JPH0248481B2 - - Google Patents

Info

Publication number
JPH0248481B2
JPH0248481B2 JP60206297A JP20629785A JPH0248481B2 JP H0248481 B2 JPH0248481 B2 JP H0248481B2 JP 60206297 A JP60206297 A JP 60206297A JP 20629785 A JP20629785 A JP 20629785A JP H0248481 B2 JPH0248481 B2 JP H0248481B2
Authority
JP
Japan
Prior art keywords
iodine
product
main body
nozzle
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60206297A
Other languages
Japanese (ja)
Other versions
JPS6193823A (en
Inventor
Koji Kida
Kohei Itakura
Shigeo Mihashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISE CHEM IND
Original Assignee
ISE CHEM IND
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISE CHEM IND filed Critical ISE CHEM IND
Priority to JP20629785A priority Critical patent/JPS6193823A/en
Publication of JPS6193823A publication Critical patent/JPS6193823A/en
Publication of JPH0248481B2 publication Critical patent/JPH0248481B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ヨウ素の球状化物に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to spheroidized iodine.

[従来の技術及び問題点] 一般に熔融性を有する各種物質は、その熔融物
を冷却固化してフレーク状、昇華結晶状、塊状に
し、あるいは粉末状や粒状などにして、各々特色
ある状態で取扱われている。この内、粒状化物
は、包装及び利用時の取扱いに便利なこと、また
反応などが均一化されることなどの利点を有す
る。そして、粒状化は、従来より回転円盤あるい
は円筒上で冷却固化してフレーク状にし、また塊
状に冷却固化して、それらを破砕して粒状にする
方法が一般的である。
[Prior Art and Problems] In general, various meltable substances are handled in their own unique states, such as by cooling and solidifying the melt into flakes, sublimated crystals, lumps, powders, granules, etc. It is being said. Among these, granulated products have advantages such as convenience in packaging and handling during use, and uniform reaction. Conventionally, granulation is performed by cooling and solidifying on a rotating disk or cylinder to form flakes, or cooling and solidifying into lumps, and then crushing them to form granules.

しかし、これら一般的な方法でヨウ素を取扱う
ときは、ヨウ素は腐食性や昇華性を有するため、
比較的装置や操作が複雑で困難を招き易い。さら
に、出来上がつた粒状製品の表面に一部昇華して
粉末化したヨウ素が附着して表面に微少な凹凸が
発生し、製品価値を下げたりまたこれら粉末化物
が包装後にケーキングの原因となるなどの欠点が
ある。
However, when handling iodine using these general methods, iodine is corrosive and sublimes, so
The equipment and operations are relatively complex and can easily lead to difficulties. Furthermore, some of the iodine that has sublimated and become powder adheres to the surface of the finished granular product, causing minute irregularities on the surface, lowering the product value and causing caking after packaging. There are drawbacks such as.

[問題点を解決するための手段] 本発明者は、かかる従来技術の問題点を解決す
るため検討を重ねた結果、金属性光沢をもつ滑ら
かな表面を有する粒径0.3〜5mmのヨウ素の球状
化物(以下本製品という)を用いることにより以
下述べる述べるような極めて好適な結果の得られ
ることを見出した。
[Means for Solving the Problems] As a result of repeated studies in order to solve the problems of the prior art, the present inventor has developed a spherical iodine particle with a particle size of 0.3 to 5 mm that has a smooth surface with metallic luster. We have found that by using a chemical compound (hereinafter referred to as this product), extremely favorable results as described below can be obtained.

(1) 本製品の表面には粉末化したヨウ素が附着し
ておらず、金属性光沢をもつ滑らかな表面を有
するので、流動性も良好で安息角も小さく、ホ
ツパー等から本製品を供給する際、架橋、閉塞
を生ずることがない。
(1) The surface of this product has no powdered iodine attached to it and has a smooth surface with a metallic luster, so it has good fluidity and a small angle of repose, and can be supplied from a hopper etc. During this process, no crosslinking or clogging occurs.

なお、従来品のように粉末化したヨウ素が附
着していると、表面に微少な凹凸が生じ、本製
品のような金属性光沢を有する滑らかな表面と
はならない。
In addition, if powdered iodine is attached as in conventional products, minute irregularities will occur on the surface, and the surface will not have a smooth metallic luster like this product.

(2) 本製品は球状をなし、且つ金属性光沢をもつ
滑らかな表面を有しているので、表面積も小さ
く、表面からの昇華量も少なく、昇華物がヨウ
素粒状化物表面に凝縮附着することによつて生
ずるケーキングの発生が少なくなる。又本製品
は滑らかな表面を有する球状体であるため、球
状体相互の接触面積が小さいこともケーキング
防止に寄与する。
(2) Since this product is spherical and has a smooth surface with a metallic luster, the surface area is small and the amount of sublimation from the surface is small, and the sublimated material may condense and adhere to the surface of the iodine granules. The occurrence of caking caused by Furthermore, since this product is a spherical body with a smooth surface, the contact area between the spherical bodies is small, which also contributes to prevention of caking.

なお、粒径0.3mm以下の場合充分な効果が望
めず、又粒径が5mm以上となると取扱い中破砕
し易くなる。
In addition, if the particle size is 0.3 mm or less, a sufficient effect cannot be expected, and if the particle size is 5 mm or more, it becomes easy to crush during handling.

(3) 更に、蒸気としての逸脱による損失も少な
く、コスト低減にもつながる。更に又、粒径が
ほぼ均一な粒度分布にコントロールされている
ため、急激な溶解はせず、安定した溶解速度を
もち、従来のフレーク状ヨウ素などに比べて、
反応が律速である。
(3) Furthermore, there is less loss due to deviation as steam, leading to cost reduction. Furthermore, since the particle size is controlled to a nearly uniform particle size distribution, it does not dissolve rapidly and has a stable dissolution rate, compared to conventional flaky iodine.
The reaction is rate-limiting.

本発明の前記の方法は、適宜装置により実施さ
れるが、特に好適な実施態様について、添付図面
に従つて以下説明する。
The above-described method of the present invention can be carried out using suitable equipment, and particularly preferred embodiments will be described below with reference to the accompanying drawings.

本製品は次のような方法で好適に製造できる。 This product can be suitably manufactured by the following method.

即ち、ヨウ素を熔融してノズルから連続に吹出
し、液滴となし、これが分散落下する途中にヨウ
素の融点より低い沸点を有する非溶解性液体を噴
霧状にして吹き付け、これによつて液滴を冷却固
化する。そして、この方法によれば、複雑な装置
及び操作を要することなく、腐食性、昇華性を有
するヨウ素を円滑有利に球状化することができ
る。更に、得られる球状化物は、金属性光沢をも
つ滑らかな表面を有する新規形態の球状物であ
り、粒子表面に一部昇華して粉末化したヨウ素が
附着しておらず、包装後もケーキングしないもの
である。
That is, iodine is melted and continuously blown out from a nozzle to form droplets, and as the droplets disperse and fall, an insoluble liquid having a boiling point lower than the melting point of iodine is sprayed in the form of a spray, thereby forming the droplets. Cool and solidify. According to this method, iodine, which is corrosive and sublimable, can be smoothly and advantageously spheroidized without requiring complicated equipment and operations. Furthermore, the obtained spheroidized product is a new type of spherical product with a smooth surface with a metallic luster, does not have iodine partially sublimed and powdered on the particle surface, and does not cause caking even after packaging. It is something.

この方法によるときは、ヨウ素がノズルから液
滴として吹出され落下すると同時に、冷却剤とし
て噴霧状液体を吹き付け急冷固化する。これによ
つてヨウ素の逸散を防ぐことができ、効率を高め
ると同時に、製品のケーキングの原因となる微粉
末の生成を抑える。また、冷却剤としての噴霧状
液体は、ヨウ素の融点より低い沸点を有する非溶
解性の液体であることが重要である。非溶解性と
は噴霧状液体がヨウ素を溶解しないことであり、
さらに噴霧状液体はヨウ素と反応することがない
不活性であるものが選ばれる(例えば水)。かく
して、冷却剤としての噴霧状の微細な液体は、ヨ
ウ素の液滴の表面に接触し、その表面で熱交換さ
れる。つまり、ヨウ素は液滴状態で冷却固化さ
れ、噴霧状液体は自己の沸点以上の物質に接触し
て蒸発潜熱を得て、蒸発ガス化して容易に系外に
排出される。この為、ヨウ素の球状化製品には、
冷却剤としての噴霧状液体が混入しないのであ
る。
When using this method, iodine is blown out as droplets from a nozzle and falls, and at the same time, a sprayed liquid is sprayed as a coolant to rapidly cool and solidify. This prevents iodine from escaping, increasing efficiency and reducing the formation of fine powder that can cause product caking. It is also important that the atomized liquid as a coolant is a non-dissolving liquid with a boiling point lower than the melting point of iodine. Non-dissolving means that the atomized liquid does not dissolve the iodine;
Additionally, the atomized liquid is chosen to be inert and not react with iodine (eg water). Thus, the atomized fine liquid as a coolant contacts the surface of the iodine droplets and undergoes heat exchange thereon. That is, iodine is cooled and solidified in the form of droplets, and the atomized liquid comes into contact with a substance having a boiling point higher than its own, obtains latent heat of vaporization, evaporates into gas, and is easily discharged from the system. For this reason, spheroidized iodine products include
No atomized liquid is mixed in as a coolant.

前述した方法は、適宜装置により実施される
が、特に好適な実施態様について添付図面に従つ
て以下説明する。
The method described above may be carried out using any suitable apparatus, and particularly preferred embodiments will be described below with reference to the accompanying drawings.

即ち、添付図面には、接触帯域を囲む装置本体
1に、熔融したヨウ素を液滴化して本体1内に導
入する液滴化ノズル2及び水のような非溶解性不
活性液体からなる冷却剤を噴霧状にして本体1内
に導入する噴霧ノズル3を設け、更に、本製品の
取出し口4及び冷却剤の蒸発物の排出口5を設け
てなる本製品の製造装置が例示されている。
That is, the attached drawings show a droplet forming nozzle 2 for forming droplets of molten iodine and introducing the droplets into the main body 1, and a coolant consisting of an insoluble inert liquid such as water, in the apparatus body 1 surrounding the contact zone. A manufacturing apparatus for the present product is illustrated, which is provided with a spray nozzle 3 for introducing atomized water into the main body 1, and further provided with an outlet 4 for taking out the product and an outlet 5 for discharging the evaporated product of the coolant.

まず、第1図に従つて上記の方法を詳細に説明
すると、下方を開口した筒状の装置本体1の上方
に熔融釜6を設置してヨウ素を熔融し、熔融釜6
に導管7を介して連結した液滴化ノズル2を装置
本体1の上部に望ませ、ヨウ素を液滴化させる。
この液滴化ノズル2の下方で液滴化したヨウ素が
連続された状態から不連続状態となる位置の装置
本体1の側壁に冷却剤噴射ノズル3を水平方向に
向け取付け、供給管8を圧力ポンプ9に接続して
冷却剤を供給して不連続状態になつたヨウ素の霧
状の冷却剤を吹付けて冷却し、球体状をした昇華
性物体を形成する。
First, the above method will be explained in detail with reference to FIG.
A droplet forming nozzle 2 connected via a conduit 7 is placed at the top of the main body 1 of the apparatus to form droplets of iodine.
The coolant injection nozzle 3 is attached horizontally to the side wall of the apparatus main body 1 at a position where the iodine droplets change from a continuous state to a discontinuous state below the droplet formation nozzle 2, and the supply pipe 8 is A coolant is supplied by connecting to a pump 9, and a discontinuous iodine mist coolant is sprayed and cooled to form a spherical sublimable object.

前記冷却剤噴射ノズル3と対向する装置本体1
の側壁で前記ノズル3よりも下側に位置した個所
に排出口を開口し、排ガス管10を接続して、図
示を省略した排ガス回収塔へ排ガスを吸収するよ
うにすることができる。
A device main body 1 facing the coolant injection nozzle 3
An exhaust port may be opened at a location located below the nozzle 3 on the side wall of the exhaust gas pipe 10, and an exhaust gas pipe 10 may be connected to the exhaust gas recovery tower (not shown) to absorb the exhaust gas.

又、装置本体1の下方に、エアー供給管11を
設置して常時エアーを供給するようにしたり、あ
るいは装置本体1の下方に、コンベヤの如き取出
し口4を設置して、落下する球体状をしたヨウ素
を受け、取出し口4の下方に設置した受槽12に
送るようにすることもできる。
Also, an air supply pipe 11 may be installed below the device main body 1 to constantly supply air, or an outlet 4 such as a conveyor may be installed below the device main body 1 to prevent falling spherical objects. It is also possible to receive the iodine and send it to a receiving tank 12 installed below the outlet 4.

次に、第2図に従つて上記の方法を詳細に説明
する。
Next, the above method will be explained in detail with reference to FIG.

即ち、装置本体1の下面を水等の冷却液13を
充填した受槽12内に望ませて設置する。そし
て、装置本体1の上側に設ける冷却剤噴射ノズル
3を斜め下向きに設置し、更に装置本体1の下側
に冷却剤噴射ノズル3′を斜め上向きに設置して、
前記冷却剤噴射ノズル3を圧力ポンプ9に接続し
た供給管8から分岐した分岐供給管8′に接続す
る。又、装置本体1の上下に導排出口10,11
を設け、いずれか一方を排ガス回収塔に、他方を
エアー供給源に接続したものである。他は、第1
図と同様なので、同一符号を付し、説明を省略す
る。
That is, the apparatus main body 1 is installed so that the lower surface thereof faces into a receiving tank 12 filled with a cooling liquid 13 such as water. Then, the coolant injection nozzle 3 provided on the upper side of the apparatus main body 1 is installed diagonally downward, and further the coolant injection nozzle 3' is installed diagonally upward on the lower side of the apparatus main body 1,
The coolant injection nozzle 3 is connected to a branch supply pipe 8' branched from a supply pipe 8 connected to a pressure pump 9. In addition, there are guide and discharge ports 10 and 11 at the top and bottom of the device main body 1.
one of which is connected to the exhaust gas recovery tower and the other to an air supply source. Others are 1st
Since it is similar to the figure, the same reference numerals are given and the explanation will be omitted.

[作 用] ヨウ素を金属性光沢をもつ滑らかな表面を有す
る粒径0.3〜5mmの球状化物とすることにより、
ケーキングの発生を防止し、蒸気としての逸散に
よる損失を減少させ、更に溶解速度を安定させ
る。
[Function] By converting iodine into a spheroid with a particle size of 0.3 to 5 mm and a smooth surface with metallic luster,
It prevents caking, reduces losses due to vapor escape, and stabilizes the dissolution rate.

[実施例] 次に、本発明の典型的な実施例について、更に
具体的に説明する。
[Example] Next, typical examples of the present invention will be described in more detail.

実施例 1 添付図面の第1図に従つて、ヨウ素(融点
113.5℃)を、噴霧状液体に蒸留水(沸点100℃)
を用いて、粒状化する方法を実施した。
Example 1 According to Figure 1 of the attached drawings, iodine (melting point
113.5℃) into an atomized liquid with distilled water (boiling point 100℃)
A granulation method was carried out using

50のヨウ素熔融釜6から、熔融ヨウ素(130
〜150℃)を導管7を経て、本体1の中心上部に
ノズル3から液滴として分散滴下させる。熔融ヨ
ウ素の滴下速度は5Kg/分、ノズル孔1mmφ×
150ケである。本体1は、400mmφ×3mの塩化ビ
ニル樹脂製円筒で、上部に設けた排出口5から吸
引し、排ガス回収塔(図示せず)へ導く。また、
本体1の下部には、空気供給管11、ベルトコン
ベア4、製品受槽12を設ける。一方、噴射ノズ
ル3から、冷却剤として蒸留水を400〜600gr/分
の速度で噴霧する。9は圧力ポンプを示す。この
ようにして得られた球状ヨウ素は、粒径0.3〜5
mmであり、その粒度分布は7〜32メツシユが100
%であつた。そして、この球状ヨウ素は、表面が
滑らかで金属性光沢を有する。
Melt 50 iodine from kettle 6, melt iodine (130
~150° C.) is dispersed and dropped as droplets from the nozzle 3 onto the upper center of the main body 1 through the conduit 7. The dropping rate of molten iodine is 5 kg/min, nozzle hole 1 mmφ
It is 150 pieces. The main body 1 is a cylinder made of vinyl chloride resin with a diameter of 400 mm and a size of 3 m. The main body 1 is a cylindrical cylinder made of vinyl chloride resin and has a diameter of 400 mm. Also,
At the bottom of the main body 1, an air supply pipe 11, a belt conveyor 4, and a product receiving tank 12 are provided. Meanwhile, distilled water is sprayed as a coolant from the spray nozzle 3 at a rate of 400 to 600 gr/min. 9 indicates a pressure pump. The spherical iodine thus obtained has a particle size of 0.3 to 5.
mm, and its particle size distribution is 7 to 32 meshes to 100
It was %. This spherical iodine has a smooth surface and metallic luster.

このようにして得られた本製品の安息角は32゜
であり、ホツパーから供給する際の架橋、閉塞を
生ずることなく、25Kg入りのフアイバードラム製
容器を用いて梱包した場合、6ケ月経過してもケ
ーキングを生ずることがなく、取出しが容易であ
つた。
The angle of repose of this product obtained in this way is 32 degrees, and when it is packed in a 25 kg fiber drum container without causing any crosslinking or clogging when fed from the hopper, it will last for 6 months. However, no caking occurred and it was easy to take out.

[比較例] これに対し、従来品を使用した場合、安息角は
66゜であり、架橋、閉塞、ケーキングが縷々発生
した。実施例1と同一包装品を1ケ月保存した場
合、ケーキングが生じ、容器を傾けてもヨウ素を
簡単には流出させることができなかつた。
[Comparative example] On the other hand, when using the conventional product, the angle of repose is
The temperature was 66°, and bridging, clogging, and caking occurred frequently. When the same packaged product as in Example 1 was stored for one month, caking occurred and the iodine could not be easily flowed out even if the container was tilted.

実施例 2 添付図面の第2図に従つて、熔融ヨウ素を分散
ノズルから滴化し、それを噴霧状冷却剤と向流あ
るいは並流接触させて徐冷を行ない、冷却剤を張
つた製品受槽に冷却固化する方法について実施し
た。
Example 2 According to FIG. 2 of the attached drawings, molten iodine is dripped from a dispersion nozzle, brought into counter-current or co-current contact with an atomized coolant for slow cooling, and then poured into a product receiving tank filled with coolant. A method of cooling and solidifying was conducted.

熔融ヨウ素(130〜150℃)を、液滴化ノズル2
から本体1の中心上部に液滴として分散滴化させ
る。滴下速度5Kg/分、ノズル孔1mmφ×150ケ
である。本体1は、400mmφ×3mの塩化ビニル樹
脂製円筒で、上部に設けた排出口5から吸引し、
排ガス回収塔(図示せず)へ導く。また、本体1
の下部には、空気供給管11、製品受槽12′を
設ける。一方、噴射ノズル3又は3′から、冷却
剤として蒸留水を300〜500gr/分の速度で噴霧す
る。9は圧力ポンプを示す。このようにして粒径
0.5〜3mmで表面に金属性光沢を有するヨウ素の
球状化物が得られた。
Melted iodine (130-150℃) is converted into droplets through nozzle 2.
The liquid is dispersed into droplets at the upper center of the main body 1. The dropping rate was 5 kg/min, and the nozzle holes were 1 mmφ x 150 pieces. The main body 1 is a cylinder made of vinyl chloride resin with a diameter of 400 mm and a diameter of 3 m.
It is led to an exhaust gas recovery tower (not shown). Also, main body 1
At the bottom, an air supply pipe 11 and a product receiving tank 12' are provided. Meanwhile, distilled water is sprayed as a coolant from the spray nozzle 3 or 3' at a rate of 300 to 500 gr/min. 9 indicates a pressure pump. In this way, the particle size
A spherical iodine product with a thickness of 0.5 to 3 mm and a metallic luster on the surface was obtained.

実施例2の方法で得られた本製品も実施例1の
ものと同様な特性を有する。
The product obtained by the method of Example 2 also has properties similar to those of Example 1.

[発明の効果] 本発明の方法で得られる新規形態を有するヨウ
素の球状化物は、金属性光沢をもつ滑らかな表面
を有するものであり、粒子表面に微粉末化した物
質が付着しておらず、球状化物相互の接触面が小
さいため、ケーキングの発生が少ないという優れ
た効果を発揮する。この特性は、取扱い作業の能
率向上にも効果的であり、蒸気としての逸散によ
る損失も少ないという効果にもつながる。更に、
粒径0.3〜5mmでほぼ均一な粒度分布を有してお
り、急激な溶解はせず、安定した溶解速度をもつ
という効果も認められる。
[Effects of the Invention] The spheroidized iodine having a new form obtained by the method of the present invention has a smooth surface with metallic luster, and no finely powdered substance is attached to the particle surface. Since the contact surface between the spheroids is small, it exhibits an excellent effect of reducing the occurrence of caking. This characteristic is effective in improving the efficiency of handling operations, and also leads to the effect of reducing loss due to dissipation as steam. Furthermore,
It has a particle size of 0.3 to 5 mm and has a substantially uniform particle size distribution, and it is also recognized that it does not dissolve rapidly and has a stable dissolution rate.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は、本発明に係るヨウ素の球状化物の
製法の実施例を説明するための概略図であり、第
1図は実施例1を説明する装置の断面図、第2図
は実施例2を説明する装置の断面図である。 なお、図中1は装置本体、2は液滴化ノズル、
3は噴射ノズル、4は取出し口、5は排出口であ
る。
The attached drawings are schematic diagrams for explaining an example of the method for producing spheroidized iodine according to the present invention, and FIG. 1 is a cross-sectional view of an apparatus for explaining Example 1, and FIG. FIG. 2 is a cross-sectional view of the device to be described. In addition, in the figure, 1 is the main body of the device, 2 is the droplet forming nozzle,
3 is an injection nozzle, 4 is a take-out port, and 5 is a discharge port.

Claims (1)

【特許請求の範囲】[Claims] 1 金属性光沢をもつ滑らかな表面を有する粒径
0.3〜5mmのヨウ素の球状化物。
1 Particle size with a smooth surface with metallic luster
A spheroid of iodine with a size of 0.3 to 5 mm.
JP20629785A 1985-09-20 1985-09-20 Spheriform sublimable substance and its preparation Granted JPS6193823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20629785A JPS6193823A (en) 1985-09-20 1985-09-20 Spheriform sublimable substance and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20629785A JPS6193823A (en) 1985-09-20 1985-09-20 Spheriform sublimable substance and its preparation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57006859A Division JPS58124528A (en) 1982-01-21 1982-01-21 Spherical product of sublimable substance, method and apparatus for preparing same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP14814988A Division JPH01164430A (en) 1988-06-17 1988-06-17 Production of sphere of sublimable substance

Publications (2)

Publication Number Publication Date
JPS6193823A JPS6193823A (en) 1986-05-12
JPH0248481B2 true JPH0248481B2 (en) 1990-10-25

Family

ID=16520966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20629785A Granted JPS6193823A (en) 1985-09-20 1985-09-20 Spheriform sublimable substance and its preparation

Country Status (1)

Country Link
JP (1) JPS6193823A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8614566D0 (en) * 1986-06-16 1986-07-23 Ici Plc Spraying
JP5768956B2 (en) * 2010-12-24 2015-08-26 芝浦メカトロニクス株式会社 Solid particle manufacturing apparatus and solid particle manufacturing method
KR101400393B1 (en) * 2012-08-28 2014-05-27 주식회사 이루켐 Liquid granulating apparatus

Also Published As

Publication number Publication date
JPS6193823A (en) 1986-05-12

Similar Documents

Publication Publication Date Title
AU591268B2 (en) Method and apparatus for granulation and granulated product
US3991225A (en) Method for applying coatings to solid particles
US4430241A (en) Mixed nitrate salt heat transfer medium and process for providing the same
GB2231883A (en) Method for manufacturing titanium powder or titanium composite powder
NO153361B (en) PROCEDURE FOR THE PREPARATION OF GRANULES CONSTRUCTED BY A CORE AND A CAPE
JPS58124528A (en) Spherical product of sublimable substance, method and apparatus for preparing same
JPS5934419B2 (en) Method for producing urea prills and urea prills obtained by applying this method
EP0278246B1 (en) Production of granular bisphenols
US2975142A (en) Granular water-soluble perborate-containing salt mixture
US2798831A (en) Coating protected alkali metal product and process
JPH0248481B2 (en)
US4234318A (en) Process for granulation of sulfur
US4168967A (en) Nickel and cobalt irregularly shaped granulates
JPH0415161B2 (en)
JPS637307Y2 (en)
US4124663A (en) Continuous process for pelleting explosive compositions
JPS637308Y2 (en)
US3622366A (en) Encapsulation method
US3473740A (en) Granulation of fine particles
US5006369A (en) Removing contaminants from a gas stream
US3704102A (en) Production of caustic soda prills
US6221294B1 (en) Process for the production of cyanuric chloride moldings
JPS626599B2 (en)
JPS6131304A (en) Spheroidized iodine, process and device for preparing the sphroidized iodine
JPS62174303A (en) Method and apparatus for solidifying pulverized particle of molten metal