JPH0248798B2 - - Google Patents

Info

Publication number
JPH0248798B2
JPH0248798B2 JP59076195A JP7619584A JPH0248798B2 JP H0248798 B2 JPH0248798 B2 JP H0248798B2 JP 59076195 A JP59076195 A JP 59076195A JP 7619584 A JP7619584 A JP 7619584A JP H0248798 B2 JPH0248798 B2 JP H0248798B2
Authority
JP
Japan
Prior art keywords
tube
pipe
outer tube
male
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59076195A
Other languages
Japanese (ja)
Other versions
JPS60220297A (en
Inventor
Yasuharu Kamioka
Shigeru Yoshida
Masanori Murai
Yoshiaki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Sanso Ltd
Original Assignee
Toyo Sanso Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Sanso Ltd filed Critical Toyo Sanso Ltd
Priority to JP59076195A priority Critical patent/JPS60220297A/en
Publication of JPS60220297A publication Critical patent/JPS60220297A/en
Publication of JPH0248798B2 publication Critical patent/JPH0248798B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/16Arrangements specially adapted to local requirements at flanges, junctions, valves or the like
    • F16L59/18Arrangements specially adapted to local requirements at flanges, junctions, valves or the like adapted for joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/141Arrangements for the insulation of pipes or pipe systems in which the temperature of the medium is below that of the ambient temperature

Description

【発明の詳細な説明】 産業上の利用分野 この発明は絶対零度に近い極低温流体、例えば
4.5Kの極低温ヘリウムガス等を輸送するための
極低温輸送管における接続部の構造に関するもの
である。そしてこの発明は、特に主輸送対象とな
る極低温流体と、極低温ではあるが主輸送対象の
流体よりも高温の極低温流体であつてかつ輸送途
中での若干の温度上昇が許容される極低温流体と
を同時に輸送するにあたり、主輸送対象である極
低温流体の温度上昇を防止し得るようにした極低
温輸送管接続部構造に関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention is applicable to cryogenic fluids near absolute zero, e.g.
This article relates to the structure of the connection in a cryogenic transport pipe for transporting cryogenic helium gas at 4.5K. This invention is particularly applicable to cryogenic fluids that are primarily transported, and cryogenic fluids that are cryogenic but have a higher temperature than the fluid that is primarily transported, and that are allowed to have a slight temperature rise during transportation. The present invention relates to a cryogenic transport pipe connection structure that can prevent the temperature of the cryogenic fluid, which is the main object to be transported, from rising when simultaneously transporting the cryogenic fluid.

従来の技術 近年、絶対零度に近い極低温を利用する技術が
発展し、例えば超電導現象を利用した種々の装
置、設備が開発されつつあり、また電子顕微鏡そ
の他極低温を用いた各種実験・測定機器の需要が
増大している。その結果、それらの装置や設備に
対して冷媒としての極低温ヘリウムガス、液体ヘ
リウムなどの極低温流体を輸送するための輸送管
の需要も多くなつている。
Conventional technology In recent years, technology that utilizes extremely low temperatures close to absolute zero has developed, and for example, various devices and equipment that utilize superconducting phenomena are being developed, as well as electron microscopes and other various experimental and measuring instruments that utilize extremely low temperatures. demand is increasing. As a result, there is an increasing demand for transport pipes for transporting cryogenic fluids such as cryogenic helium gas and liquid helium as refrigerants to these devices and facilities.

ところでこのような極低温流体輸送管において
は、一般に外部の高温の熱が侵入して輸送流体の
温度が上昇してしまうことを防止するため、輸送
管を少なくとも2重の構造として、内管内に極低
温流体を流通させ、内管と外管との間を真空断熱
することが行なわれている。このような輸送管に
は不可避的に接続部が存在し、その接続部では何
らかの形で内管を外管の側から支持しなければな
らず、また内管と外管との間の空間(真空断熱
部)を閉じなければならないため、外管と内管と
の間の真空断熱が途切れざるを得ず、したがつて
その接続部では断熱効果が小さくなつて外部から
の熱が侵入して内管内の極低温流体の温度が上昇
し易い。ここで輸送流体が液体ヘリウム等の極低
温液体の場合にはその潜熱があるため接続部にお
ける外部からの熱侵入の問題はさほど大きくな
く、またヘリウムガス等の極低温気体の場合でも
その流量が大きければさほど問題とならない。し
かしながらヘリウムガス等の極低温気体であつて
しかもその流量が小さい場合には、接続部での外
部からの熱侵入が大きな問題となつている。
By the way, in such cryogenic fluid transport pipes, in order to prevent external high-temperature heat from entering and increasing the temperature of the transport fluid, the transport pipe is generally made to have at least a double structure, with a layer inside the inner pipe. A cryogenic fluid is passed through the inner tube and the outer tube to provide vacuum insulation between the inner tube and the outer tube. Such a transport pipe inevitably has a connection part, and at that connection part, the inner pipe must be supported in some way from the outer pipe side, and the space between the inner pipe and the outer pipe ( Since the vacuum insulation part) must be closed, the vacuum insulation between the outer tube and the inner tube has to be interrupted, and the insulation effect is therefore reduced at that connection, allowing heat to enter from the outside. The temperature of the cryogenic fluid in the inner tube tends to rise. Here, if the transportation fluid is a cryogenic liquid such as liquid helium, the problem of heat intrusion from the outside at the connection part is not so big because of its latent heat, and even if the transport fluid is a cryogenic gas such as helium gas, the flow rate is The bigger it is, the less of a problem it becomes. However, when the flow rate of cryogenic gas such as helium gas is small, heat intrusion from the outside at the connection becomes a major problem.

上述の問題についてさらに具体的に説明する。
第1図は従来の一般的な極低温流体輸送管接続部
の一例を示すものであり、相互に接続される一対
の極低温流体輸送管1A,1Bは、それぞれ内部
を極低温流体2が流通する内管3A,3Bを大径
の外管4A,4B内に同軸状に収容し、かつそれ
らの内管3A,3Bと外管4A,4Bとの間の空
間を真空断熱部5A,5Bとした構成となつてい
る。そして両輸送管1A,1Bには、これらを相
互にボルト等により連結するためのフランジ部6
A,6Bが形成されており、一方の輸送管1Aに
はフランジ部6Aの位置から延出する凸状の雄部
7が、また他方の輸送管1Bにはフランジ部6B
の位置から内側へ引込む凹状の雌部8が形成され
ている。雄部7は、輸送管本体部分の外管4Aに
連続する雄部外管9によつて内管3Aが取囲ま
れ、その内管3Aと雄部外管9との間は真空断熱
されている。また雌部8においてもその内周壁1
0と外管4Bとの間が真空断熱されている。
The above problem will be explained in more detail.
FIG. 1 shows an example of a conventional general cryogenic fluid transport pipe connection part, and a pair of mutually connected cryogenic fluid transport pipes 1A and 1B each have a cryogenic fluid 2 flowing inside them. The inner tubes 3A, 3B are housed coaxially in the large diameter outer tubes 4A, 4B, and the space between the inner tubes 3A, 3B and the outer tubes 4A, 4B is formed into a vacuum insulation part 5A, 5B. The structure is as follows. Both transport pipes 1A and 1B have flange portions 6 for connecting them with bolts or the like.
A, 6B are formed, one of the transport pipes 1A has a convex male part 7 extending from the position of the flange part 6A, and the other transport pipe 1B has a flange part 6B.
A concave female portion 8 is formed that retracts inward from the position. In the male part 7, an inner pipe 3A is surrounded by a male outer pipe 9 that is continuous with an outer pipe 4A of the transport pipe main body part, and the space between the inner pipe 3A and the male outer pipe 9 is vacuum-insulated. There is. Also, in the female part 8, the inner peripheral wall 1
0 and the outer tube 4B are vacuum insulated.

このような従来の極低温流体輸送管の接続部に
おいては、雄部外管9の長さ(雌部8の内周壁1
0の長さ)lの部分が外部からの熱侵入路となる
が、この長さlを長くすることによつて外部から
の内管3A,3Bに至るまでの間の熱伝達距離を
大きくし、これによりその間での熱伝達損失を大
きくして内管3A,3B内を粒れる極低温流体の
温度上昇防止を図つているが、このように熱伝達
距離を大きくするだけでは、特に極低温流体がガ
スであつてしかもその流量が小さい場合、内管3
A,3B内を流れる極低温流体の温度上昇を防止
することは困難であり、例えば4.5Kのヘリウム
ガスが6K程度まで温度上昇してしまうことがあ
つた。
In the connection section of such a conventional cryogenic fluid transport pipe, the length of the male outer tube 9 (the inner circumferential wall 1 of the female section 8)
The portion of length 0) l becomes the heat infiltration path from the outside, but by increasing this length l, the heat transfer distance from the outside to the inner tubes 3A and 3B is increased. This is intended to increase the heat transfer loss between them and prevent the temperature rise of the cryogenic fluid that drips inside the inner tubes 3A and 3B, but simply increasing the heat transfer distance in this way does not allow the If the fluid is a gas and its flow rate is small, the inner tube 3
It is difficult to prevent the temperature of the cryogenic fluid flowing through A and 3B from rising, and for example, the temperature of helium gas at 4.5K may rise to about 6K.

ところで、極低温流体を利用する装置、設備に
よつては、温度の異なる極低温流体を輸送したい
場合もある。例えば目的とする極低温を得るため
の本来の極低温媒体として用いる流体のほか、極
低温機器の周囲を保冷するための保冷用媒体をも
同時に輸送することがあり、この場合保冷用媒体
は本来の極低温媒体よりも若干高温で差し支えな
い。また対象とする極低温機器からの排ガスを再
利用するため、冷却媒体としての極低温流体を機
器へ供給輸送すると同時に機器からの排ガスを戻
す輸送路を設ける場合が多く、その場合戻しの輸
送路のガスは供給側の流体と比較してある程度高
温となるのが通常である。このように温度の異な
る極低温流体を全く別の管路によつて輸送しよう
とすれば、配管が複雑となつて配管作業が煩雑と
なるとともに保守等も面倒になる。そこで最近で
は一体の輸送管で同時に異なる温度の極低温流体
を輸送する輸送管が開発されている。その輸送管
の接続部付近の一例を第2図に示す。
By the way, depending on devices and equipment that utilize cryogenic fluids, there may be cases where it is desired to transport cryogenic fluids having different temperatures. For example, in addition to the fluid used as the original cryogenic medium to obtain the desired cryogenic temperature, the cold storage medium used to keep the surroundings of the cryogenic equipment cold may also be transported at the same time. The temperature may be slightly higher than that of the cryogenic medium. In addition, in order to reuse the exhaust gas from the target cryogenic equipment, a transport route is often provided to supply and transport the cryogenic fluid as a cooling medium to the equipment and return the exhaust gas from the equipment. Normally, the gas is at a somewhat higher temperature than the fluid on the supply side. If such cryogenic fluids having different temperatures are to be transported through completely different pipe lines, the piping becomes complicated, the piping work becomes complicated, and maintenance becomes troublesome. Therefore, recently, transport pipes have been developed that simultaneously transport cryogenic fluids at different temperatures using a single transport pipe. An example of the vicinity of the connection part of the transport pipe is shown in FIG.

第2図において、輸送管20A,20B内の極
低温流体の流路としては、それぞれ内側流路21
と、その内側流路21と同軸状に取囲む外側流路
22と2重の流路が形成されており、内側流路2
1管壁23と外側流路の内面の管壁24との間は
中空とされてその中空部分が真空断熱部25とさ
れている。また外側流路22の外面の管壁26と
輸送管外壁27との間も中空とされてその中空部
分が真空断熱部28とされている。そしてこのよ
うな輸送管の接続部においては、雄側の輸送管2
0Aにおける外側流路22の外面管壁26の先端
に環状の連結片29が固定されてその連結片29
にテフロン等の断熱性を有する弾性材からなるO
リング30が保持されるとともに、外側流路22
の内面管壁24および内側流路21の管壁23の
先端に環状の連結片31が固定されてその連結片
31に前記同様にテフロン等からなるOリング3
2が保持されている。そしてこのような雄側の輸
送管20Aの連結片29,31がそれぞれ雌側の
輸送管20Bの内側流路21の端部、外側流路2
2の端部に嵌め込まれて、前記Oリング30,3
2により各流路がシールされる。
In FIG. 2, the flow paths for the cryogenic fluid in the transport pipes 20A and 20B are the inner flow paths 21 and 21, respectively.
A double flow path is formed with the inner flow path 21 and the outer flow path 22 coaxially surrounding the inner flow path 21.
A space between the tube wall 23 and the tube wall 24 on the inner surface of the outer flow path is hollow, and the hollow portion is used as a vacuum heat insulating section 25. Further, a space between the tube wall 26 on the outer surface of the outer flow path 22 and the transport tube outer wall 27 is also hollow, and the hollow portion is used as a vacuum heat insulating section 28 . In such a connection part of the transport pipe, the male transport pipe 2
An annular connecting piece 29 is fixed to the tip of the outer tube wall 26 of the outer flow path 22 at 0A, and the connecting piece 29
O made of an elastic material with heat insulating properties such as Teflon
The ring 30 is retained and the outer channel 22
An annular connecting piece 31 is fixed to the tip of the inner tube wall 24 and the tube wall 23 of the inner flow path 21, and the O-ring 3 made of Teflon or the like is attached to the connecting piece 31 as described above.
2 is retained. The connecting pieces 29 and 31 of the male transport pipe 20A are connected to the ends of the inner channel 21 and the outer channel 2 of the female transport pipe 20B, respectively.
The O-rings 30, 3 are fitted into the ends of the O-rings 30, 3
2 seals each flow path.

第2図に示される極低温流体輸送管により異な
る温度の極低温流体を輸送するにあたつては、内
側流路21の相対的に低温の極低温流体を流し、
外側流路22に相対的に高温の極低温流体を流す
のが通常である。しかしながらこの場合、輸送管
20A,20Bの接続部においては、内側流路2
1と外側流路22との間の断熱はテフロン等から
なるOリング30のみによつて行なわれるから、
内側流路21を流れる流体と外側流路22を流れ
る流体との温度差が大きく、しかも内側流路21
を流れる流体が小流量の気体である場合には、外
側流路22を流れる流体の熱が容易に内側流路へ
侵入して内側流路21を流れる流体の温度を上昇
させてしまう問題がある。
When transporting cryogenic fluids at different temperatures using the cryogenic fluid transport pipe shown in FIG.
Typically, a relatively hot cryogenic fluid flows through the outer channel 22. However, in this case, at the connection between the transport pipes 20A and 20B, the inner flow path 2
1 and the outer flow path 22 is achieved only by the O-ring 30 made of Teflon or the like.
The temperature difference between the fluid flowing through the inner flow path 21 and the fluid flowing through the outer flow path 22 is large, and the inner flow path 21
When the fluid flowing through the inner flow path 21 is gas at a small flow rate, there is a problem that the heat of the fluid flowing through the outer flow path 22 easily enters the inner flow path and increases the temperature of the fluid flowing through the inner flow path 21. .

第2図の従来装置において、接続部における内
側流路21と外側流路22との間の断熱効果を高
めるためには、接続部における両流路21,22
の間の真空断熱部25の雄側の部分および雌側の
部分をそれぞれ延長させて、その雄側真空断熱部
と雌側真空断熱部とを内外に重ね合わせることも
考えられるが、この場合は先端が自由端となつて
いてしかも壁内が中空あ筒状部分(中空断熱部)
を内外に相互に重ね合わせることになつて、この
ような構造では機械的強度に問題が生じ、特に軸
心位置が正確に合わない場合に接続連結時にその
重ね合せ部分に無理な力が加わつて変形したり破
損したりし易い問題が生じる。そしてこのような
問題は、3種以上の極低温流体を輸送するために
同心状に3重以上に流路を形成した場合に一層顕
著となり、したがつて同心状に複数の流路を形成
する場合、実用的には2重に流路を形成するにと
どまり、3重以上に流路を形成することは実用的
には困難であつた。
In the conventional device shown in FIG.
It is also possible to extend the male side and female side parts of the vacuum insulation part 25 between the two and overlap the male side vacuum insulation part and the female side vacuum insulation part inside and outside, but in this case, A cylindrical part with a free end and a hollow wall (hollow insulation part)
This type of structure causes mechanical strength problems, especially when the axial center positions are not aligned accurately, and excessive force is applied to the overlapped parts when connecting and connecting. The problem arises that it is easily deformed or damaged. This problem becomes more pronounced when three or more channels are formed concentrically to transport three or more types of cryogenic fluids, and therefore, multiple channels are formed concentrically. In this case, in practice, only two channels are formed, and it is difficult to form three or more channels.

すなわち、同心状に3重以上の流路を形成した
極低温流体輸送管の接続部構造としては、既に特
開昭52−89855号公報記載のものが知られており、
この提案では、輸送管としては中央の主流路の外
側に同心状の第1の中間流路を設け、その第1の
中間流路の外側に断熱用の真空室を介して第2の
中間流路を設けた構造とし、また接続部において
は、第1の中間流路と第2の中間流路との間の真
空室に関して、雄側の真空室と雌側の真空室とを
筒状に延長させて、両真空室を内外に重ね合わせ
ることによつて断熱効果を高めている。しかしな
がらこの提案のように真空室を筒状に延長させて
内外に重ね合わせる構造では、流路自体が3重で
あると相俟つて、接続部における同心状重ね合せ
の数が著しく多くなつて構造が複雑となり、特に
軸心位置が正確に合わなくなつて連結時に無理な
力が加わつて変形したり破損したりし、したがつ
て実際に上記提案のような構造を実用化すること
は困難であつた。
That is, as a connection part structure of a cryogenic fluid transport pipe in which three or more concentric flow paths are formed, the one described in JP-A-52-89855 is already known.
In this proposal, a concentric first intermediate flow path is provided outside the central main flow path as a transport pipe, and a second intermediate flow path is provided outside the first intermediate flow path via a vacuum chamber for heat insulation. In addition, at the connection part, regarding the vacuum chamber between the first intermediate flow path and the second intermediate flow path, the male side vacuum chamber and the female side vacuum chamber are formed into a cylindrical shape. By extending the vacuum chamber and overlapping both the inside and outside, the insulation effect is enhanced. However, in the structure proposed in this proposal, where the vacuum chamber is extended into a cylindrical shape and stacked inside and outside, the number of concentric stacks at the connection part increases significantly, as the flow path itself is triple-layered. In particular, if the axial center position does not match accurately, excessive force may be applied during connection, resulting in deformation or damage. Therefore, it is difficult to put the structure proposed above into practical use. It was hot.

発明が解決すべき問題点 前述のように従来の極低温流体輸送管では、複
数本の種類の極低温流体を輸送しようとする場
合、複数本の流路を同心状に重ね合わせるという
発想が一般的であつたが、極低温流体の輸送の場
合は、通常の液体や気体を輸送する場合と異な
り、断熱を考慮する必要があり、そのため真空断
熱層を設けるために接続部において同心状に重ね
合せられる壁面の数が著しく多くなつて、接続部
での強度の問題や芯合せ等の問題を逸れ得なかつ
た。
Problems to be Solved by the Invention As mentioned above, in conventional cryogenic fluid transport pipes, when attempting to transport multiple types of cryogenic fluids, the general idea is to overlap multiple channels concentrically. However, when transporting cryogenic fluids, unlike when transporting ordinary liquids or gases, it is necessary to consider insulation, so in order to provide a vacuum insulation layer, concentric layers are stacked at the connection. As the number of wall surfaces to be joined has increased significantly, problems such as strength and alignment at the joints cannot be overlooked.

そこで本発明者等は、前述のように同心状に複
数の流路を設ける構造とは発想を根本的に転換
し、複数の流路を同一の外管内に並列状に設ける
構造を考えた。しかしながら単純に複数の流路を
同一の外管内に並列状に設けただけでは、第1図
のような単一流路の場合と同様な問題を避け得な
い。すなわち第1図において、接続部における雄
部外管9の長さlの部分が、接続部において外部
から内管3A,3Bに熱が熱伝導により侵入する
侵入路となり、この長さlを大きくすることによ
つてある程度は接続部での熱侵入を少なくするこ
とができるが、熱輸送すべき流体がヘリウムガス
等の極低温の気体であつてしかもその流量が小さ
い場合には、その流体の温度上昇を充分に防止す
ることができなかつたのであり、このような問題
は、外管内に複数の流路を並列状に設けた場合も
全く同様である。
Therefore, the present inventors fundamentally changed the idea from the structure in which a plurality of channels are provided concentrically as described above, and considered a structure in which a plurality of channels are provided in parallel within the same outer tube. However, simply providing a plurality of channels in parallel within the same outer tube cannot avoid the same problems as in the case of a single channel as shown in FIG. In other words, in FIG. 1, a portion of length l of the male outer tube 9 at the connection portion becomes an entry path through which heat infiltrates the inner tubes 3A, 3B from the outside at the connection portion by thermal conduction, and this length l is increased. By doing so, it is possible to reduce heat intrusion at the connection part to some extent, but if the fluid to be heat transported is a cryogenic gas such as helium gas and its flow rate is small, the fluid's It was not possible to sufficiently prevent the temperature rise, and this problem is exactly the same even when a plurality of channels are provided in parallel within the outer tube.

この発明は以上の事情を背景としなされたもの
であり、複数の種類の極低温流体を輸送するため
に、複数の流路を同一の外管内に並列状に設けた
輸送管の接続部において、上記複数種類の極低温
流体のうち、外部からの熱侵入による影響を最も
避けなければならない極低温流体の流路の温度上
昇を確実に防止し得るようにした極低温流体輸送
管の接続部構造を提供することを目的とするもの
である。
The present invention has been made against the background of the above circumstances, and in order to transport a plurality of types of cryogenic fluids, in a connecting portion of a transport pipe in which a plurality of channels are provided in parallel in the same outer tube, Among the multiple types of cryogenic fluids mentioned above, the connection structure of the cryogenic fluid transport pipe is designed to reliably prevent a temperature rise in the flow path of the cryogenic fluid, which must be most protected from the effects of heat intrusion from the outside. The purpose is to provide the following.

問題点を解決するための手段 同一の外管内に複数の流路を設けて、複数の極
低温流体を輸送する場合、一般には同時に輸送す
る全ての極低温流体の温度上昇を同程度に厳しく
規制する必要があることは少なく、通常は同時に
輸送する極低温流体のうち最も低温の極低温流体
に対してはその温度上昇を厳しく規制し、相対的
に高温の極低温流体に対してさほど厳しく温度上
昇を規制する必要がないことが多い。例えば極低
温機器において冷却対象物を直接極低温に冷却す
るための直接冷媒としての極低温流体と、極低温
機器の周囲の保冷用の極低温流体や極低温機器か
らの戻りの排ガスなどを同時に輸送する場合、前
者の直接冷媒としての極低温流体はその輸送途中
での温度上昇を厳しく規制する必要がある一方、
周囲保冷用の極低温流体や戻りの排ガスなどは、
極低温ではあつてもさほど温度上昇を厳しく規制
する必要がない。
Measures to solve the problem When multiple flow paths are provided in the same outer tube to transport multiple cryogenic fluids, the temperature rise of all cryogenic fluids transported at the same time is generally strictly regulated to the same extent. There is little need to control the temperature rise of the cryogenic fluid that is the coldest among the cryogenic fluids that are transported at the same time, and less stringently regulate the temperature rise of the cryogenic fluid that is relatively hot. There is often no need to regulate the rise. For example, in cryogenic equipment, we simultaneously use cryogenic fluid as a direct refrigerant to directly cool objects to cryogenic temperatures, cryogenic fluid for cold storage around the cryogenic equipment, and exhaust gas returned from the cryogenic equipment. When transporting the former cryogenic fluid as a direct refrigerant, it is necessary to strictly control the temperature rise during transport.
Cryogenic fluid for ambient cooling and return exhaust gas, etc.
Even at extremely low temperatures, there is no need to strictly control temperature rises.

本発明者等は上述のような関係を、同一の外管
内に複数本の流路を設けた極低温流体輸送管の接
続部に巧みに利用して、その接続部において最も
温度上昇を避けるべき極低温流体の温度上昇を確
実に防止する構造を発明したのである。すなわ
ち、接続部において外部から内部の流路へ侵入す
る熱の侵入路の中途を、さほど温度上昇を避ける
必要がない流体の温度(相対的に高温ではある
が、周囲の外気温度に比較すれば格段に低温)を
利用して冷却し、これによつて最も厳しく温度上
昇を避ける必要のある流体の流路まで接続部にお
いて外部からの熱侵入が生じることを有効に防止
するようにしたのである。
The present inventors skillfully utilized the above-mentioned relationship at the connection part of a cryogenic fluid transport pipe in which multiple flow paths are provided in the same outer tube, and determined the temperature rise at the connection part where it is most important to avoid the temperature rise. They invented a structure that reliably prevents the temperature of cryogenic fluid from rising. In other words, the temperature of the fluid that does not require much temperature rise (relatively high temperature, but compared to the surrounding outside air temperature) is This effectively prevents heat from entering from the outside at the connections, even in the fluid flow paths where temperature rises must be avoided most severely. .

具体的には、この発明の極低温流体輸送管の接
続部構造は、異なる温度の極低温流体が流通する
複数本の内管41,42,43が同一の外管44
内に間隔を置いて平行に収容されておりかつその
各内管の相互間および各内管と外管との間が真空
断熱部45とされている極低温輸送管40A,4
0Bを相互に接続するための接続部構造であつ
て; 一方の極低温輸送管の接続側先端部には、他方
の極低温輸送管の先端部に形成された凹状の雌部
48に嵌される凸状の雄部47が形成されてお
り、前記凸状の雄部の外壁のうち、雄部の基部か
ら先端へ向つて所定長さの中間部までの間の部分
は、輸送管本体部分の外管に連続しかつ前記複数
本の内管を一括して取囲む一括外管部49で構成
され、また前記中間部から先端までの間の部分
は、前記一括外管部に連続しかつそれぞれ前記複
数本の内管を個別に取囲むように各内管に対応し
て分割された分割外管部50,51,52で構成
されており、さらに前記各異割外管部の先端面に
はそれぞれ内管の端部が開口され、また前記一括
外管部とその内側の内管との間、および各分割外
管部とその内側の内管との間は、それぞれ輸送管
本体部分の前記真空断熱部に連続する真空断熱部
53,54とされ、一方前記凹状の雌部の内壁の
うち、その開口端から内奥端へ向つて所定距離の
中間部までの間の部分は、前記雄部の一括外管部
が内嵌される一括内壁管部55で構成され、前記
中間部から内奥端までの部分は、前記一括内壁管
部に連続しかつ前記雄部の分割外管部がそれぞれ
個別に内嵌される分割内壁管部56,57,58
で構成されており、さらに各分割内壁管の内奥端
にはそれぞれ対応する内管の端部が開口されてお
り、しかもその雌部の一括内壁管部と外管との間
および分割内壁管部と外管との間は輸送管本体部
分の真空断熱部に連続する真空断熱部59,60
とされ、さらに前記雄部と雌部とのうち少なくと
も雄部においては、複数本の内管のうち相対的に
高温の極低温流体が流通する内管と前記雄部の外
壁の中間部付近との間が高熱電導率材料からなる
伝熱片61Aにより連結されていることを特徴と
するものである。
Specifically, in the connection structure of the cryogenic fluid transport pipe of the present invention, a plurality of inner pipes 41, 42, 43 through which cryogenic fluids of different temperatures flow are connected to the same outer pipe 44.
The cryogenic transport tubes 40A, 4 are housed in parallel at intervals and have a vacuum insulation section 45 between the inner tubes and between the inner tube and the outer tube.
A connecting part structure for mutually connecting 0B; The connecting end of one cryogenic transport pipe is fitted into a concave female part 48 formed at the leading end of the other cryogenic transport pipe. A convex male portion 47 is formed, and a portion of the outer wall of the convex male portion from the base of the male portion to the intermediate portion of a predetermined length toward the tip is a transport pipe main body portion. It is composed of a collective outer tube part 49 that is continuous with the outer tube and surrounds the plurality of inner tubes all at once, and a part between the intermediate part and the tip is continuous with the collective outer tube part and surrounds the plurality of inner tubes at once. It is composed of divided outer tube portions 50, 51, and 52 divided corresponding to each inner tube so as to individually surround the plurality of inner tubes, and further includes a distal end surface of each of the different divided outer tube portions. The ends of the inner tubes are opened, respectively, and the transport tube main body portions are connected between the collective outer tube section and the inner tube inside thereof, and between each divided outer tube section and the inner tube inside thereof. Vacuum insulation parts 53 and 54 are continuous to the vacuum insulation part, and on the other hand, the part of the inner wall of the concave female part between the opening end and the intermediate part of the predetermined distance toward the innermost end is: It is composed of a collective inner wall tube part 55 into which the collective outer tube part of the male part is fitted, and the part from the middle part to the innermost end is continuous with the collective inner wall pipe part and is connected to the divided outer tube part of the male part. divided inner wall tube portions 56, 57, 58 into which the portions are individually fitted;
In addition, the corresponding end of the inner tube is opened at the inner end of each divided inner wall tube, and between the female part of the inner wall tube and the outer tube and the divided inner wall tube. Vacuum insulation parts 59 and 60 are connected to the vacuum insulation part of the transport pipe main body part between the part and the outer pipe.
Further, at least in the male part of the male part and the female part, there is a part near the middle part between the inner pipe through which a relatively high temperature cryogenic fluid flows among the plurality of inner pipes and the outer wall of the male part. This is characterized in that the space between the two is connected by a heat transfer piece 61A made of a material with high thermal conductivity.

作 用 この発明の極低温流体輸送管の接続部構造で
は、外部からの熱は、雄部47の外壁(外管部)
および雌部48の内壁を伝わる熱伝導により内部
へ侵入しようとする。しかるに雄部47と雌部4
8とのうち、少なくとも雄部47においては、複
数本の内管41,42,43のうち相対的に高温
の極低温流体(すなわち温度上昇をさほど厳しく
規制する必要がない極低温流体)が流通する内管
(例えば42)と前記雄部47の外管部の中間部
(境界面63)との間が高熱伝導材料からなる伝
熱片61Aによつて直接連結されているから、そ
の雄部外管部の中間部63は伝熱片61Aを介
し、内管42を流れる極低温流体により冷却され
て、外気温よりもその内管42を流れる極低温流
体の温度に格段に近い温度となる。したがつてそ
の中間部63よりも先の部分、すなわち分割外管
部50,51,52の部分では温度勾配が著しく
小さくなり、外部からの熱侵入が著しく少なくな
つて、分割外管部先端に接続されている内管4
1,42,43に対するその分割外管部50,5
1,52を介しての外部熱侵入による温度上昇が
著しく少なくなる。換言すれば、外部から雄部4
7を伝わつて来る侵入熱は、その雄部47の中間
部63から前記伝熱片61Aを介して内管42に
バイパスされる結果、雄部の分割外管部50,5
1,52にはほとんど侵入せず、そのため前記の
内管42を除いた残りの内管41,43の温度上
昇が著しく少なくなり、その内管41,43内を
流通する極低温流体の温度上昇を有効に防止でき
るのである。したがつて最も温度上昇を避けるべ
き極低温流体を内管41,43に流通させること
によつて、その流体の温度上昇を確実に防止でき
る。なお伝熱片61Aが接続された内管42は、
その伝熱片61Aを介しての外部からの熱侵入に
より若干温度上昇するが、この内管42にはそも
そも温度上昇をさほど厳しく規制する必要のない
極低温流体を流しているので、その点は特に問題
とならない。
Function In the connection structure of the cryogenic fluid transport pipe of the present invention, heat from the outside is absorbed from the outer wall of the male part 47 (outer pipe part).
The heat conduction along the inner wall of the female part 48 causes the heat to enter the inside of the female part 48. However, the male part 47 and the female part 4
8, at least in the male part 47, a relatively high-temperature cryogenic fluid among the plurality of inner tubes 41, 42, and 43 (i.e., a cryogenic fluid that does not require very strict regulation of temperature rise) flows. Since the inner tube (for example 42) and the intermediate portion (boundary surface 63) of the outer tube portion of the male portion 47 are directly connected by the heat transfer piece 61A made of a highly thermally conductive material, the male portion The intermediate portion 63 of the outer tube section is cooled by the cryogenic fluid flowing through the inner tube 42 via the heat transfer piece 61A, and has a temperature much closer to the temperature of the cryogenic fluid flowing through the inner tube 42 than the outside temperature. . Therefore, in the portion beyond the intermediate portion 63, that is, in the portions of the divided outer tube portions 50, 51, and 52, the temperature gradient becomes significantly smaller, and heat intrusion from the outside is significantly reduced, causing Connected inner pipe 4
The divided outer tube portions 50, 5 for 1, 42, 43
Temperature rise due to external heat intrusion through 1 and 52 is significantly reduced. In other words, the male part 4 is
7 is bypassed from the intermediate portion 63 of the male portion 47 to the inner tube 42 via the heat transfer piece 61A, and as a result, the divided outer tube portions 50, 5 of the male portion
Therefore, the temperature rise in the remaining inner pipes 41, 43 except for the inner pipe 42 is significantly reduced, and the temperature rise of the cryogenic fluid flowing inside the inner pipes 41, 43 is significantly reduced. can be effectively prevented. Therefore, by circulating the cryogenic fluid whose temperature should most likely not rise through the inner tubes 41 and 43, it is possible to reliably prevent the temperature of the fluid from rising. Note that the inner tube 42 to which the heat transfer piece 61A is connected is as follows.
Although the temperature rises slightly due to heat intrusion from the outside through the heat transfer piece 61A, this point does not occur because the cryogenic fluid that does not need to strictly control the temperature rise is flowing through the inner tube 42 in the first place. There is no particular problem.

実施例 以下この発明の実施例について第3図以降の図
面を参照して詳細に説明する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to FIG. 3 and subsequent drawings.

第3図および第4図、第5図はこの発明の一実
施例の極低温流体輸送管の接続部構造を示すもの
である。但し第3図においては理解し易くするた
めに後述する内管41,42,43を同一面上に
並べた状態を示しているが、実際には内管41,
42,43は第4図、第5図に示すように配列さ
れる。
FIG. 3, FIG. 4, and FIG. 5 show the structure of a connecting portion of a cryogenic fluid transport pipe according to an embodiment of the present invention. However, in FIG. 3, inner tubes 41, 42, and 43, which will be described later, are shown arranged on the same plane for ease of understanding, but in reality, inner tubes 41, 43, and
42 and 43 are arranged as shown in FIGS. 4 and 5.

第3〜第5図において、輸送管40A,40B
の本体部分は、それぞれ例えばステンレス鋼から
なる外管44内に、同じくステンレス鋼からなる
3本の内管41,42,43を相互に間隔を置き
かつ外管44の内壁に対し間隔を置いて平行に配
列した構成とされている。これら内管41,4
2,43はそれぞれ内管を輸送対象となる極低温
流体が流れるものであつて、この例では第1の内
管41が最も低温であつてしかも温度上昇を避け
なければならない極低温流体、例えば極低温機器
に対して必要な極低温を与えるための冷媒として
の極低温流体を流すものであり、第2、第3の内
管42,43がそれよりも高温の極低温流体、例
えば極低温機器の周囲の保冷用の極低温流体ある
いは極低温機器からの戻りの排ガス等を流すもの
とされている。そしてこれら内管41,42,4
3の相互間および外管44との間は真空断熱部4
5とされている。
In Figures 3 to 5, transport pipes 40A, 40B
The main body portion includes three inner tubes 41, 42, 43 also made of stainless steel, spaced apart from each other and spaced from the inner wall of the outer tube 44, within an outer tube 44 made of stainless steel, respectively. They are arranged in parallel. These inner tubes 41, 4
Reference numerals 2 and 43 indicate inner pipes through which cryogenic fluids to be transported flow, and in this example, the first inner pipe 41 is the cryogenic fluid that is at the lowest temperature and must be prevented from increasing in temperature, for example. A cryogenic fluid is flowed as a refrigerant to provide the necessary cryogenic temperature to the cryogenic equipment, and the second and third inner pipes 42 and 43 are used to flow cryogenic fluid at a higher temperature than that, for example, cryogenic fluid. It is said to be used to flow cryogenic fluid for cooling around equipment or exhaust gas returned from cryogenic equipment. And these inner pipes 41, 42, 4
3 and between the outer tube 44 and the vacuum insulation section 4.
It is said to be 5.

上述のように本体部分が構成されている輸送管
40A,40Bの接続部付近の構造についてさら
に説明を進めると、各輸送管40A,40Bには
それぞれフランジ部46A,46Bが形成されて
おり、一方の輸送管40A(以下これを雄側輸送
管と記す)のフランジ部46Aよりも先端側の部
分は凸状の雄部47とされ、他方の輸送管40B
(以下これを雌側輸送管と記す)にはそのフラン
ジ部46Bよりも引込む凹状の雌部48が形成さ
れている。前記雄部47の外壁は、その基部(フ
ランジ部46Aの側の部分)から先端へ向つて距
離l1の位置の中間部までの部分が一括外管部49
で構成され、その中間部から先端までの距離l2
部分が3本の分割外管部50,51,52で構成
されている。前記一括外管部49は、輸送管本体
部分の外管44より縮径された状態でその外管4
4に連続しかつその外管44と同様に3本の内管
41,42,43を一括して取囲むように形成さ
れている。また前記分割外管部50,51,52
は一括外管部49に連続しかつ各内管41,4
2,43を個別に取囲むように各内管41,4
2,43に対応して3本に分割した構成とされて
いる。そして一括外管部49と各内管41,4
2,43との間、および各分割外管部50,5
1,52とそれらに対応する各内管41,42,
43との間は輸送管40Aの本体部分の真空断熱
部45に連続する真空断熱部53,54とされて
おり、また各分割外管部50,51,52の先端
面に各内管41,42,43の端部が開口してい
る。
To further explain the structure near the connecting portion of the transport pipes 40A, 40B, whose main body portions are configured as described above, each transport pipe 40A, 40B is formed with a flange portion 46A, 46B, respectively. The portion of the transport pipe 40A (hereinafter referred to as the male transport pipe) on the distal end side of the flange portion 46A is a convex male portion 47, and the other transport pipe 40B
(hereinafter referred to as the female side transport pipe) is formed with a concave female part 48 that is retracted from the flange part 46B. The outer wall of the male portion 47 has a portion from its base (the portion on the flange portion 46A side) to the middle portion at a distance l 1 toward the tip as the outer tube portion 49.
The distance l 2 from the middle part to the tip consists of three divided outer tube parts 50, 51, and 52. The collective outer tube portion 49 is smaller in diameter than the outer tube 44 of the transportation tube main body portion.
4 and is formed so as to enclose the three inner tubes 41, 42, 43 all at once, similar to the outer tube 44 thereof. Further, the divided outer tube portions 50, 51, 52
is continuous to the outer pipe part 49 and each inner pipe 41, 4
Each inner pipe 41, 4 individually surrounds 2, 43.
It is divided into three parts corresponding to numbers 2 and 43. And the collective outer pipe part 49 and each inner pipe 41, 4
2, 43, and each divided outer tube section 50, 5
1, 52 and their corresponding inner pipes 41, 42,
43 are vacuum insulation parts 53 and 54 that are continuous with the vacuum insulation part 45 of the main body portion of the transport pipe 40A, and each inner pipe 41 and The ends of 42 and 43 are open.

一方前記凹状の雌部48の内壁は、その開口端
の位置すなわちフランジ部46Bの位置から内奥
端へ向つて距離l1の位置の中間部までの部分が一
括内壁管部55で構成され、その中間部から内奥
端までの距離l2の部分が3つに分かれた分割内壁
管部56,57,58で構成されている。前記一
括内壁管部55は、雄部47の一括外管部49に
対応して形成されたもので、その一括外管部49
が内嵌されるように構成され、また分割内壁管部
56,57,58は、雄部47の分割外管部5
0,51,52が個別に内嵌されるように形成さ
れている。そして各分割内壁管部56,57,5
8の内奥面には、雌側輸送管40Bの対応する内
管41,42,43の端部がそれぞれ開口してい
る。そして各分割内壁管部56,57,58の内
壁相互間および外管44との間と、一括内壁管部
55の内壁と外管44との間はそれぞれ本体部分
の真空断熱部45に連続する真空断熱部59,6
0とされている。
On the other hand, the inner wall of the concave female part 48 is formed of a collective inner wall tube part 55 from the open end position, that is, the flange part 46B position to the intermediate part at a distance l 1 toward the inner innermost end, A portion of distance l 2 from the middle portion to the innermost end is composed of three divided inner wall tube portions 56, 57, and 58. The collective inner wall tube part 55 is formed corresponding to the collective outer tube part 49 of the male part 47, and the collective outer tube part 49
The divided inner wall tube portions 56, 57, 58 are configured to be fitted inside the divided outer tube portion 5 of the male portion 47.
0, 51, and 52 are formed so that they are individually fitted inside. And each divided inner wall tube part 56, 57, 5
8, the ends of the corresponding inner tubes 41, 42, 43 of the female transport tube 40B are opened, respectively. The inner walls of each divided inner wall tube section 56, 57, 58 and the outer tube 44 and the inner wall of the collective inner wall tube section 55 and the outer tube 44 are connected to the vacuum insulation section 45 of the main body. Vacuum insulation section 59, 6
It is considered to be 0.

さらに前記雄側輸送管40A内の内管31,4
2,43のうち、最も低温を保つことが要求され
る極低温流体が流通する第1の内管41を除いた
内管42,43のうちの一方の内管42、すなわ
ち第1の内管41を流れる極低温流体よりも相対
的に高温の極低温流体が流れる内管42は、雄部
47の中間部付近において高熱伝導率材料からな
る伝熱片61Aによつて外管部に連結されてい
る。すなわち、この伝熱片61Aは例えば銅板、
あるいは銅編組テープ、銅合金板等からなるもの
であつて、図示の例では内管42の所要箇所の外
面に銅線を編組したテープ62Aを巻付け、その
テープ62Aの上に伝熱片61Aの一端をロウ付
けもしくは半田付けし、一方雄部47の中間部に
おける外管部分すなわち一括外管部49と分割外
管部50,51,52との境界面63の全面に銅
板あるいは銅編組テープ61Aをロウ付けもしく
は半田付けし、その板64Aの所要箇所に伝熱片
61Aの他端をロウ付けもしくは半田付けした構
成とされている。
Furthermore, the inner pipes 31 and 4 in the male transport pipe 40A
2 and 43, one of the inner tubes 42 and 43 excluding the first inner tube 41 through which the cryogenic fluid that is required to maintain the lowest temperature flows, that is, the first inner tube The inner tube 42 through which a cryogenic fluid having a relatively higher temperature than the cryogenic fluid flowing through the inner tube 41 is connected to the outer tube portion near the middle portion of the male portion 47 by a heat transfer piece 61A made of a high thermal conductivity material. ing. That is, this heat transfer piece 61A is made of, for example, a copper plate,
Alternatively, it is made of a copper braided tape, a copper alloy plate, etc. In the illustrated example, a tape 62A made of braided copper wire is wrapped around the outer surface of the inner tube 42 at required locations, and a heat transfer piece 61A is placed on the tape 62A. One end is brazed or soldered, and on the other hand, a copper plate or a copper braided tape is applied to the entire boundary surface 63 between the outer tube portion in the middle of the male portion 47, that is, the integral outer tube portion 49 and the divided outer tube portions 50, 51, and 52. 61A is brazed or soldered, and the other end of the heat transfer piece 61A is brazed or soldered to a required location on the plate 64A.

一方、雌側輸送管40Bの内管42も同様に高
熱伝導率材料からなる伝熱片61Bを介して雌部
48の内壁の中間部に連結されている。すなわち
内管42の所要箇所の外面に銅線編組テープ62
Bが巻付けられる一方、一括内壁管部55と分割
内壁管部56,57,58との境界面65の全面
に銅板あるいは銅編組テープ64Bがロウ付けも
しくは半田付けされ、伝熱片61Bの一端が前記
編組テープ62Bに、他端が板64Bにロウ付け
もしくは半田付けされている。
On the other hand, the inner tube 42 of the female side transport tube 40B is similarly connected to the intermediate portion of the inner wall of the female portion 48 via a heat transfer piece 61B made of a high thermal conductivity material. In other words, the copper wire braided tape 62 is attached to the outer surface of the inner tube 42 at required locations.
B is wound, while a copper plate or copper braided tape 64B is brazed or soldered to the entire boundary surface 65 between the collective inner wall tube portion 55 and the divided inner wall tube portions 56, 57, 58, and one end of the heat transfer piece 61B is is brazed or soldered to the braided tape 62B, and the other end is brazed or soldered to the plate 64B.

上述のような極低温流体の接続部にあつては、
雌側輸送管40Aの凸状の雄部47の各分割外管
部50,51,52がそれぞれ雌側輸送管40B
の凹状の雌部48の対応する分割内壁管部56,
57,58に嵌め込まれるとともに、雄部47の
一括外管部49が雌部48の一括内壁管部55に
嵌め込まれ、フランジ部46A,46Bがボルト
等によつて連結固定される。
For cryogenic fluid connections as mentioned above,
Each divided outer tube portion 50, 51, 52 of the convex male portion 47 of the female transport pipe 40A is connected to the female transport pipe 40B.
The corresponding split inner wall tube portion 56 of the concave female portion 48,
57 and 58, the outer tube part 49 of the male part 47 is fitted into the inner wall tube part 55 of the female part 48, and the flange parts 46A and 46B are connected and fixed by bolts or the like.

ここで、外部からの熱は、フランジ部46A,
46Bの位置から雌部47の外壁(外管部)およ
び雌部の内壁を伝達して内部へ侵入しようとす
る。しかるに雄部47の外管部分の中間部の境界
面63および雌部48の内壁中間部の境界面65
はそれぞれ銅板等の高熱伝導率材料からなる伝熱
片61A,61Bによつて直接内管42に連結さ
れている。これらの伝熱片61A,61Bは、雄
部47の外管部や雌部48の内壁に通常使用され
ているステンレス鋼と比較して格段に熱伝導率が
高く、特に極低温ではその傾向が顕著となるか
ら、伝熱片61A,61Bの両端間の温度勾配は
雄部47の外管部および雌部48の内壁の温度勾
配と比較して格段に小さくなり、そのため雄部4
7の外管部分中間部の境界面63および雌部48
の内壁中間部の境界面65の温度は、外部の温度
よりも格段に内管42の温度に近い温度、すなわ
ち内管42内を流れる極低温流体の温度に近い温
度となる。例えば外部温度が300Kで内管42内
を流れる極低温流体の温度が6Kの場合、各中間
部境界面63,65の温度は300Kよりも6Kに格
段に近い温度(例えば30K)となる。したがつて
3本の内管41,42,43を流れる極低温流体
のうち最も低温でしかもその低温を維持すること
が必要な極低温流体例えば4.5Kの流体が流れる
第1の内管41に対応する雄部47の分割外管部
50および雌部48の分割内壁管部56から見れ
ば、その基端側の面すなわち境界面63,65の
温度が、伝熱片61A,61Bを設けない場合と
比較して格段に低温となり、その結果、分割外管
部50の先端および分割内壁管部56の内奥端
(すなわち内管41の開口部分周囲)に対する熱
侵入が伝熱片61A,61Bを設けない場合と比
較して格段に小さくなり、内管41を流れる極低
温流体の温度上昇は極めてわずかとなる。すなわ
ち最も低温の流体が流れる内管41に対応する分
割外管部50、分割内壁管部56に対しては、見
掛け上外部からの熱侵入がほとんど阻止されたこ
とになるのである。
Here, heat from the outside is transferred to the flange portion 46A,
From position 46B, it attempts to penetrate into the interior by transmitting information through the outer wall (outer tube section) of the female part 47 and the inner wall of the female part. However, the boundary surface 63 at the intermediate portion of the outer tube portion of the male portion 47 and the boundary surface 65 at the intermediate portion of the inner wall of the female portion 48
are directly connected to the inner tube 42 by heat transfer pieces 61A, 61B each made of a high thermal conductivity material such as a copper plate. These heat transfer pieces 61A, 61B have a much higher thermal conductivity than the stainless steel normally used for the outer tube part of the male part 47 and the inner wall of the female part 48, and this tendency is particularly high at extremely low temperatures. Therefore, the temperature gradient between both ends of the heat transfer pieces 61A, 61B is much smaller than the temperature gradient of the outer tube part of the male part 47 and the inner wall of the female part 48,
7, the boundary surface 63 of the middle part of the outer tube part and the female part 48
The temperature of the boundary surface 65 at the middle part of the inner wall is much closer to the temperature of the inner tube 42 than the outside temperature, that is, the temperature is closer to the temperature of the cryogenic fluid flowing inside the inner tube 42. For example, when the external temperature is 300K and the temperature of the cryogenic fluid flowing in the inner tube 42 is 6K, the temperature of each intermediate boundary surface 63, 65 is much closer to 6K than 300K (for example, 30K). Therefore, among the cryogenic fluids flowing through the three inner tubes 41, 42, and 43, the cryogenic fluid that is the lowest and needs to be maintained at that low temperature, for example, the fluid at 4.5 K, flows in the first inner tube 41. When viewed from the corresponding divided outer tube portion 50 of the male portion 47 and the divided inner wall tube portion 56 of the female portion 48, the temperature of the proximal side surfaces, that is, the boundary surfaces 63 and 65, is lower than that of the corresponding divided outer tube portion 50 of the male portion 47 and the temperature of the boundary surfaces 63 and 65 when heat transfer pieces 61A and 61B are not provided. As a result, heat intrusion into the tip of the divided outer tube section 50 and the inner inner end of the divided inner wall tube section 56 (i.e., around the opening of the inner tube 41) is caused by the heat transfer pieces 61A, 61B. The temperature rise of the cryogenic fluid flowing through the inner tube 41 is significantly smaller than that in the case where no inner tube 41 is provided. In other words, almost all heat from the outside is apparently prevented from entering into the divided outer tube section 50 and the divided inner wall tube section 56 corresponding to the inner tube 41 through which the lowest temperature fluid flows.

なお伝熱片61A,61Bによる熱伝導によつ
て、それらの伝熱片を連結した内管42内を流れ
る極低温流体はある程度温度上昇することが予想
されるが、内管42内には前述のように極低温機
器の周囲の保冷用の流体あるいは戻りの排ガス等
を流すから若干の温度上昇は特に支障がない。
It is expected that due to heat conduction by the heat transfer pieces 61A and 61B, the temperature of the cryogenic fluid flowing in the inner tube 42 connecting these heat transfer pieces will rise to some extent; A slight rise in temperature does not pose any particular problem because the cold storage fluid or return exhaust gas is flowing around the cryogenic equipment.

また輸送管40A,40Bの本体部分において
は、第6図に示すように外部44内に熱遮蔽部材
66,67を設けておくことが望ましい。すなわ
ち、最も低温の極低温流体が流通する内管41の
周囲に、その内管41を間隔を置いて取囲むよう
に中空筒状の第1の熱遮蔽部材66を配置してお
き、その第1の熱遮蔽部材66は3本の内管4
1,42,43のうち中間の温度の極低温流体が
流通する内管43に接した状態で固定し、さらに
内管41,43と前記第1の熱遮蔽部材66とを
間隔を置いて取囲むように中空筒状の第2の熱遮
蔽部材67を配置しておき、その第2の熱遮蔽部
材67を相対的に最も高温の極低温流体が流通す
る内管42に接した状態で固定しておく。このよ
うにすることによつて、最も低温が要求される第
1の内管41は内管43とほぼ同程度の温度の第
1の熱遮蔽部材66によつて取囲まれ、またその
内管43は内管42とほぼ同程度の温度の第2の
熱遮蔽部材67によつて取囲まれるから、内管4
1,43を流れる極低温流体はそれぞれ外管44
からの放射熱による温度上昇が有効に防止される
ことになる。
Further, in the main bodies of the transport pipes 40A and 40B, it is desirable to provide heat shielding members 66 and 67 inside the exterior 44, as shown in FIG. That is, a hollow cylindrical first heat shielding member 66 is arranged around the inner pipe 41 through which the lowest temperature cryogenic fluid flows so as to surround the inner pipe 41 at intervals. One heat shielding member 66 has three inner tubes 4
The inner tube 41, 43 and the first heat shielding member 66 are fixed in contact with the inner tube 43 through which the cryogenic fluid having an intermediate temperature flows between them. A hollow cylindrical second heat shielding member 67 is arranged so as to surround the second heat shielding member 67, and the second heat shielding member 67 is fixed in a state in contact with the inner pipe 42 through which the relatively highest temperature cryogenic fluid flows. I'll keep it. By doing this, the first inner tube 41, which requires the lowest temperature, is surrounded by the first heat shielding member 66 having approximately the same temperature as the inner tube 43; 43 is surrounded by the second heat shielding member 67 whose temperature is approximately the same as that of the inner tube 42.
The cryogenic fluid flowing through the outer tubes 44 and 43
This effectively prevents the temperature from rising due to radiant heat.

なお、第3〜第5図に示される実施例では、雄
部47と雌部48との両者に伝熱片61A,61
Bを設けているが、雄部47の外管部分と雌部4
8の内壁とは相互に接触して熱伝達が行なわれる
から、場合によつては雄部47のみに伝熱片61
Aを設け、雌部48の側の伝熱片61Bを省いて
も良い。但し雄部47、雌部48の両者に伝熱片
61A,61Bを設けた場合の方がこの発明の効
果が充分に発揮されていることは勿論である。
In the embodiment shown in FIGS. 3 to 5, heat transfer pieces 61A and 61 are provided in both the male part 47 and the female part 48.
B is provided, but the outer tube part of the male part 47 and the female part 4
Since heat transfer occurs through mutual contact with the inner walls of the male portion 47, in some cases the heat transfer piece 61 may be attached only to the male portion 47.
A may be provided and the heat transfer piece 61B on the female portion 48 side may be omitted. However, it goes without saying that the effect of the present invention is more fully exhibited when the heat transfer pieces 61A, 61B are provided on both the male part 47 and the female part 48.

なおまた、第3図においては、雄部47の各分
割外管部50,51,52の先端がそれぞれ対応
する雌部48の各分割内壁管部56,57,58
の内奥端に直接接触するように示されているが、
実際にはテフロン等からなる弾性リング等をそれ
らの間に介在させて良いことは勿論である。
Furthermore, in FIG. 3, the tips of the divided outer tube portions 50, 51, 52 of the male portion 47 correspond to the respective divided inner wall tube portions 56, 57, 58 of the female portion 48.
is shown in direct contact with the innermost edge of the
Actually, it goes without saying that an elastic ring made of Teflon or the like may be interposed between them.

さらに、前述の例では3本の内管を同一の外管
内に収容しているが、同一の外管内に収容する内
管は2本あるいは4本以上でも良いことはもちろ
んである。
Further, in the above example, three inner tubes are housed in the same outer tube, but it goes without saying that two or four or more inner tubes may be housed in the same outer tube.

発明の効果 以上の説明で明らかなようにこの発明の極低温
流体輸送管の接続部構造は、異なる温度の極低温
流体が流通する複数本の内管が同一の外管内に収
容されて、内管相互間および外管との間が真空断
熱部とされている輸送管本体を接続するものであ
つて、雄側輸送管の接続側の凸状雄部の外管部分
は本体側から中間部までは複数本の内管を一括し
て取囲み、その中間部から先端までは各内管を個
別に取囲むように構成され、また雌側の輸送管の
接続側の凹状の雌部の内壁も上述のような雄部に
対応した構成とされ、そして雄部の外管部分の前
記中間部が銅等の高熱伝導率材料からなる伝熱片
によつて、複数本の内管のうち最も低温の流体
(もしくは低温を維持すべき流体)が流れる内管
を除いた内管、すなわち相対的に高温の流体が流
れる内管に直接連結されており、したがつてその
雄部の外管部分の中間部の温度は、伝熱片によつ
て連結された内管内を流れる流体の温度に近い低
温となり、その結果、最も低温の流体が流れる内
管の接続側端部を取囲む分割外管部に対しては外
部からの熱侵入が見掛上ほとんど阻止されること
になり、その内管内を流れる最も低温の流体の分
割外管部からの熱侵入による温度上昇が極めてわ
ずかとなる。このようにこの発明の接続部構造に
よれば、複数の異なる温度の極低温流体を同一の
輸送管で輸送するにあたつて、それらの流体のう
ち、最も低温の流体(もしくは最も低温を維持す
ることが要求される流体)については、その接続
部での熱侵入による温度上昇を可及的に防止する
ことができ、特にその流体が気体であつてしかも
その流量が少ない場合にも、温度上昇を避け得る
顕著な効果が得られる。またこの発明において
は、3本以上の内管を同一の外管内に収容して3
種以上の流体を同時に輸送することもでき、した
がつて配管作業を従来と比較して格段に容易とし
得る効果も得られる。
Effects of the Invention As is clear from the above explanation, the connection structure of the cryogenic fluid transport pipe of the present invention is such that a plurality of inner pipes through which cryogenic fluids of different temperatures flow are accommodated in the same outer pipe. It connects the main bodies of the transport pipes with vacuum insulation between the pipes and the outer pipe, and the outer pipe part of the convex male part on the connection side of the male transport pipe is The inner wall of the concave female part on the connecting side of the female transport pipe The outer tube portion of the male portion has a configuration corresponding to the male portion, and the middle portion of the outer tube portion of the male portion is made of a heat transfer piece made of a high thermal conductivity material such as copper, so that it is the most flexible of the plurality of inner tubes. An inner tube excluding the inner tube through which a low-temperature fluid (or a fluid that should be maintained at a low temperature) flows, that is, a male outer tube portion that is directly connected to the inner tube through which a relatively high-temperature fluid flows. The temperature of the middle part of the tube is a low temperature close to the temperature of the fluid flowing in the inner tube connected by the heat transfer piece, and as a result, the split outer tube surrounding the connecting end of the inner tube through which the coldest fluid flows Almost all heat intrusion from the outside is apparently prevented from entering the inner tube, and the temperature rise due to heat intrusion from the divided outer tube section of the lowest temperature fluid flowing in the inner tube becomes extremely small. As described above, according to the connection structure of the present invention, when a plurality of cryogenic fluids at different temperatures are transported through the same transport pipe, the fluid with the lowest temperature (or the lowest temperature is maintained) among the fluids It is possible to prevent the temperature rise due to heat intrusion at the connection part as much as possible, especially when the fluid is a gas and the flow rate is small. A remarkable effect can be obtained to avoid the increase in the amount of water. In addition, in this invention, three or more inner tubes are accommodated in the same outer tube to
It is also possible to transport more than one type of fluid at the same time, and therefore the piping work can be much easier compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一般的な極低温流体輸送管の接
続部構造の一例を示す断面図、第2図は従来の極
低温流体輸送管の接続部構造の他の例を示す断面
図、第3図はこの発明の一実施例の極低温流体輸
送管の接続部構造を示すものであつて、雄側と雌
側を取外した状態を示す断面図(但し図面の簡略
化のため3本の内管41,42,43を同一平面
上に並べた状態を示す)、第4図は第3図の―
線における断面図、第5図は第3図の―線
における断面図(但し第4図、第5図では3本の
内管41,42,43を真の配列位置で示す)、
第6図はこの発明が適用される輸送管の本体部分
の望ましい例を示す切欠斜視図である。 40A,40B…輸送管、41,42,43…
内管、44…外管、45…真空断熱部、47…雄
部、48…雌部、49…一括外管部、50,5
1,52…分割外管部、53,54…真空断熱
部、55…一括内壁管部、56,57,58…分
割内壁管部、59,60…真空断熱部、61A,
61B…伝熱片。
FIG. 1 is a cross-sectional view showing an example of a conventional general cryogenic fluid transport pipe connection structure; FIG. 2 is a cross-sectional view showing another example of a conventional cryogenic fluid transport pipe connection structure; Figure 3 shows the connection structure of a cryogenic fluid transport pipe according to an embodiment of the present invention, and is a cross-sectional view with the male and female sides removed (however, to simplify the drawing, three lines are shown). Figure 4 shows the inner tubes 41, 42, 43 arranged on the same plane), and Figure 4 is similar to Figure 3.
5 is a sectional view taken along the - line in FIG. 3 (however, FIGS. 4 and 5 show the three inner tubes 41, 42, 43 in their true arrangement positions);
FIG. 6 is a cutaway perspective view showing a desirable example of a main body portion of a transport pipe to which the present invention is applied. 40A, 40B...transport pipe, 41, 42, 43...
Inner tube, 44...Outer tube, 45...Vacuum insulation part, 47...Male part, 48...Female part, 49...Bulk outer pipe part, 50,5
1, 52...Divided outer pipe part, 53, 54...Vacuum insulation part, 55...Bulk inner wall pipe part, 56,57,58...Divided inner wall pipe part, 59,60...Vacuum insulation part, 61A,
61B...Heat transfer piece.

Claims (1)

【特許請求の範囲】 1 異なる温度の極低温流体が流通する複数本の
内管41,42,43が同一の外管44内に間隔
を置いて平行に収容されておりかつその各内管の
相互間および各内管と外管との間が真空断熱部4
5とされている極低温輸送管40A,40Bを相
互に接続するための接続部構造であつて; 一方の極低温輸送管の接続側先端部には、他方
の極低温輸送管の先端部に形成された凹状の雌部
48に嵌合される凸状の雄部47が形成されてお
り、前記凸状の雄部の外壁のうち、雄部の基部か
ら先端へ向つて所定長さの中間部までの間の部分
は、輸送管本体部分の外管に連続しかつ前記複数
本の内管を一括して取囲む一括外管部49で構成
され、また前記中間部から先端までの間の部分
は、前記一括外管部に連続しかつそれぞれ前記複
数本の内管を個別に取囲むように各内管に対応し
て分割された分割外管部50,51,52で構成
されており、さらに前記各分割外管部の先端面に
はそれぞれ内管の端部が開口され、また前記一括
外管部とその内側の内管との間、および各分割外
管部とその内側の内管との間は、それぞれ輸送管
本体部分の前記真空断熱部に連続する真空断熱部
53,54とされ、一方前記凹状の雌部の内壁の
うち、その開口端から内奥端へ向つて所定距離の
中間部までの間の部分は、前記雄部の一括外管部
が内嵌される一括内壁管部55で構成され、前記
中間部から内奥端までの部分は、前記一括内壁管
部に連続しかつ前記雄部の分割外管部がそれぞれ
個別に内嵌される分割内壁管部56,57,58
で構成されており、さらに各分割内壁管の内奥端
にはそれぞれ対応する内管の端部が開口されてお
り、しかもその雌部の一括内壁管部と外管との間
および分割内壁管部と外管との間は輸送管本体部
分の真空断熱部に連続する真空断熱部59,60
とされ、さらに前記雄部と雌部とのうち少なくと
も雄部においては、複数本の内管のうち相対的に
高温の極低温流体が流通する内管と前記雄部の中
間部付近の外管部との間が高熱電導率材料からな
る伝熱片61Aにより連結されていることを特徴
とする極低温流体輸送管の接続部構造。
[Claims] 1. A plurality of inner tubes 41, 42, 43 through which cryogenic fluids of different temperatures flow are housed in the same outer tube 44 in parallel at intervals, and A vacuum insulation section 4 is provided between each other and between each inner tube and outer tube.
A connecting part structure for mutually connecting cryogenic transport tubes 40A and 40B, which are referred to as No. 5; A convex male part 47 is formed to fit into the formed concave female part 48, and a predetermined length of the outer wall of the convex male part extends from the base of the male part to the tip. The part from the intermediate part to the tip is composed of a collective outer pipe part 49 that is continuous with the outer pipe of the transport pipe main body part and surrounds the plurality of inner pipes all at once. The portion is composed of divided outer tube portions 50, 51, and 52 that are continuous with the collective outer tube portion and are divided corresponding to each inner tube so as to individually surround the plurality of inner tubes. Furthermore, the ends of the inner tubes are opened at the distal end surfaces of each of the divided outer tube sections, and the ends of the inner tubes are opened between the collective outer tube section and the inner tube inside thereof, and between each of the divided outer tube sections and the inner tube inside thereof. Vacuum insulation parts 53 and 54 are connected to the vacuum insulation part of the main body of the transport pipe, respectively, and vacuum insulation parts 53 and 54 are connected to the vacuum insulation part of the main body of the transport pipe. The part between the middle part of the distance is composed of a collective inner wall pipe part 55 into which the collective outer pipe part of the male part is fitted, and the part from the middle part to the inner end is composed of the collective inner wall pipe part 55. divided inner wall tube portions 56, 57, and 58 that are continuous with and into which the divided outer tube portions of the male portion are individually fitted;
In addition, the corresponding end of the inner tube is opened at the inner end of each divided inner wall tube, and between the female part of the inner wall tube and the outer tube and the divided inner wall tube. Vacuum insulation parts 59 and 60 are connected to the vacuum insulation part of the transport pipe main body part between the part and the outer pipe.
Further, in at least the male part of the male part and the female part, an inner pipe through which relatively high temperature cryogenic fluid flows among the plurality of inner pipes and an outer pipe near the middle part of the male part. A connecting part structure for a cryogenic fluid transport pipe, characterized in that the connecting part is connected to the part by a heat transfer piece 61A made of a material with high thermal conductivity.
JP59076195A 1984-04-16 1984-04-16 Connecting section structure of cryogenic fluid transport pipe Granted JPS60220297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59076195A JPS60220297A (en) 1984-04-16 1984-04-16 Connecting section structure of cryogenic fluid transport pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59076195A JPS60220297A (en) 1984-04-16 1984-04-16 Connecting section structure of cryogenic fluid transport pipe

Publications (2)

Publication Number Publication Date
JPS60220297A JPS60220297A (en) 1985-11-02
JPH0248798B2 true JPH0248798B2 (en) 1990-10-26

Family

ID=13598359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59076195A Granted JPS60220297A (en) 1984-04-16 1984-04-16 Connecting section structure of cryogenic fluid transport pipe

Country Status (1)

Country Link
JP (1) JPS60220297A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196496A (en) * 1986-02-24 1987-08-29 富士電機株式会社 Cryogenic piping joint
JPH0726638Y2 (en) * 1990-02-21 1995-06-14 石川島播磨重工業株式会社 Vacuum insulated quadruple pipe joint structure
JP2016070376A (en) * 2014-09-30 2016-05-09 川崎重工業株式会社 Guide mechanism for bayonet joints of vacuum heat insulation double pipe for cryogenic fluid
EP3851726A1 (en) * 2020-01-17 2021-07-21 Nexans Johnston coupling with an additional vacuum cover

Also Published As

Publication number Publication date
JPS60220297A (en) 1985-11-02

Similar Documents

Publication Publication Date Title
US4036617A (en) Support system for an elongated cryogenic envelope
US4046407A (en) Elongated cryogenic envelope
US3986341A (en) Low heat-leak cryogenic envelope
US4036618A (en) Flexible cryogenic envelope
US4011732A (en) Heat-stationed bayonet connector for cryogenic fluid lines
US3992169A (en) Refrigerated cryogenic envelope
JP2007303814A (en) Cryocooler interface sleeve tube
US4535596A (en) Plug for horizontal cryostat penetration
JP2007194258A (en) Superconductive magnet apparatus
US3466886A (en) Fluid-conveying arrangement
US3775989A (en) Rotary cryogenic couplings
US6038867A (en) Wide multilayer insulating blankets for zero boiloff superconducting magnet
US5829791A (en) Insulated double bayonet coupler for fluid recirculation apparatus
US3765705A (en) Vacuum-insulated pipeline
JP7094583B2 (en) Vacuum insulation piping
JPH0248798B2 (en)
JPS6294769A (en) Two-step thermal coupling
US3743760A (en) Duct system for low-temperature fluids and thermally isolated electrical conductors
US4106796A (en) Connector for duct systems for low temperature fluids
US4562703A (en) Plug tube for NMR magnet cryostat
US20120309630A1 (en) Penetration tube assemblies for reducing cryostat heat load
EP0395877B1 (en) Cryogenic precooler for superconductive magnets
US5072591A (en) Flexible transfer line exhaust gas shield
GB2166514A (en) Pipe connector or end piece
CN210292939U (en) Low-temperature heat transfer device and low-temperature heat transfer system