JPH0248802B2 - - Google Patents

Info

Publication number
JPH0248802B2
JPH0248802B2 JP56083497A JP8349781A JPH0248802B2 JP H0248802 B2 JPH0248802 B2 JP H0248802B2 JP 56083497 A JP56083497 A JP 56083497A JP 8349781 A JP8349781 A JP 8349781A JP H0248802 B2 JPH0248802 B2 JP H0248802B2
Authority
JP
Japan
Prior art keywords
flow rate
liquid level
liquid
evaporation generator
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56083497A
Other languages
Japanese (ja)
Other versions
JPS57198901A (en
Inventor
Koichiro Inohara
Osamu Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8349781A priority Critical patent/JPS57198901A/en
Publication of JPS57198901A publication Critical patent/JPS57198901A/en
Publication of JPH0248802B2 publication Critical patent/JPH0248802B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

【発明の詳細な説明】 本発明は例えば原子力プラントの蒸発濃縮器や
製品(例えば砂糖等)の濃縮に好適な蒸発発生器
の液位制御装置に係り、特に設定値の変更に対し
ても外乱に強くする蒸発発生器の液位制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid level control device for an evaporative concentrator in a nuclear power plant or an evaporative generator suitable for concentrating products (such as sugar), and in particular, the present invention relates to a liquid level control device for an evaporative generator suitable for concentrating products (such as sugar). This invention relates to a liquid level control device for an evaporation generator that is resistant to

化学プラントはもとより、原子力プラント等に
おいては蒸発濃縮器(以下、濃縮器と指称する)
は高い浄化効率及び除染効率が得られる水処理装
置として重要である。特に、原子力発電所の廃棄
物処理系に於ては各種廃液処理の要として、主要
な地位を占めている。しかしながら、現状では運
転員の経験にもとづく手動操作に依存しているた
め安定な運転を行なうことができない。特に、手
動操作は最近のように単機当りの出力容量の増加
された原子力発電所では、廃棄物処理設備の運転
効率の点で問題となつている。
Evaporative concentrators (hereinafter referred to as concentrators) are used not only in chemical plants but also in nuclear plants, etc.
is important as a water treatment device that provides high purification and decontamination efficiency. In particular, in the waste treatment system of nuclear power plants, it occupies a major position as a key point in the treatment of various waste liquids. However, at present, stable operation cannot be achieved because the system relies on manual operation based on the operator's experience. In particular, manual operation has become a problem in terms of operating efficiency of waste treatment equipment in nuclear power plants where the output capacity per unit has been increased recently.

そこで、濃縮器の全自動運転化が必要となるわ
けであるが、この場合の全自動運転化は、水張
り、暖気等の起動操作から蒸発濃縮、高温待機、
排出、停止までの一連の処理工程を通じて沸騰液
面を一定に制御し、安定な運転状態としなければ
ならない。ここで蒸発液面の一定制御は、濃縮器
の降染効率の維持(処理廃液と蒸留れとの汚染度
の比)及びオーバーフロー、空焚き等の異常防止
のため重要である。ところが、濃縮器の沸騰液面
は加熱部に多量に発生するボイドによる影響があ
り、この動特性が水量の変化とは逆の特性を持つ
ているため制御が不安定になりがちであり、運転
を難しくする原因にもなつている。この傾向は処
理効率を上げた、2胴式循環形濃縮器の場合に特
に著しいものがある。
Therefore, it is necessary to make the concentrator fully automatic. In this case, fully automatic operation means everything from starting operations such as filling with water and warming up, to evaporation concentration, high temperature standby, and
The boiling liquid level must be controlled at a constant level throughout the series of treatment steps from discharge to shutdown to maintain stable operating conditions. Here, constant control of the evaporated liquid level is important for maintaining the condensation efficiency of the concentrator (ratio of contamination level between treated waste liquid and distilled water) and for preventing abnormalities such as overflow and dry firing. However, the boiling liquid level in the concentrator is affected by the large amount of voids that occur in the heating section, and the dynamic characteristics of these voids are opposite to changes in the amount of water, so control tends to become unstable and operation becomes difficult. It is also the reason why it becomes difficult. This tendency is particularly remarkable in the case of two-barrel circulation type concentrators, which have increased processing efficiency.

以下、従来装置について説明するにあたり、先
ず濃縮器の沸騰面液位の特性につき第1図を参照
して説明する。濃縮器の沸騰面液位は給液流量
(処理量)に見合つた蒸発流量を得るために、加
熱蒸気流量をバランスさせて、一定に保たれてい
ることが必要である。今第1図a,bのように加
熱蒸気流量aと給液流量bとはバランスしてお
り、液面dは安定に保たれているものとする。の
状態において給液流量bの設定値がb′に変更され
たとすると、濃縮器内の液量としては、aとb′の
偏差量Cの時間積分で増加し、これにより第1図
cで示す沸騰面液位曲線1となるはずである。と
ころが、給液流量b′の増加に伴なつて濃縮器内の
ボイド発生量も変化する。つまり、給液の増加に
よりボイド量は減る。このため、実際の液位とし
ては、液位曲線2に示されるように、給液変更と
同時にボイドの消滅によりf期間で一端下降し、
ボイド発生量の変化がなくなつた時点で上昇し始
める。この特性は、加熱蒸気流量の変化について
も極性が反対となるだけで、同じことが云える。
このように濃縮器の沸騰液位面は濃縮器内の液量
+気泡(ボイド)量の和に比例し、第1図に示す
様な非線形特性をもつている。この様な、入力変
化に対して正、負の両方向の変化を示すプロセス
では、単に一方向についてだけのフイードバツク
制御を施すと、制御率に正帰環がかかり、不安定
で暴走しやすい状態を呈する。
Hereinafter, in explaining the conventional apparatus, first, the characteristics of the boiling surface liquid level of the concentrator will be explained with reference to FIG. The boiling surface liquid level of the condenser must be kept constant by balancing the heating steam flow rate in order to obtain an evaporation flow rate commensurate with the feed liquid flow rate (processing amount). As shown in FIG. 1 a and b, it is assumed that the heating steam flow rate a and the liquid supply flow rate b are balanced, and the liquid level d is kept stable. If the set value of the liquid supply flow rate b is changed to b' in the state of The boiling surface liquid level curve 1 shown below should be obtained. However, as the feed liquid flow rate b' increases, the amount of voids generated within the concentrator also changes. In other words, the amount of voids decreases as the amount of liquid supplied increases. Therefore, as shown in the liquid level curve 2, the actual liquid level drops once in period f due to the disappearance of voids at the same time as the liquid supply change.
It starts to rise when the amount of void generation stops changing. This characteristic also holds true for changes in the heating steam flow rate, just with the opposite polarity.
In this way, the boiling liquid level in the concentrator is proportional to the sum of the liquid amount in the concentrator + the amount of bubbles (voids), and has nonlinear characteristics as shown in FIG. In a process like this that shows changes in both positive and negative directions in response to input changes, if feedback control is applied only in one direction, a positive feedback cycle will be applied to the control rate, resulting in an unstable and runaway state. present.

次に、従来装置について第2図を参照して説明
する。即ち、この装置にあつては、給路を通過す
る処理液を給液流量検出器3で検出し、これを給
液流量調節計4で設定値S2と演算し、これに基
づいて給液流量調節弁5を制御しながら処理液を
蒸発発生器6に給液する。一方、液位調節計7
は、設定値S1と液位検出器8の検出液位とを受
けて演算しこの演算値に基づいて加熱蒸気流量調
節弁9を制御しつつ加熱蒸気を加熱器10の加熱
管11を介して循環させ、これにより蒸発発生器
6内の処理液を蒸発生させて同蒸発発生器6の液
位が設定値となるように定値制御している。12
は循環ポンプである。
Next, a conventional device will be explained with reference to FIG. That is, in this device, the processing liquid passing through the supply path is detected by the liquid supply flow rate detector 3, this is calculated as a set value S2 by the liquid supply flow rate controller 4, and the liquid supply flow rate is adjusted based on this. The processing liquid is supplied to the evaporation generator 6 while controlling the control valve 5. On the other hand, the liquid level controller 7
is calculated based on the set value S1 and the liquid level detected by the liquid level detector 8, and controls the heated steam flow rate control valve 9 based on this calculated value while supplying the heated steam through the heating pipe 11 of the heater 10. As a result, the processing liquid in the evaporation generator 6 is evaporated, and the liquid level in the evaporation generator 6 is controlled at a fixed value to a set value. 12
is a circulation pump.

しかし、この装置において給液流量の設定値S
2を変更すると、蒸発発生器6の沸騰面液位は第
3図cのような液位変化特性をとる。今、第3図
において、第1図と同様に加熱蒸気流量a(第3
図a参照)と給液流量b(第3図b参照)とはバ
ランスし、沸騰面液位dは一定に保たれていると
する。ここで、給液流量bをcだけ正の方向に増
加させてb′とすると、沸騰面液位dはボイドの影
響により下降し、設定値S1とに負の偏差を生じ
る。このため、見かけ上液位dが下がるため、液
位調節計7は液量を増加させるべく加熱蒸気流量
調節弁9を絞ろうとする。すると、ますます蒸発
発生器6内のボイド量が減少してくるため、液位
dは下降し、下限値まで達する。そのうち、給液
の増加により液位dが上昇方向になると、調節計
7の出力は加熱蒸気流量調節弁9の開度を100%
まで上昇させる方向に作用し、これにより加熱蒸
気流量は上限値まで達する。この様に、沸騰面液
位S1の変化を液量の変化だけとしてとらえて単
一方向の制御ループを組むと、気泡変化により逆
の特性を示す液位状態で正のフイードバークがか
かり、制御率を不安定にし、極端な場合には加熱
蒸気流量21と液位22は第3図に示すように発
散状態を呈する。
However, in this device, the set value S of the liquid supply flow rate
2, the boiling surface liquid level of the evaporation generator 6 takes on a liquid level change characteristic as shown in FIG. 3c. Now, in FIG. 3, the heating steam flow rate a (the third
It is assumed that the liquid supply flow rate b (see Figure 3b) is balanced and the boiling surface liquid level d is kept constant. Here, when the supply liquid flow rate b is increased by c in the positive direction to become b', the boiling surface liquid level d decreases due to the influence of the void, causing a negative deviation from the set value S1. For this reason, the liquid level d apparently decreases, and the liquid level controller 7 attempts to throttle the heated steam flow rate control valve 9 in order to increase the liquid amount. Then, since the amount of voids in the evaporation generator 6 decreases more and more, the liquid level d decreases and reaches the lower limit value. When the liquid level d rises due to an increase in the supplied liquid, the output of the controller 7 increases the opening degree of the heated steam flow rate control valve 9 to 100%.
As a result, the heating steam flow rate reaches the upper limit value. In this way, if a unidirectional control loop is constructed by considering the change in the boiling surface liquid level S1 as only a change in the liquid volume, a positive feedbark will be applied in the liquid level state with the opposite characteristics due to the change in bubbles, and the control rate will increase. becomes unstable, and in extreme cases, the heating steam flow rate 21 and the liquid level 22 exhibit a divergent state as shown in FIG.

第4図は同じく従来装置であるが、この装置は
加熱蒸気流量検出器15の流量検出値と設定値S
3とを用いて加熱蒸気流量調節計16が加熱蒸気
流量を調節することおよび蒸気発生器6の液位と
設定値S1とから液位調節計7が給液流量調節弁
5を調節する構成である。
FIG. 4 shows a conventional device as well, but this device shows the flow rate detection value of the heated steam flow rate detector 15 and the set value S.
3, the heating steam flow rate controller 16 adjusts the heating steam flow rate, and the liquid level controller 7 adjusts the supply liquid flow rate control valve 5 based on the liquid level of the steam generator 6 and the set value S1. be.

しかし、この装置にあつても一方向だけの制御
系であるため、第2図の場合と同様の液位特性と
なる。従つて、従来装置は設定値の変更に伴なつ
て発散状態を呈するので、給液流量および加熱蒸
気流量の設定変更を緩やかに行なう必要があり、
それだけ制御性が悪くなる。また、濃縮液の引抜
き速度は液位変動を抑えるために低下せざるを得
ない。また、設定値の変更によつて液位が発散す
ることは自動運転化には不向きである等の欠点が
ある。
However, even in this device, since the control system is only unidirectional, the liquid level characteristics are similar to those shown in FIG. 2. Therefore, since the conventional device exhibits a divergent state as the set values are changed, it is necessary to change the settings of the supply liquid flow rate and the heated steam flow rate slowly.
Controllability will deteriorate accordingly. In addition, the drawing speed of the concentrated liquid must be reduced in order to suppress liquid level fluctuations. Further, there is a drawback that the liquid level diverges due to a change in the set value, which is unsuitable for automatic operation.

本発明は上記実情にかんがみてなされたもの
で、その目的とするところは、沸騰面液位の挙動
に関して支配的な因子であるボイド発生量の影響
を抑制し制御系の安定性の向上を図り、また計算
機の活用によるプラントの全自動運転を可能なら
しめ処理系の運転効率を高める蒸発発生器の液位
制御装置を提供するものである。
The present invention was made in view of the above circumstances, and its purpose is to improve the stability of the control system by suppressing the influence of the amount of void generation, which is a dominant factor regarding the behavior of the boiling surface liquid level. The present invention also provides a liquid level control device for an evaporation generator that enables fully automatic operation of the plant by utilizing computers and increases the operational efficiency of the treatment system.

以下、本発明の一実施例について第5図を参照
して説明する。なお、同図において第1図と同一
部分には同一符号を付してその詳しい説明を省略
する。本装置において従来装置と特に異なる点を
述べると、液位設定値S1と検出液位との偏差か
ら補償要素を求める補償要素演算部21を設けた
こと、また同補償要素と給液流量調節計4の操作
出力とを加算して給液流量調節弁5の制御信号を
得る加算器22を設けた点にある。なお、3は給
液流量検出器、4は給液流量調節計、5は給液流
量調節弁、6は蒸発発生器、7は液位調節計、8
は蒸発発生器6の沸騰面液位を検出する液位検出
器、9は液位調節計7の操作出力で開度制御され
る加熱蒸気流量調節弁、10は供給せる加熱蒸気
を加熱管11をもつて循環させて蒸発発生器6の
処理液を蒸発させる加熱器である。
An embodiment of the present invention will be described below with reference to FIG. In addition, in this figure, the same parts as in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted. The main differences between this device and conventional devices include the provision of a compensation element calculation unit 21 that calculates a compensation element from the deviation between the liquid level set value S1 and the detected liquid level, and the provision of a compensation element calculation unit 21 that calculates a compensation element from the deviation between the liquid level set value S1 and the detected liquid level, and that the compensation element and the liquid supply flow rate controller are 4 is provided with an adder 22 for obtaining a control signal for the liquid supply flow rate control valve 5 by adding the operation outputs of 4 and 4. In addition, 3 is a liquid supply flow rate detector, 4 is a liquid supply flow rate controller, 5 is a liquid supply flow rate control valve, 6 is an evaporation generator, 7 is a liquid level controller, and 8
9 is a liquid level detector that detects the boiling surface liquid level of the evaporation generator 6; 9 is a heated steam flow rate control valve whose opening degree is controlled by the operation output of the liquid level controller 7; 10 is a heating pipe 11 for supplying heated steam; This is a heater that evaporates the processing liquid in the evaporation generator 6 by circulating it through the evaporation generator 6.

次に、以上のように構成せる装置の作用を説明
する。今、加熱蒸気流量a(第6図a参照)と給
液流量b(第6図b参照)とがバランスし蒸発発
生器6の液位dは第6図eのようにdなる一定値
に保持されている。ここで、給液流量設定値S2
をCだけ増加させてb′に設定変更すると、沸騰面
液位はボイドの影響により下がつて設定値S1よ
り降下する。この結果、検出器8の検出液位と設
定値S1との間に第6図fに示すような偏差を生
ずるが、この偏差を液位調節計7との外に補償要
素演算部21で求めて補償要素の演算を行なう。
この補償要素演算部21は、比例−進み要素から
なり、下記の演算式に基づいて演算を行なう。
Next, the operation of the apparatus configured as described above will be explained. Now, the heating steam flow rate a (see Fig. 6 a) and the supply liquid flow rate b (see Fig. 6 b) are balanced, and the liquid level d in the evaporation generator 6 becomes a constant value d as shown in Fig. 6 e. Retained. Here, the liquid supply flow rate setting value S2
When the setting is changed to b' by increasing C by C, the boiling surface liquid level decreases due to the effect of voids and falls below the set value S1. As a result, a deviation as shown in FIG. 6f occurs between the liquid level detected by the detector 8 and the set value S1. computation of the compensation element.
This compensation element calculating section 21 is composed of a proportional-advanced element, and performs calculations based on the following calculation formula.

G=Kp(1+Td・S)・Δe 但し、上式においてKpは比例係数、Tdは微分
係数、Δeは偏差、Sはラプラス変換素数である。
ここで、各演算要素の間には、Kp>0.Td<0.Δe
=S1−Lの関係が存ずる。Lは検出液位である。
そこで、補償要素演算部21は、偏差Δeを得た
後、上式の如く負の微分係数の演算を行なつて第
6図cのような補償出力を得、これを加算器22
に供給する。ここで、加算器22は補償出力と給
液流量調節計4の操作出力とを加算し第6図dの
ような信号を得、これに基づいて給液流量調節弁
5を制御する。ここに、補償出力は負の波形を持
つているため、加算器22による加算後の弁制御
出力は、設定値S2の上昇にも拘らず一端下がる
特性を有することになる。なお、上記演算式にお
いて負の微分係数を用いたのは次のような理由に
よる。本来、負の液位変化による定常偏差に対し
ては調節弁5の開度を上げて給液流量を増す方が
良い。ところが、この液位変化による過渡偏差発
生時に、比例要素だけで制御すると逆応答によ
り、益々偏差の増す方向に作用する。従つて、上
式の負の微分係数を施すことの意味は、液位の変
化成分を、定常偏差分と変化率とに分け、前者に
対しては、正方向で比例制御し、後者に対して
は、逆応答を利用して負の変化率で制御して、両
者を組み合せることにある。つまり、負の微分係
数の要素は定常的には偏差を助長するが、過渡的
には逆応答となるためにこの点を逆利用して、偏
差を縮める方向に制御するものである。
G=Kp(1+Td・S)・Δe However, in the above equation, Kp is a proportional coefficient, Td is a differential coefficient, Δe is a deviation, and S is a Laplace transform prime number.
Here, between each calculation element, Kp>0.Td<0.Δe
=S1-L relationship exists. L is the detected liquid level.
Therefore, after obtaining the deviation Δe, the compensation element calculation unit 21 calculates a negative differential coefficient as shown in the above equation to obtain a compensation output as shown in FIG.
supply to. Here, the adder 22 adds the compensation output and the operation output of the liquid supply flow rate controller 4 to obtain a signal as shown in FIG. 6d, and controls the liquid supply flow rate control valve 5 based on this signal. Here, since the compensation output has a negative waveform, the valve control output after the addition by the adder 22 has a characteristic that it temporarily decreases despite the increase in the set value S2. Note that the reason why a negative differential coefficient is used in the above equation is as follows. Originally, it is better to increase the opening degree of the control valve 5 to increase the liquid supply flow rate in response to a steady deviation due to a negative liquid level change. However, when a transient deviation occurs due to a change in the liquid level, if only the proportional element is used for control, the deviation will further increase due to a reverse response. Therefore, the meaning of applying the negative differential coefficient in the above equation is to divide the change component of the liquid level into the steady deviation component and the rate of change, and to perform proportional control in the positive direction for the former, and to perform proportional control in the positive direction for the latter. The solution is to use the inverse response to control the rate of change at a negative rate, and to combine the two. In other words, an element with a negative differential coefficient increases the deviation in a steady state, but gives an opposite response in a transient manner, so this point is used inversely to control the deviation in a direction that reduces it.

なお、本発明は上記実施例に限定されるもので
はない。例えば、第7図に示すように設定値S1
と検出液位との偏差Δeに基づいて補償要素を求
め、これを加熱蒸気流量調節計16の操作出力と
加算し蒸気流量の制御を行なうようにしてもよ
い。その他、本発明はその要旨を逸脱しない範囲
で種々変形して実施できる。
Note that the present invention is not limited to the above embodiments. For example, as shown in FIG.
A compensation element may be obtained based on the deviation Δe between the detected liquid level and the detected liquid level, and this may be added to the operation output of the heated steam flow rate controller 16 to control the steam flow rate. In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

以上詳記したように本発明によれば、定常偏差
はもとより、過渡変化に対してもオーバーシユー
トおよびハンチング現象を起すことなく収束の早
い安定な制御を行なえ、これにより急激な外乱に
対して強い制御が実現できる。従つて、給液流量
や加熱蒸気流量の設定変更が容易になり、かつ変
更時間も短縮できるので、濃縮器の自動運転化に
非常に有利となる。また、補償出力は積分要素を
含まないために加算後の制御信号は初期設定変更
値Cに対しオフセツトを残さない。また、制御系
の安定化が図れれば、プラントの安全性にも貢献
する蒸発発生器の液位制御装置を提供できる。
As described in detail above, according to the present invention, it is possible to perform stable control with quick convergence without causing overshoot or hunting phenomena not only for steady-state deviations but also for transient changes. Strong control can be achieved. Therefore, it becomes easy to change the settings of the supply liquid flow rate and the heated steam flow rate, and the change time can also be shortened, which is very advantageous for automatic operation of the concentrator. Furthermore, since the compensation output does not include an integral element, the control signal after addition does not leave an offset with respect to the initial setting change value C. Furthermore, if the control system can be stabilized, it is possible to provide a liquid level control device for an evaporation generator that also contributes to plant safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜cは液位制御の一般的な特性を示す
図、第2図は従来装置の構成図、第3図a〜cは
第2図に示す装置の液位制御特性図、第4図は従
来装置の他の例を示す構成図、第5図は本発明装
置の一実施例を示す構成図、第6図a〜fは第5
図に示す装置の液位制御特性図、第7図は本発明
装置の他の例を示す構成図である。 3……給液流量検出器、4……給液流量調節
計、5……給液流量調節弁、6……蒸発発生器、
7……液位調節計、8……液位検出器、9……加
熱蒸気流量調節計、10……加熱器、12……循
環ポンプ、15……加熱蒸気流量検出器、21…
…補償要素演算部、22……加算器。
Figures 1 a to c are diagrams showing general characteristics of liquid level control, Figure 2 is a configuration diagram of a conventional device, Figures 3 a to c are liquid level control characteristics of the device shown in Figure 2, and Figure 3 is a diagram showing general characteristics of liquid level control. 4 is a block diagram showing another example of the conventional device, FIG. 5 is a block diagram showing one embodiment of the device of the present invention, and FIGS.
A liquid level control characteristic diagram of the device shown in the figure, and FIG. 7 is a configuration diagram showing another example of the device of the present invention. 3... Liquid supply flow rate detector, 4... Liquid supply flow rate controller, 5... Liquid supply flow rate control valve, 6... Evaporation generator,
7...Liquid level controller, 8...Liquid level detector, 9...Heating steam flow rate controller, 10...Heater, 12...Circulation pump, 15...Heating steam flow rate detector, 21...
...Compensation element calculation unit, 22...Adder.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸発発生器に給液する給液流量および蒸発発
生器内の給液を加熱して蒸発させる加熱蒸気流量
のうち何れか一方の流量を一定値に保持し、他方
の流量を設定変更して弁操作出力を得る蒸発発生
器の液位制御装置において、前記他方の流量の設
定値変更に伴つて変化する前記一方の流量の設定
値と前記蒸発発生器の検出液位値との過度的な偏
差に対して負の微分係数による演算を行つて補償
要素出力を求める補償要素演算手段と、この補償
要素演算手段によつて得られた補償要素出力を他
方の流量調節出力に加算して前記弁操作出力とす
る加算手段とを備え、前記他方の流量設定値の上
昇変更に伴つて変化する前記蒸発発生器の液位の
低下を抑制することを特徴とする蒸発発生器の液
位制御装置。
1. Maintain one of the flow rate of liquid supplied to the evaporation generator and the flow rate of heated steam to heat and evaporate the feed liquid in the evaporation generator at a constant value, and change the setting of the other flow rate. In a liquid level control device for an evaporation generator that obtains a valve operation output, there is an excessive difference between the set value of one flow rate and the detected liquid level value of the evaporation generator, which changes as the set value of the other flow rate changes. Compensation element calculation means for calculating a compensation element output by calculating a negative differential coefficient with respect to the deviation; A liquid level control device for an evaporation generator, characterized in that the device includes: an addition means that is used as an operation output, and suppresses a decrease in the liquid level of the evaporation generator that changes as the other flow rate setting value is increased.
JP8349781A 1981-05-30 1981-05-30 Controller for liquid level of evaporation generator Granted JPS57198901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8349781A JPS57198901A (en) 1981-05-30 1981-05-30 Controller for liquid level of evaporation generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8349781A JPS57198901A (en) 1981-05-30 1981-05-30 Controller for liquid level of evaporation generator

Publications (2)

Publication Number Publication Date
JPS57198901A JPS57198901A (en) 1982-12-06
JPH0248802B2 true JPH0248802B2 (en) 1990-10-26

Family

ID=13804109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8349781A Granted JPS57198901A (en) 1981-05-30 1981-05-30 Controller for liquid level of evaporation generator

Country Status (1)

Country Link
JP (1) JPS57198901A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553544A (en) * 1978-06-23 1980-01-11 Mitsubishi Heavy Ind Ltd Water level controller for steam generator
JPS5546973B2 (en) * 1974-09-19 1980-11-27

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546973U (en) * 1978-09-25 1980-03-27

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546973B2 (en) * 1974-09-19 1980-11-27
JPS553544A (en) * 1978-06-23 1980-01-11 Mitsubishi Heavy Ind Ltd Water level controller for steam generator

Also Published As

Publication number Publication date
JPS57198901A (en) 1982-12-06

Similar Documents

Publication Publication Date Title
JPS62157299A (en) Method of controlling pressure ratio of jet pump
Cartes et al. Experimental evaluation of adaptive three-tank level control
Jacobsen et al. Instability of distillation columns
JPH0333495A (en) Control device for condensate pump
CN108378700B (en) Water temperature control method and system for water dispenser and water dispenser
JPH0248802B2 (en)
JPH0230425B2 (en)
JPS5860199A (en) Controlling method of circulating water temperature in mechanical draft cooling tower
JPH029260B2 (en)
JPS58129511A (en) Temperature controlling device
SU1328657A1 (en) Method of controlling gas-liquid surface heat-exchanger
Ahmed et al. Control Strategy of triple Effect Evaporators Based on Solar Desalination of Red Sea water
JPS63242302A (en) Control device for solution concentration device
Jacobsen et al. Dynamics and control of unstable distillation columns
JPS599201B2 (en) Concentrator control device
SU939026A1 (en) Method of controlling solution evaporation process in multieffect evaporation plant
JPS61196200A (en) Controller for flow rate of vapor of waste liquor concentrator
SU1289522A1 (en) Method of automatic regulation of evaporating apparatus
JPS6240602B2 (en)
JPS639183A (en) Gas circulating circuit for excimer laser
KR810001339B1 (en) Nuclear reactor power generation
JP3005083B2 (en) Recirculation flow control method in once-through boiler
JPS6225945B2 (en)
JPS63105356A (en) Temperature controller of hot water supplier
JPH0575935B2 (en)