていることを特徴とす
るコンデンサ用二軸配向ポリエステルフィルムに存する
That is, the gist of the present invention is that the intrinsic viscosity is 0. A heat-set polyester film having a diameter of 5 or more,
The glycol component of the polyester has a mole ratio of 77 or more/
, F-cyclohexane dimetatool, a biaxially oriented polyester film for a capacitor, characterized in that the mole fraction of the acid component is terephthalic acid.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のポリエステルフィルムは、そのグリコール成分
の97モル係以上、好ましくはqgバ モル係以上、更に好ましくばqqモルチ以上2/」−シ
クロヘキサンジメタツールで構成されていることが必要
であり、97モル係未満である場合にはtanδの立ち
上り温度をポリエチレンテレフタレートフィルムよシも
高温側へシフトできないばかシでなく、フィルムの熱収
縮率や強度にも悪影響を及ぼす。なお、残シの3モす ルチ以下のグリコール成分としては、例え/エチレング
リコール、フロピレンクリコール、/、U−ブタンジオ
ール等を使用することができる。
The polyester film of the present invention must be composed of cyclohexane dimetatool with a glycol component of at least 97 mol, preferably at least qg mol, more preferably at least qq mol. If it is less than 100%, the rise temperature of tan δ cannot be shifted to a higher temperature side than that of polyethylene terephthalate film, and the heat shrinkage rate and strength of the film are also adversely affected. In addition, as the remaining glycol component of 3 moles or less, for example, ethylene glycol, propylene glycol, U-butanediol, etc. can be used.

本発明における/、クーシクロヘキサンジメタノールの
シス体とトランス体との比は特に限定するものではない
が、シス体/トランス体=ダ/6〜0710の範囲が好
ましい。
In the present invention, the ratio of the cis isomer to the trans isomer of cucyclohexanedimethanol is not particularly limited, but is preferably in the range of cis isomer/trans isomer=da/6 to 0710.

また、本発明のポリエステルフィルムの酸成分の90モ
モル係上、好ましくは93モル係以上、更に好ましくは
り7モル係以上がテレフタル酸で構成されていることが
必要であシ、90モル係未満である場合には、グリコー
ル成分の場合と同様にtanδの立ち上シ温度をポリエ
チレンテレフタレートフィルムよシも高温側へシフトで
きず、またフィルム物性にも悪影響を及ぼす。また残シ
の10モル係以下の酸成分としては、例えばイソフタル
酸、コ、6−あるいはコ、クーナフタレンジカルボン酸
、 t14’−ビフェニルジカルボン酸等の芳香族ジカ
ルボン酸、p−ヒドロキシ安息香酸等の芳香族ヒドロキ
シ酸を使用することができる。
In addition, it is necessary that at least 90 moles of the acid component of the polyester film of the present invention, preferably at least 93 moles, more preferably at least 7 moles, be composed of terephthalic acid, and less than 90 moles. In some cases, as in the case of glycol components, the rise temperature of tan δ cannot be shifted to a higher temperature side than that of a polyethylene terephthalate film, and the physical properties of the film are also adversely affected. Further, as the remaining acid component having a molar ratio of 10 or less, examples include aromatic dicarboxylic acids such as isophthalic acid, co-, 6- or co-, khu-naphthalene dicarboxylic acid, t14'-biphenyldicarboxylic acid, p-hydroxybenzoic acid, etc. Aromatic hydroxy acids can be used.

ホlJ−/謎−シクロヘキサンジメチレンテレフタレー
トの重合方法は、公知のポリエステルの溶融重合方法を
用いることができるが、熱劣化を最小に抑えるため、溶
融重合と固相重合を併用して所望の重合度とする方法も
採用できる。
For the polymerization of cyclohexane dimethylene terephthalate, a known polyester melt polymerization method can be used, but in order to minimize thermal deterioration, a combination of melt polymerization and solid phase polymerization is used to achieve the desired polymerization. It is also possible to adopt the method of

特に後述する極限粘度がo、g o以上のポリマーを得
ようとする際には、固相重合を併用する方法が好ましい
In particular, when attempting to obtain a polymer having an intrinsic viscosity of o or g o or more, which will be described later, it is preferable to use a method in which solid phase polymerization is used in combination.

本発明のフィルムの重合度は、その極限粘度が、フェノ
ール:テトラクロルエメンl:/(重量比)の溶液中3
0℃で測定した時にo、tis以上でアシ、好ましくは
0.65以上である。極限粘度がO,a S未満である
場合には、二軸配向フィルムを得ようとする際に延伸性
が劣るばかシでな(、tanδの立ち上シ温度が低くな
る現象が見られ、不適切なものとなる。
The degree of polymerization of the film of the present invention is such that its intrinsic viscosity is 3 in a solution of phenol:tetrachloroemene l:/(weight ratio).
When measured at 0° C., o, tis or more is reed, preferably 0.65 or more. If the intrinsic viscosity is less than O,aS, it is impossible to obtain a biaxially oriented film due to poor stretchability. Be appropriate.

本発明のポリエステルフィルムには、必要に応じてポリ
エステルに対し不活性な微粒子を含有させることができ
る。例えばフィルムの滑シ性企改良する目的などのため
、無機又は有機の微粒子、具体的にはカオリン、メルク
、二酸化ケイ素、炭酸カルシウム、フッ化リチウム、二
酸化チタン、ゼオライト、テレフタル酸カルシウム、架
橋性高分子等の微粒子を含有させることもできる。また
、これらの微粒子を含有させる方法は、従来からポリエ
チレンテレフタレートフィルムで行われている公知の方
法を用いることができ、その平均粒径及び含有量もコン
デンサ用フィルムとして電気特性を損わない範囲で任意
に選ぶことができる。
The polyester film of the present invention can contain fine particles inert to polyester, if necessary. For example, inorganic or organic fine particles, specifically kaolin, Merck, silicon dioxide, calcium carbonate, lithium fluoride, titanium dioxide, zeolite, calcium terephthalate, highly crosslinkable It is also possible to contain fine particles such as molecules. In addition, the method of incorporating these fine particles can be the known method conventionally used for polyethylene terephthalate films, and the average particle size and content should be within a range that does not impair the electrical properties of the film for capacitors. Can be selected arbitrarily.

また、本発明のポリエステルフィルム中に、公知の安定
剤、抗酸化剤、潤滑剤等の添加剤を配合することができ
るが、微粒子を含有させる場合と同様に電気特性を大巾
に低下させない化合物、添加量であることが必要である
Additionally, known additives such as stabilizers, antioxidants, lubricants, etc. can be blended into the polyester film of the present invention, but these compounds do not significantly reduce the electrical properties as in the case of containing fine particles. , the amount added is required.

次に製膜条件について具体的に説明するが本発明は以下
の製膜条件に限定されるものではない。ポリマーチップ
の乾燥は/20〜/りOoの温度で3〜グ時間程度で行
うことができる。
Next, film forming conditions will be specifically explained, but the present invention is not limited to the following film forming conditions. Drying of the polymer chips can be carried out at a temperature of /20 to /000 for about 3 to 3 hours.

固相重合を処して結晶化度が大きいポリマーチップでは
720°C5り時間で十分乾燥することができる。押出
温度は、ポリマー組成によっても若干具なるが、コタ0
〜3/、5;′Cの範囲で選ぶのが良い。また、このシ
ート化の際には、いわゆる静電密着法を用い、キャステ
ィングドラム上へ密着しながら冷却固化させる方法が好
ましい。特に/、ゾーンクロヘキサンジメタノールおよ
びテレフタル酸が100%に近い組成のポリエステルの
場合には、この静電密着法が必要となることが多い。
Polymer chips that have undergone solid phase polymerization and have a high degree of crystallinity can be sufficiently dried in 5 hours at 720°C. The extrusion temperature varies slightly depending on the polymer composition, but the extrusion temperature is
It is best to choose within the range of ~3/, 5'C. In addition, when forming the sheet into a sheet, it is preferable to use a so-called electrostatic adhesion method, in which the sheet is cooled and solidified while being brought into close contact with the casting drum. In particular, this electrostatic adhesion method is often required in the case of a polyester whose composition is close to 100% of zone chlorohexanedimethanol and terephthalic acid.

かくして得られた未延伸フィルムは、次の延伸工程に供
される。延伸方法としては公知の逐時二軸延伸、同時二
軸延伸、それらを組合せた延伸、いずれであってもよい
。延伸温度として好適な範囲は90〜i3o′Gであり
、これよシ低温の場合は、白化したp、延伸ムラを生じ
易くなシ、これよシ高温では、配向が進まず、また厚み
ムラを生じ易くなる。より好ましい延伸温度範囲は70
0〜ノ、20°Cであり、これによシ、コンデンサ用フ
ィルムとして好適に用いられる0、!; −/ 5μm
程度の厚みを有するフィルムを、安定して得ることがで
きる。延伸倍率は縦方向に3.0− t、0倍、好まし
くは3.3〜グ、3倍、横方向に3.0〜s、o倍、好
ましくは3.3〜Lj倍に設定するのがよい。また、こ
れらの倍率は、−段で設定した延伸倍率まで延伸するだ
けでなく、2段階以上に延伸倍率を振り分けて多段延伸
することによシ達成することも可能である。
The unstretched film thus obtained is subjected to the next stretching step. The stretching method may be any known sequential biaxial stretching, simultaneous biaxial stretching, or a combination thereof. The preferred range for the stretching temperature is 90~i3o'G. At a lower temperature, whitening and uneven stretching are not likely to occur; at a higher temperature, orientation does not proceed and the thickness is uneven. It becomes more likely to occur. A more preferable stretching temperature range is 70
0 to 20°C, which makes it suitable for use as a film for capacitors. ;-/5μm
A film having a certain thickness can be stably obtained. The stretching ratio is set to 3.0-t, 0 times, preferably 3.3-g, 3 times in the longitudinal direction, and 3.0-s, o times, preferably 3.3-Lj times in the transverse direction. Good. Moreover, these magnifications can be achieved not only by stretching to the stretching ratio set in the - stage, but also by dividing the stretching ratio into two or more stages and performing multi-stage stretching.

このようにして二軸延伸されたフィルムは、熱固定ゾー
ンに送シ込まれ、熱固定される。熱固定は、フィルムの
両端をクリップで把持して加熱ゾーンを通過させるいわ
ゆるテンタ一方式が好ましい。またテンターで熱固定す
るに際しては、テンター内を区切って多段階で熱固定を
施してもよいし、一つ以上のテンターを用いて多段熱固
定してもよい。さらに用途に応じた熱収縮率のフィルム
を得る目的のために、縦及び/又は横方向に弛緩処理を
行なったり、逆に幅出ししたりすることもできる。
The film thus biaxially stretched is fed into a heat setting zone and heat set. The heat fixing is preferably carried out by a so-called tenter method in which both ends of the film are held with clips and passed through a heating zone. Further, when heat-setting is performed using a tenter, the inside of the tenter may be divided and heat-setting may be performed in multiple stages, or multi-stage heat-setting may be performed using one or more tenters. Further, in order to obtain a film with a heat shrinkage rate suitable for the intended use, relaxation treatment may be performed in the longitudinal and/or transverse directions, or conversely, tentering may be performed.

本発明においてはかかる二軸配向フィルムの熱固定を通
常iso℃以上フィルム融点以下、好ましくは/gθ〜
−5θ℃の範囲で7〜720秒行うことによシ、すぐれ
た電気特性を有するコンデンサー用フィルムを得ること
ができる。
In the present invention, the heat setting of such a biaxially oriented film is usually carried out at a temperature higher than or equal to iso°C and lower than the film melting point, preferably between /gθ and
By carrying out the heating in the range of -5θ°C for 7 to 720 seconds, a film for capacitors having excellent electrical properties can be obtained.

熱固定温度がiso℃未満である時にはフィルムの熱収
縮率が大きくなり、好ましくない。上記熱固定温度は、
tanδの立ち上シ温度及びtanδの絶対値に対して
影響を及ぼす。熱固定温度が高温、例えばユコ0−25
0℃である場合には、室温〜tanδ立ち上シ温度まで
のtanδ絶対値は低く抑えることができるが、tan
δ立ち上シ温度はやや低めとなる。逆に熱固定温度が低
温、たとえば/gO−210°Cである場合にはtan
δ立ち上シ温度は高温側へシフトできるが、室温〜ta
nδ立ち上り温度までのtanδ絶対値はやや大きくな
る。本発明においては、コンデンサに要求さする電気特
性温度依存性に従って、熱固定温度を前述した範囲から
適宜選択して使用することができる。
When the heat setting temperature is lower than iso° C., the heat shrinkage rate of the film increases, which is not preferable. The above heat fixing temperature is
It affects the rise temperature of tan δ and the absolute value of tan δ. Heat fixing temperature is high, for example Yuko 0-25
When the temperature is 0°C, the absolute value of tanδ from room temperature to tanδ rise temperature can be kept low;
The rising temperature of δ is slightly lower. Conversely, if the heat fixation temperature is low, for example /gO-210°C, tan
The rising temperature of δ can be shifted to the high temperature side, but from room temperature to ta
The absolute value of tan δ up to the n δ rise temperature becomes slightly larger. In the present invention, the heat setting temperature can be appropriately selected from the above-mentioned range according to the temperature dependence of electrical characteristics required of the capacitor.

使用頻度が多く、tanδ の立ち上り゛温度が重視さ
れるコンデンサには、熱固定温度を低めに設定したフィ
ルムを供し、室温付近でのtanδが重視されるコンデ
ンサには熱固定温度を高めに設定したフィルムを供する
ことができる。
For capacitors that are frequently used and where the tan δ rise temperature is important, we provide a film with a low heat setting temperature, and for capacitors where tan δ near room temperature is important, we set a higher heat set temperature. A film can be provided.

〔実施例〕〔Example〕

以下、幸→→Φ実捲例によシ、更に具体的に本発明を説
明するが、本発明は、その要旨を越えない限シ、以下の
実施例に限定されるものではない。
Hereinafter, the present invention will be explained in more detail using actual winding examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

なお、実施例に記載した測定値は下に示す測定法によっ
て求めた。
Incidentally, the measured values described in the examples were obtained by the measuring method shown below.

(1)  極限粘度〔η〕 ポリマー又はフィルム:ンgをフェノール/テトラクロ
ルエタン=ro/go(重量比)の混合溶媒1oorr
t:中に溶解し、30℃において測定した。このとき、
Hqggins定数はポリマー組成によらず、すべて−
律に0.33として極限粘度を算出しよ。
(1) Intrinsic viscosity [η] Polymer or film: 10orr of mixed solvent of phenol/tetrachloroethane = ro/go (weight ratio)
t: Measured at 30°C. At this time,
The Hqggins constant is independent of the polymer composition, and all -
Calculate the intrinsic viscosity by setting it as 0.33.

(2)  熱収縮率(係) 無張力状態で、150℃雰囲気中、5分間熱処理し、そ
の前後のサンプルの長さを測定することにより次式にて
算出した。
(2) Thermal shrinkage rate (correspondence) Calculated using the following formula by heat-treating in a 150° C. atmosphere for 5 minutes in a tension-free state and measuring the length of the sample before and after that.

(3)誘電正接・tanδ(チ) 試料フィルムの両面にアルミニウムを真空蒸着し、主電
極、対抗電極、ガード電極を形成させて測定用試料とし
た。安藤電気株製、恒温槽(To−9)及び電極(SE
−70)に測定用試料全セットし、Y S P ’aJ
 !! Avtoma 1cCapacj、tance
 Bridge  (’IコクoA)で/ KHzの周
波数におけるtanJ′ff−測定した。また、恒温槽
の温度を2℃/ 2mの速度で昇温し、tanδの立ち
上る温度を測定した。
(3) Dielectric loss tangent/tan δ (chi) Aluminum was vacuum-deposited on both sides of a sample film to form a main electrode, a counter electrode, and a guard electrode, thereby preparing a measurement sample. Manufactured by Ando Electric Co., Ltd., thermostat (To-9) and electrode (SE
-70), set all samples for measurement, and
! ! Avtoma 1cCapacj, tance
The tanJ'ff at the Bridge ('IkkoA)/ was measured at a frequency of KHz. In addition, the temperature of the constant temperature bath was raised at a rate of 2° C./2 m, and the temperature at which tan δ rose was measured.

(4)誘電率・ε 誘電正接測定と同様の装置2用い、コ3°C!r O%
 RHにおける誘電率を測定した。
(4) Dielectric constant/ε Using device 2 similar to the dielectric loss tangent measurement, at 3°C! r O%
The dielectric constant at RH was measured.

(5)製膜時のフィルム破断性の評価 無定形シートを縦延伸後、横延伸する際に横延伸機(テ
ンター)において、延伸時あるいは熱固定時にフィルム
が破断する状況を次に示す3ランクにて判定評価した。
(5) Evaluation of film breakability during film formation When an amorphous sheet is longitudinally stretched and then laterally stretched, the situation in which the film breaks during stretching or heat setting in a horizontal stretching machine (tentter) is ranked as follows: Judgment and evaluation were made.

ランク○:殆どフィルム破断を起こさず生産性良好 ランクΔ:時折フィルム破断を生じ生産性に劣る。Rank ○: Good productivity with almost no film breakage Rank Δ: Occasional film breakage occurs and productivity is poor.

ランクズ:常に破断を生じ、生産性は全くない。Ranks: Always breaks and has no productivity.

実姉例1 ジカルボン酸成分としてテレフタル酸を97モル係、イ
ソフタル酸を3モルチ、グリコール成分として/、クー
シクロヘキサンジメタツールを100チ用い、触媒とし
て酸化チタンを酸成分に対し0.06モモル添加して、
重合槽中で攪拌下加熱してエステル化を行なった。
Actual example 1 Using 97 moles of terephthalic acid as the dicarboxylic acid component, 3 moles of isophthalic acid, 100 moles of cucyclohexane dimetatool as the glycol component, and adding 0.06 moles of titanium oxide to the acid component as a catalyst. hand,
Esterification was carried out by heating in a polymerization tank while stirring.

ここで滑剤として平均粒径O,Sμmのシリカをポリマ
ー中0.3wt% となるように添加した後、重縮合を
行い% Cvl = 0.A 5のポリーへグーシクロ
ヘキサンジメチレンテレフタレート共重合体を得た。こ
のポリマーをチップ化した後、窒素気流下で固相重合を
行い最終的に〔η〕=7.05のポリエステルを得た。
Here, silica with an average particle size of O.S μm was added as a lubricant so that it became 0.3 wt% in the polymer, and then polycondensation was performed to obtain % Cvl = 0. A polycyclohexane dimethylene terephthalate copolymer of A5 was obtained. After this polymer was made into chips, solid phase polymerization was carried out under a nitrogen stream to finally obtain a polyester having [η]=7.05.

このポリエステルを乾燥した後、305℃で溶融押出し
、UO℃に保持したキャスティングドラム上へ静電密着
法を用いながら冷却して100μmの未延伸フィルムを
得た。この未延伸フィルムを100℃に調節した金属ロ
ール上に接触させ予熱したのち、赤外線ヒーターを照射
しつつ周速差のあるロール間で3.7倍縦方向に延伸し
た。ついでこのフィルムをテンターに導き、/I!r℃
で3.9倍横方向に延伸した。更に同一テンター内で、
2 J O’Cで熱固定を行い、厚さ約7μmの二軸配
向フィルムを得た。(フィルム融点、2g9℃)このフ
ィルムの緒特性を表−7に示す。
After drying this polyester, it was melt-extruded at 305° C. and cooled onto a casting drum maintained at UO° C. using an electrostatic adhesion method to obtain an unstretched film of 100 μm. This unstretched film was brought into contact with a metal roll adjusted to 100° C. and preheated, and then stretched 3.7 times in the longitudinal direction between rolls having different circumferential speeds while being irradiated with an infrared heater. Next, I introduced this film to the tenter and /I! r℃
The film was stretched 3.9 times in the transverse direction. Furthermore, within the same tenter,
Heat setting was performed at 2 J O'C to obtain a biaxially oriented film with a thickness of about 7 μm. (Film melting point, 2g, 9°C) The properties of this film are shown in Table 7.

実施例コ 実施例1において、ジカルボン酸成分をテレフタル酸1
00%として、実施例/と同様に溶融重合・固相重合を
行いポ!J−7,9L−シクロへ午サンジメチレンテレ
フタレートを得た。(〔ワ〕=0.タ O) このポリエステルを押出温度3is℃とする以外は実施
例1と同様にして厚さ約7μmの二軸配向フィルムを得
た。このフィルムの諸特性を表−/に示す。
Example In Example 1, the dicarboxylic acid component was replaced with 1 terephthalic acid.
00%, melt polymerization and solid phase polymerization were carried out in the same manner as in Example. J-7,9L-cyclosan dimethylene terephthalate was obtained. ([W]=0.T O) A biaxially oriented film with a thickness of about 7 μm was obtained in the same manner as in Example 1 except that the extrusion temperature of this polyester was 3 is°C. Various properties of this film are shown in Table 1.

実施例3 実施例1において、熱固定温度を1tro℃とする以外
は実施例/とまったく同様にして厚さ約7μmの二軸配
向フィルムを得た。このフィルムの諸特性を表−7に示
す。
Example 3 A biaxially oriented film with a thickness of about 7 μm was obtained in exactly the same manner as in Example 1, except that the heat setting temperature was 1 tro°C. Table 7 shows the properties of this film.

比較例1 ポリエチレンテレフタレートを常法に従い溶融重合・固
相重合を行って、〔η〕= o、tr oのポリエステ
ルを得た。これを用いて、実施例1において押出温度を
xqo℃、縦延伸の予熱ロールfg、2℃、横延伸温度
を705℃とする以外は実施例/と同様にして厚さ約7
μmの二軸配向フィルムを得た。このフィルムの諸特性
を表−/に示す。
Comparative Example 1 Polyethylene terephthalate was subjected to melt polymerization and solid phase polymerization according to conventional methods to obtain a polyester with [η]=o, tro. Using this, the same procedure as in Example 1 was carried out except that in Example 1, the extrusion temperature was set to xqo°C, the longitudinal stretching preheating roll fg was set to 2°C, and the transverse stretching temperature was set to 705°C.
A micrometer biaxially oriented film was obtained. Various properties of this film are shown in Table 1.

比較例コ 実施例/において、ジカルボン酸成分トじてテレフタル
酸fg4モル係、イソフタル酸ヲ/クモルチとして実施
例1と同様にしてポリ−バリーシクロヘキサンジメチレ
ンテレフタレート共重合体を得た。(〔η”l = 7
.o o )このポリエステルレジンを用いて、実施例
1において押出温度300℃、縦延伸の予熱ロールを9
3℃、横延伸温度を110℃とする以外は実施例/と同
様にして厚さ約7μmの二軸配向フィルムを得た。この
フィルムの諸特性を表−/に示す。
Comparative Example In Example 1, a poly-barrycyclohexane dimethylene terephthalate copolymer was obtained in the same manner as in Example 1, except that the dicarboxylic acid component was 4 moles of terephthalic acid and 4 moles of isophthalic acid. ([η”l = 7
.. o o) Using this polyester resin, in Example 1, the extrusion temperature was 300°C and the preheating roll for longitudinal stretching was
A biaxially oriented film with a thickness of about 7 μm was obtained in the same manner as in Example except that the temperature was 3° C. and the transverse stretching temperature was 110° C. Various properties of this film are shown in Table 1.

比較例3 実施例/で使用したポリエステルレジンとポリエチレン
テレフタレートをワt、、tI: 3.6(重量比)で
ブレンドした後、溶融押出しベレット化した。(〔η〕
=o、ql)このレジンを用いて比較例3と同様の条件
でシート化、延伸・熱固定を行ない、厚さ7μmの二軸
配向フィルムを得た。このフィルムをDSCにて測定し
たところ、ポリエチレンテレフタレートの融点に相当す
るピークは完全に消失しておシ、ブレンドしたλつのポ
リエステルはランダム化していること全確認した。この
フィルムの諸特性を表−lに示す。
Comparative Example 3 The polyester resin used in Example 1 and polyethylene terephthalate were blended at a weight ratio of 3.6 and then melt-extruded into pellets. ([η]
=o, ql) Using this resin, sheeting, stretching and heat setting were performed under the same conditions as in Comparative Example 3 to obtain a biaxially oriented film with a thickness of 7 μm. When this film was measured by DSC, the peak corresponding to the melting point of polyethylene terephthalate completely disappeared, confirming that the blended λ polyesters were randomized. Various properties of this film are shown in Table 1.

比較例q 実施例/において溶融重合時間を短かくして、その後固
相重合をせずに〔η] = O,S Sのポリエステル
レジンを得た。このレジンを用いて実施例1と同様に製
膜・熱固定を行い厚さ約7μmの二軸配向フィルムを得
た。このフィルムの諸特性を表−/に示す。
Comparative Example q A polyester resin with [η] = O, S S was obtained by shortening the melt polymerization time in Example/ without performing solid phase polymerization. Using this resin, film formation and heat setting were carried out in the same manner as in Example 1 to obtain a biaxially oriented film with a thickness of about 7 μm. Various properties of this film are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明のコンデンサー用二軸配向ポリエステルフィルム
はコンデンサーの絶縁材料・誘電材料として、従来広く
用いられている二軸配向ポリエチレンテレフタレートフ
ィルムよシも優れた電気特性?有している。特に誘電正
接の温度依存性に関しては高温時における立ち上シ温度
がポリエチレンテレフタレートのそれよシもコ0〜30
℃程度高温側ヘシフトするため、本発明のフィルムを使
用したコンデンサーは、最高使用温度を高く設定するこ
とができる。また、誘電率についてもポリエチレンテレ
フタレートとほぼ同程度であり、しかも二軸延伸するこ
とで数μmの厚みまで薄くできるため、本発明のフィル
ム全円いたコンデンサーの大きさ、容量ハホリエチレン
テ1/フタレートフィルムコンデンサーとほぼ同程度と
することができ、その工業的価値は高い。
Does the biaxially oriented polyester film for capacitors of the present invention have better electrical properties than the biaxially oriented polyethylene terephthalate film that has been widely used as an insulating material and dielectric material for capacitors? have. In particular, regarding the temperature dependence of the dielectric loss tangent, the rise temperature at high temperatures is 0 to 30% higher than that of polyethylene terephthalate.
Since the temperature is shifted to the high temperature side by about .degree. C., the maximum operating temperature of a capacitor using the film of the present invention can be set high. In addition, the dielectric constant is almost the same as that of polyethylene terephthalate, and it can be made as thin as a few μm by biaxial stretching. The industrial value is high.

手続補正書 1 事件の表示 昭和6°3年特許願第1986 =14号2 発明の名
称 コンデンサ用二軸配向ポリエステルフィルム3 補正を
する者
Procedural amendment 1 Indication of the case 1932 Patent Application No. 1986 = 14 2 Name of the invention Biaxially oriented polyester film for capacitors 3 Person making the amendment

Claims (1)

【特許請求の範囲】[Claims] (1)極限粘度が0.45以上であり、熱固定されてな
るポリエステルフィルムであって、該ポリエステルのグ
リコール成分の97モル%以上が1,4ーシクロヘキサ
ンジメメノール、酸成分の90モル%以上がテレフタル
酸で構成されていることを特徴とするコンデンサ用二軸
配向ポリエステルフィルム。
(1) A heat-set polyester film having an intrinsic viscosity of 0.45 or more, in which 97 mol% or more of the glycol component of the polyester is 1,4-cyclohexanedimmenol and 90 mol% of the acid component A biaxially oriented polyester film for capacitors, characterized in that the above is composed of terephthalic acid.
JP63198644A 1988-08-09 1988-08-09 Biaxially oriented polyester film for capacitors Expired - Lifetime JP2519300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63198644A JP2519300B2 (en) 1988-08-09 1988-08-09 Biaxially oriented polyester film for capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63198644A JP2519300B2 (en) 1988-08-09 1988-08-09 Biaxially oriented polyester film for capacitors

Publications (2)

Publication Number Publication Date
JPH0249309A true JPH0249309A (en) 1990-02-19
JP2519300B2 JP2519300B2 (en) 1996-07-31

Family

ID=16394643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63198644A Expired - Lifetime JP2519300B2 (en) 1988-08-09 1988-08-09 Biaxially oriented polyester film for capacitors

Country Status (1)

Country Link
JP (1) JP2519300B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483757A2 (en) * 1990-10-29 1992-05-06 Diafoil Company, Limited Polyester film for capacitor
EP0484942A2 (en) * 1990-11-08 1992-05-13 Diafoil Company, Limited Insulating material for air conditioner or refrigerator
EP0671990A4 (en) * 1992-12-09 1995-08-01 Hoechst Ag Biaxially oriented copolyester film for capacitor dielectric use or thermal transfer ribbon use.
JP2008524396A (en) * 2004-12-16 2008-07-10 イーストマン ケミカル カンパニー Biaxially stretched copolyester film and laminate comprising copper

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152639A (en) * 1986-08-04 1988-06-25 Unitika Ltd Polyester shrink film and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152639A (en) * 1986-08-04 1988-06-25 Unitika Ltd Polyester shrink film and production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483757A2 (en) * 1990-10-29 1992-05-06 Diafoil Company, Limited Polyester film for capacitor
EP0484942A2 (en) * 1990-11-08 1992-05-13 Diafoil Company, Limited Insulating material for air conditioner or refrigerator
EP0671990A4 (en) * 1992-12-09 1995-08-01 Hoechst Ag Biaxially oriented copolyester film for capacitor dielectric use or thermal transfer ribbon use.
JP2008524396A (en) * 2004-12-16 2008-07-10 イーストマン ケミカル カンパニー Biaxially stretched copolyester film and laminate comprising copper

Also Published As

Publication number Publication date
JP2519300B2 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
US5153302A (en) Polyester film for capacitor
JPS62135801A (en) Uniaxially highly oriented film comprising polyethylene naphthalate for polarizing plate
USRE34727E (en) Low-shrinkage polyester film and preparation thereof
US5059470A (en) Heat-sealable laminated polyester film
JPH0550376B2 (en)
JPWO2008139989A1 (en) Biaxially oriented polyarylene sulfide film and method for producing the same
US5545364A (en) Process for the preparation of heat resistant polyester film
JP6107321B2 (en) Polyester film with excellent folding retention that can be used in place of paper, and film-made articles for paper replacement
JP2003335872A (en) Hydrolysis-resistant biaxially stretched film, its manufacturing method and capacitor
JPH0249309A (en) Biaxially oriented polyester film for capacitor
JP4086598B2 (en) Polyester film for capacitors
JPS63146940A (en) Polyester shrink film
US3952125A (en) Electrically insulating material
JPS6288207A (en) Polyester film for dielectric of capacitor
JP3847551B2 (en) Polyester film for capacitors
JP4951156B2 (en) Polyester film
JPH0832498B2 (en) Polyester film for transfer film
JP3847550B2 (en) Polyester film for capacitors
KR0145449B1 (en) Polyester film
JPH04214757A (en) Poly-1,4-cyclohexanedimethylene terephthalate film
JP2692269B2 (en) Low shrinkage polyester film
JPS61148030A (en) Heat treatment method of polyester-molded article
JPH0367629A (en) Biaxially oriented polyester film for molding
JP4387245B2 (en) Biaxially oriented polyethylene-2,6-naphthalene dicarboxylate film for electrical insulation
JP2002200673A (en) Heat-shrinkable polyester tube for coating capacitor