JPH0248885B2 - HOROGURAMUHIKARISOSASOCHI - Google Patents

HOROGURAMUHIKARISOSASOCHI

Info

Publication number
JPH0248885B2
JPH0248885B2 JP5753982A JP5753982A JPH0248885B2 JP H0248885 B2 JPH0248885 B2 JP H0248885B2 JP 5753982 A JP5753982 A JP 5753982A JP 5753982 A JP5753982 A JP 5753982A JP H0248885 B2 JPH0248885 B2 JP H0248885B2
Authority
JP
Japan
Prior art keywords
hologram
scanning
plane
disk
diffraction efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5753982A
Other languages
Japanese (ja)
Other versions
JPS58174919A (en
Inventor
Hiroyoshi Funato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP5753982A priority Critical patent/JPH0248885B2/en
Publication of JPS58174919A publication Critical patent/JPS58174919A/en
Publication of JPH0248885B2 publication Critical patent/JPH0248885B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/106Scanning systems having diffraction gratings as scanning elements, e.g. holographic scanners

Description

【発明の詳細な説明】 本発明は偏向素子として直線回折格子を用いた
光走査装置において光の利用効率を高めたものに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical scanning device that uses a linear diffraction grating as a deflection element and has improved light utilization efficiency.

レーザプリンタ、バーコード読取り、レーザ欠
陥検査等に用いられるレーザ光の偏向器として、
等間隔直線格子を定速回転するデイスク上に複数
個同心円状に配置し、その半径一定の位置にレー
ザビームを入射させ、回折された一次光を走査面
に集束させるようにしたものは既に知られてい
る。
As a laser beam deflector used in laser printers, barcode reading, laser defect inspection, etc.
It is already known that a plurality of equidistant linear gratings are arranged concentrically on a disk that rotates at a constant speed, a laser beam is incident at a fixed radius position, and the diffracted primary light is focused on the scanning surface. It is being

この型の光偏向装置は、等間隔直線回折格子を
ホログラムとして製造することにより、光偏向器
として回転多面鏡を用いる装置に比して製作が容
易であり、実用性の高いものを得ることが出来
る。しかし、この種装置の実用性を高めるために
は、ホログラムの回折効率を高めると共に、その
回折効率のデイスクの回転による変動が小さいこ
とが望ましいことは云うまでもない。
This type of optical deflection device is easier to manufacture than a device that uses a rotating polygon mirror as an optical deflector by manufacturing an equally spaced linear diffraction grating as a hologram, and it is possible to obtain a highly practical device. I can do it. However, in order to improve the practicality of this type of device, it goes without saying that it is desirable to increase the diffraction efficiency of the hologram and to minimize fluctuations in the diffraction efficiency due to disk rotation.

本発明は、ホログラムの格子方向と入射光の偏
光面との関係において、上記の望ましい条件を充
すことの出来る光偏向装置を提供しようとするも
のである。
The present invention aims to provide an optical deflection device that can satisfy the above-mentioned desirable conditions in the relationship between the grating direction of the hologram and the polarization plane of the incident light.

以下図面を参照して詳細に説明する。 A detailed explanation will be given below with reference to the drawings.

第1図はレーザビームの走査方向、いわゆる主
走査方向を含む面内の光偏向装置の光学配置図、
第2図はこれと直角方向のいわゆる副走査方向で
みた光学配置図である。図示しないレーザからの
ガウスビームは、シリンドリカルレンズ1により
A点にホログラムデイスク2と平行に線状に集束
するような集光光束とされ、ホログラムデイスク
2上の直線格子ホログラムに入射角Θiで入射す
る。ホログラムによる1次回折光は射出角Θd
回折され、集束線Aに対応するA′に線状のビー
ムウエストを作る。A′からの発散光は球面レン
ズであるfΘのレンズ3及び副走査方向で収歛作
用を持つシリンドリカルレンズ4により走査面P
にビームウエストを作る。主走査面内では、レー
ザビームはホログラムデイスク2の回転による回
折方向の変化により、ビームウエストは走査面P
上をP1点からP2点まで走査される一方、副走査
面内ではfΘレンズ3とシリンドリカルレンズ4
とに関しホログラムデイスク2面と走査面Pとは
幾何光学的に共役の関係にあり、デイスク2のぶ
れ、ホログラムの取付角度誤差等が走査面上の集
束点位置に影響を与えることがないような光学配
置とされるのが一般である。
FIG. 1 is an optical layout diagram of the optical deflection device in a plane including the scanning direction of the laser beam, the so-called main scanning direction;
FIG. 2 is an optical layout diagram viewed in the so-called sub-scanning direction, which is perpendicular to this. A Gaussian beam from a laser (not shown) is made into a condensed light beam by a cylindrical lens 1 that is linearly focused at point A parallel to the hologram disk 2, and is incident on the linear grating hologram on the hologram disk 2 at an incident angle Θ i do. The first-order diffracted light from the hologram is diffracted at an exit angle Θ d , creating a linear beam waist at A' corresponding to the focusing line A. The diverging light from A' is transmitted to the scanning plane P by a lens 3 of fΘ which is a spherical lens and a cylindrical lens 4 which has a convergence effect in the sub-scanning direction.
Create a beam waist. In the main scanning plane, the laser beam changes its diffraction direction due to the rotation of the hologram disk 2, so that the beam waist changes to the scanning plane P.
While the top is scanned from P1 point to P2 point, fΘ lens 3 and cylindrical lens 4 are scanned in the sub-scanning plane.
Regarding this, the two hologram disks and the scanning plane P have a geometrically optically conjugate relationship, so that the shake of the disk 2, the error in the mounting angle of the hologram, etc. will not affect the position of the focal point on the scanning plane. It is generally an optical arrangement.

このような光走査装置に用いられるホログラム
デイスク2の平面図の1例を第3図に示す。個々
のホログラム21,22…は直線格子を持ち、図
示の例ではその中心を通るデイスク半径に直角に
格子が配置されている。
FIG. 3 shows an example of a plan view of the hologram disk 2 used in such an optical scanning device. Each hologram 21, 22... has a linear grating, and in the illustrated example, the grating is arranged perpendicular to the disk radius passing through its center.

ホログラムへの入射ビームの偏光振動面とホロ
グラム格子とのなす角の変化により、回折効率が
変化することが見出された。第4図に偏光振動面
一格子角度(偏波面角度αと表わす)と回折効率
の関係の1例を示す。
It has been found that the diffraction efficiency changes depending on the angle between the hologram grating and the plane of polarization vibration of the beam incident on the hologram. FIG. 4 shows an example of the relationship between the polarization vibration plane and the grating angle (expressed as the polarization plane angle α) and the diffraction efficiency.

測定には、0.8μmの膜厚のフオトレジスト層を
持つ記録材料にHe―Cdレーザ光により周知の記
録光学系で1860本/mmのホログラムを記録し、再
生の場合はHe―Neレーザを用いている。ホログ
ラムへの入射角Θiは実験的に見出された回折効
率が最高になる角度Θioを用いた。すなわち Θio=sin-1(λu/2) ただしλ:再生光の空気中波長 u:ホログラムの空間周波数 この例ではλ=0.6328×10-3mm u=1860本/
mmであるのでΘio≒36.1゜である。
For measurements, a hologram of 1860 lines/mm was recorded on a recording material with a photoresist layer with a thickness of 0.8 μm using a He-Cd laser beam using a well-known recording optical system, and for reproduction, a He-Ne laser was used. ing. As the angle of incidence Θi on the hologram, the angle Θio at which the diffraction efficiency is maximized was experimentally found. That is, Θio=sin -1 (λu/2) where λ: In-air wavelength of reproduction light u: Spatial frequency of hologram In this example, λ=0.6328×10 -3 mm u=1860 lines/
Since it is mm, Θio≒36.1°.

入射ビームとして直線偏光ビームと無偏光ビー
ムを用いレーザ管を回転させて回折効率が最高と
なつたときの回折効率を測定した結果 直線偏光レーザの回折効率 62.0% 無 偏光レーザの回折効率 54.0% を得た。ここで回折効率ηは入射光パワーをP01
次回折光パワーをP1として η=P1/P0×100% として求めている。
The results of measuring the diffraction efficiency when the laser tube was rotated using a linearly polarized beam and a non-polarized beam as the incident beam to achieve the highest diffraction efficiency. Diffraction efficiency of linearly polarized laser: 62.0% Diffraction efficiency of non-polarized laser: 54.0% Obtained. Here, the diffraction efficiency η is the incident light power P 0 1
The power of the next diffracted light is P 1 and it is calculated as η=P 1 /P 0 ×100%.

これにより直線偏光レーザの方が高い回折効率
を得られることが明らかとなつたので、次に直線
偏光を用いた場合の偏光振動面と回折効率の関係
を測定した。その結果を示したのが第4図であ
る。ここでα=0゜は入射光の偏光振動面とホログ
ラムの格子方向が一致していることを表わし、い
わゆるS偏光であり、α=90゜は偏光振動面と格
子方向が垂直ないわゆるP偏光となる。回折効率
ηはほぼ η=Acos2α+B (A.Bは定数) を満足することが見出された。
As a result, it became clear that a linearly polarized laser can obtain higher diffraction efficiency, so next we measured the relationship between the polarization vibration plane and the diffraction efficiency when linearly polarized light was used. Figure 4 shows the results. Here, α = 0° means that the polarization vibration plane of the incident light and the lattice direction of the hologram match, which is so-called S-polarized light, and α = 90° means that the polarization vibration plane and the lattice direction are perpendicular, so-called P-polarized light. becomes. It was found that the diffraction efficiency η approximately satisfies η=Acos 2 α+B (AB is a constant).

上記の結果を第1図、第2図に示す光偏向装置
に応用する場合は、再生用の照明ビームの偏光振
動面をホログラムの格子方向、すなわちデイスク
2の半径方向に直角に設定すればよい。このよう
にすれば走査面の中央P0の位置を走査するとき、
ホログラムの格子方向と入射ビームの偏光振動面
が一致し、最高の回折効率を示し、同時に走査開
始点P1、走査終了点P2における効率の低下も最
低となる。第3図に示すホログラムデイスクは8
枚のホログラムを有し、個々のホログラムは約
30゜の走査を行う。この場合のホログラムの格子
方向と偏光振動面との角度の変動範囲は第4図の
Bの範囲となる。図示の装置による実測の結果、
回転角30゜で走査長210mmの走査の間、平均回折効
率60.5%効率変動±1.5%の良好な走査特性を持
つことが確認出来た。
When applying the above results to the optical deflection device shown in Figs. 1 and 2, the plane of polarization vibration of the illumination beam for reproduction should be set at right angles to the lattice direction of the hologram, that is, the radial direction of the disk 2. . In this way, when scanning the center P 0 position of the scanning plane,
The lattice direction of the hologram and the polarization vibration plane of the incident beam coincide, exhibiting the highest diffraction efficiency, and at the same time, the decrease in efficiency at the scan start point P 1 and scan end point P 2 is also the lowest. The hologram disk shown in Figure 3 is 8
It has several holograms, and each hologram is approximately
Perform a 30° scan. In this case, the variation range of the angle between the hologram grating direction and the polarization vibration plane is the range B in FIG. 4. Results of actual measurements using the illustrated device,
During scanning with a rotation angle of 30° and a scanning length of 210 mm, it was confirmed that it had good scanning characteristics with an average diffraction efficiency of 60.5% and an efficiency variation of ±1.5%.

上記の例はホログラム格子方向がデイスクの半
径方向に垂直な場合について説明したが、格子方
向がデイスクの半径方向と一致しているときは入
射光の偏光振動面もこれに一致させるのが良く、
第5図のように格子方向が半径方向に対し斜めに
配置されているときは入射光の偏光振動面も図中
の矢印Cのように走査中央点を走査しているとき
の格子の方向に平行にすればよい。
The above example explained the case where the hologram grating direction is perpendicular to the radial direction of the disk, but when the grating direction coincides with the radial direction of the disk, it is better to make the polarization vibration plane of the incident light coincide with this.
When the grating direction is arranged obliquely to the radial direction as shown in Figure 5, the polarization vibration plane of the incident light is also in the direction of the grating when scanning the scanning center point, as shown by arrow C in the figure. Just make it parallel.

なお、実験例はフオトレジストによるホログラ
ムについて説明したが、銀塩、重クロム酸ゼラチ
ン、アモルフアス材料、サーモプラスチツク等、
任意の材料によるホログラムについても同様であ
り、また、透過型でなく反射型のホログラムにつ
いても同様に適用出来る。
In addition, although the experimental example explained a hologram using photoresist, silver salt, dichromate gelatin, amorphous material, thermoplastic, etc.
The same applies to holograms made of any material, and can also be applied to reflection-type holograms instead of transmission-type holograms.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明を実施する光走査装置
の光路配置図、第3図はホログラムデイスクの1
例の平面図、第4図は回折効率曲線、第5図はホ
ログラムデイスクの他の例の部分平面図。 1,4:シリンドリカルレンズ、2:ホログラ
ムデイスク、3:fΘレンズ。
Figures 1 and 2 are optical path layout diagrams of an optical scanning device implementing the present invention, and Figure 3 is a diagram of a hologram disk.
FIG. 4 is a plan view of the example, FIG. 4 is a diffraction efficiency curve, and FIG. 5 is a partial plan view of another example of the hologram disk. 1, 4: cylindrical lens, 2: hologram disk, 3: fΘ lens.

Claims (1)

【特許請求の範囲】[Claims] 1 定速回転するデイスク上にホログラムを複数
個、同心円状に配置し、該ホログラムに入射する
レーザビームの1次回折光によつて走査面を走査
する光走査装置において、入射光が直線偏光であ
り、その偏光振動面が走査線中央を走査している
ときのホログラムの格子方向と一致していること
を特徴とするホログラム光走査装置。
1. In an optical scanning device in which a plurality of holograms are arranged concentrically on a disk rotating at a constant speed and a scanning surface is scanned by the first-order diffracted light of a laser beam incident on the hologram, the incident light is linearly polarized light. , a hologram optical scanning device characterized in that the plane of polarization vibration coincides with the lattice direction of the hologram when scanning the center of the scanning line.
JP5753982A 1982-04-07 1982-04-07 HOROGURAMUHIKARISOSASOCHI Expired - Lifetime JPH0248885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5753982A JPH0248885B2 (en) 1982-04-07 1982-04-07 HOROGURAMUHIKARISOSASOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5753982A JPH0248885B2 (en) 1982-04-07 1982-04-07 HOROGURAMUHIKARISOSASOCHI

Publications (2)

Publication Number Publication Date
JPS58174919A JPS58174919A (en) 1983-10-14
JPH0248885B2 true JPH0248885B2 (en) 1990-10-26

Family

ID=13058559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5753982A Expired - Lifetime JPH0248885B2 (en) 1982-04-07 1982-04-07 HOROGURAMUHIKARISOSASOCHI

Country Status (1)

Country Link
JP (1) JPH0248885B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172018A (en) * 1984-02-17 1985-09-05 Ricoh Co Ltd Optical-scanner
JPH0668582B2 (en) * 1984-05-14 1994-08-31 富士通株式会社 Optical scanning method
JPS62116917A (en) * 1985-11-06 1987-05-28 ホログラフイクス・インコ−ポレイテツド Scanner system having rotary deflector hologram
US4923262A (en) * 1985-11-06 1990-05-08 Holographix, Inc. Scanner system having rotating deflector hologram

Also Published As

Publication number Publication date
JPS58174919A (en) 1983-10-14

Similar Documents

Publication Publication Date Title
US4824191A (en) Optical pickup
JPH0247726B2 (en)
JPH0570211B2 (en)
EP0539226B1 (en) Laser beam optical scanner
US5691830A (en) Holographic optical system including waveplate and aliasing suppression filter
JPH0248885B2 (en) HOROGURAMUHIKARISOSASOCHI
JPS63244013A (en) Optical scanner
US20040156083A1 (en) Holographic recording/reproducing apparatus and reproducing apparatus for holographically recorded information
US4626062A (en) Light beam scanning apparatus
JPH04501621A (en) holographic laser printer
JP3031841B2 (en) Optical pickup device
JPH0371691B2 (en)
JP2526206B2 (en) Optical pickup
JPS5827890B2 (en) Optical beam branching device in video disc playback device
JP2000215493A (en) Optical pickup device
JPS62249107A (en) Polarizing beam splitter
JP2502484B2 (en) Optical head device
JP2502483B2 (en) Optical head device
JP2502482B2 (en) Optical head device
JPS6117232A (en) Optical head device
JPH0225489B2 (en)
JPH1031820A (en) Initialization head for optical disk and initialization device
KR910007718B1 (en) Achromatic holographic element
JPS60222817A (en) Optical scanner
JPS633381B2 (en)