JPH0248413A - Production of anhydrous potassium fluoride powder - Google Patents

Production of anhydrous potassium fluoride powder

Info

Publication number
JPH0248413A
JPH0248413A JP19563988A JP19563988A JPH0248413A JP H0248413 A JPH0248413 A JP H0248413A JP 19563988 A JP19563988 A JP 19563988A JP 19563988 A JP19563988 A JP 19563988A JP H0248413 A JPH0248413 A JP H0248413A
Authority
JP
Japan
Prior art keywords
potassium fluoride
particle size
drying
temperature
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19563988A
Other languages
Japanese (ja)
Inventor
Shuji Takahashi
高橋 脩二
Akio Kato
昭雄 加藤
Tadao Sakauchi
坂内 忠夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP19563988A priority Critical patent/JPH0248413A/en
Publication of JPH0248413A publication Critical patent/JPH0248413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain anhydrous KF powder having high density and adjustable particle size at a low cost by concentrating and crystallizing an aqueous solution of KF and subjecting the obtained crystalline KF to simultaneous drying and crushing. CONSTITUTION:An aqueous solution of KF is concentrated to 40-80wt.%, especially 60-80wt.% and crystallized at 40-80 deg.C, especially 50-70 deg.C spending 1 hr-2 days, especially 1-24hr to obtain crystallized KF. The crystallized KF is filtered and separated at the same temperature as the crystallization temperature. The crystalline KF is pulverized according to drying by the removal of the water of crystallization. A granular anhydrous KF having uniform particle size can be produced at a lower drying temperature by carrying out the crushing of the crystal simultaneous to the above drying process. The bulk density and particle size of the anhydrous KF can be controlled by selecting the concentration of the concentrated KF, the temperature and time of crystallization and the time of drying and crushing steps.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は還元助剤等として好適な粒度分布幅の狭い無水
フッ化カリウム粉末を安価につくることが出来る無水フ
ッ化カリウム粉末の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing anhydrous potassium fluoride powder that is suitable as a reducing aid and has a narrow particle size distribution at a low cost. .

〔従来の技術〕[Conventional technology]

無水フッ化カリウムは有機化合物のフッ素化剤、塩基と
しての触媒、脱水剤、各種金属の溶融還元処理の調整等
に幅広く使用されているが、かがる反応系ではフッ化カ
リウムが有機塩化物に溶解しにくく、多くの場合固液反
応であり、これを有効利用するため粒度の揃った粉末状
のものが望まれる。
Anhydrous potassium fluoride is widely used as a fluorinating agent for organic compounds, as a catalyst as a base, as a dehydrating agent, and as an adjustment for melt reduction treatment of various metals. In many cases, solid-liquid reactions occur, and in order to utilize this effectively, a powder with uniform particle size is desired.

従来、無水フッ化カリウム粉末を製造ける方法としては
、 (a)フッ化カリウム水溶液を濃縮した後、さらに加熱
乾燥し、粉砕して粉状無水フッ化カリウムとするカルジ
ン法、 (b)フッ化カリウム水溶液を濃縮し、これをスプレー
ドライヤーで加熱乾燥して粉状無水フッ化カリ[クムと
するスプレードライ法、 (C)フッ化カリウム水溶液を冷凍乾燥して粉状無水フ
ッ化カリウムとするフリーズトドライ法、がある。
Conventionally, methods for producing anhydrous potassium fluoride powder include (a) the Kalzin method, in which an aqueous potassium fluoride solution is concentrated, further heated and dried, and pulverized to form powdered anhydrous potassium fluoride; (b) fluoride Spray-drying method in which an aqueous potassium fluoride solution is concentrated and dried by heating with a spray dryer to form anhydrous potassium fluoride powder. (C) Freezing in which an aqueous potassium fluoride solution is freeze-dried to form anhydrous potassium fluoride powder. There is a Todry method.

上記スプレードライ法およびフリーズトドライ法によっ
てつくられた粉状無水フッ化カリウムは、嵩密度、粒径
が共に小さなものが得られ、カルジン法では嵩密度、粒
径の共に大きなものが得られる。
Powdered anhydrous potassium fluoride produced by the above-mentioned spray drying method and freeze drying method has a small bulk density and particle size, whereas the Calzin method produces a powder having a large bulk density and particle size.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記(a)(b)の方法においては300℃以
上の温度を必要とし、また(C)の方法では一70℃以
下の冷温を必要とする等、そのエネルギコストは高く、
装置の煩雑さと相俟って、安価に粉状無水カリウムが得
られない欠点があった。
However, methods (a) and (b) above require a temperature of 300°C or higher, and method (C) requires a cold temperature of -70°C or lower, resulting in high energy costs.
Combined with the complexity of the equipment, there was a drawback that powdered anhydrous potassium could not be obtained at low cost.

本発明は上記の事情に鑑み、粉状無水フッ化カリウムが
安価に得られ、しかも嵩密度、粒径の調整可能な無水フ
ッ化カリウム結晶の製造方法を提供することを目的とす
る。
In view of the above circumstances, an object of the present invention is to provide a method for producing anhydrous potassium fluoride crystals, which allows powdered anhydrous potassium fluoride to be obtained at low cost and whose bulk density and particle size can be adjusted.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため本発明の方法においては、フ
ッ化カリウム水溶液を濃縮、晶析分離して結晶フッ化カ
リウムとし、次いでこ、れを乾燥すると同時に粉砕する
In order to achieve the above object, in the method of the present invention, an aqueous potassium fluoride solution is concentrated, crystallized and separated to obtain crystalline potassium fluoride, which is then dried and pulverized at the same time.

〔作用〕[Effect]

本発明は上記の構成となっているので、製造装置が煩雑
でなく、消費エネルギーが少なくてずみ、また各工程の
条件を選択することによって嵩密度、粒径の調整が可能
となる。
Since the present invention has the above configuration, the manufacturing equipment is not complicated and energy consumption is low, and the bulk density and particle size can be adjusted by selecting the conditions of each step.

〔実施例〕〔Example〕

本発明におけるフッ化カリウムの水溶液を濃縮する濃度
は、40〜80wt%、特に60〜80wt%が好まし
い。この濃縮液よりフッ化カリウムを晶析させるが、そ
の温度は40〜80℃、特に50〜70℃が好ましく、
晶析時間は、1時間〜2日間、特に1時間〜24時間が
適する。晶析したフッ化カリウムのi濾過分離は、上記
晶析と同じ温度で行なわれる。
The concentration of the potassium fluoride aqueous solution in the present invention is preferably 40 to 80 wt%, particularly 60 to 80 wt%. Potassium fluoride is crystallized from this concentrated solution, and the temperature is preferably 40 to 80°C, particularly 50 to 70°C.
Suitable crystallization time is 1 hour to 2 days, particularly 1 hour to 24 hours. The i-filtration separation of the crystallized potassium fluoride is carried out at the same temperature as the crystallization described above.

ト記濃縮したフッ化カリウムの濃度が40wt%未満で
はフッ化カリウムの結晶が充分に得られず、80wt%
を越えると液全体がフッ化カリウム結晶(KF・2H2
0・KF・4H20)となって固化してしまう。また晶
析温度が40℃未満では液全体が固化し、80℃を越え
るとフッ化カリウムの結晶が充分に得られない。ざらに
晶析時間が30分未満では結晶が微細化し1濾過分離が
困難となり2日を越えると、結晶粒が粗大化、或いは顆
粒化して粉砕が困難となる。
(g) If the concentration of concentrated potassium fluoride is less than 40 wt%, sufficient potassium fluoride crystals cannot be obtained;
When the temperature exceeds 2H, the entire liquid becomes potassium fluoride crystals (KF・2H2
0・KF・4H20) and solidifies. If the crystallization temperature is less than 40°C, the entire liquid will solidify, and if it exceeds 80°C, sufficient potassium fluoride crystals will not be obtained. Roughly speaking, if the crystallization time is less than 30 minutes, the crystals become fine and it is difficult to separate them by filtration.If it exceeds 2 days, the crystal grains become coarse or granulated and pulverization becomes difficult.

上記)濾過分離した結晶を、乾燥すると結晶水が除去さ
れ粉化するが、その際粉砕を同時に行なうと粒度の均一
な粉状無水フッ化カリウムが得られ、しかも乾燥温度が
低くてすむ。
When the crystals separated by filtration (above) are dried, the water of crystallization is removed and the crystals are pulverized. If pulverization is performed at the same time, powdered anhydrous potassium fluoride with a uniform particle size can be obtained, and the drying temperature can be low.

上記乾燥機としては、乾燥と粉砕の機能を有するもので
あればよく、例えば回転式熱風乾燥機にセラミックス等
の耐食、耐熱性ボールを入れ、ボールミルの機能を持た
せたもの等が好適で、熱風温度は150〜200℃で用
いられる。
The above-mentioned dryer may be of any type as long as it has the functions of drying and pulverizing. For example, a rotary hot-air dryer containing corrosion-resistant and heat-resistant balls such as ceramics and having the function of a ball mill is suitable. The hot air temperature used is 150 to 200°C.

上記粉状無水フッ化カリウムの嵩密度、粒径は、濃縮フ
ッ化カリウムの濃度、晶析の温度、時間、および乾燥、
粉砕の時間を選ぶことによって調整可能である。
The bulk density and particle size of the powdered anhydrous potassium fluoride are determined by the concentration of concentrated potassium fluoride, crystallization temperature, time, drying,
It is adjustable by choosing the grinding time.

実施例1 濃度3Qwt%のフッ化カリウム水溶液2000gを撹
拌しながら、浴温を70℃に保持して、減圧濃縮法によ
って7Qwt%に濃縮した。濃縮終了時においては、水
溶液全体が糊状となっていた。これを浴170℃に維持
して減圧をとめ、さらに3時間晶析および結晶成長を行
なった。
Example 1 2000 g of a potassium fluoride aqueous solution having a concentration of 3 Qwt% was concentrated to 7Qwt% by a vacuum concentration method while stirring and maintaining the bath temperature at 70°C. At the end of the concentration, the entire aqueous solution had become pasty. The bath was maintained at 170° C., the vacuum was stopped, and crystallization and crystal growth were performed for an additional 3 hours.

次いでこの濃縮晶析液を40℃以上に保持して遠心分離
機にかけ、固液分離した。その結果、粒径的200I1
m、含水率約8%の微細なフッ(ヒカリウムの結晶40
09が得られた。
Next, this concentrated crystallized solution was maintained at 40° C. or higher and centrifuged to separate solid and liquid. As a result, the particle size was 200I1
m, fine fluorine (hypotassium crystals with a moisture content of about 8%)
09 was obtained.

この結晶を回転式熱R1乾燥機に入れ170℃の熱風を
通して乾燥するとともに、径10!Hのアルミナボール
を入れて1時間乾燥粉砕した。
The crystals were placed in a rotary heat R1 dryer and dried by blowing hot air at 170°C. Alumina balls of No. H were added and the mixture was dried and ground for 1 hour.

その結果、粒径的150μmの均一微細な無水フッ化カ
リウム結晶360gが得られた。この結晶の含水率は1
wt%以下、嵩密度は1.3び/dであった。
As a result, 360 g of uniformly fine anhydrous potassium fluoride crystals with a particle size of 150 μm were obtained. The water content of this crystal is 1
wt% or less, the bulk density was 1.3 bi/d.

実施例2 濃縮をフッ化カリウム′a度60wt%まで行なった他
は実施例1と同じにしてi濾過弁離し、粒径200μm
、含水率3wt%の微細結晶250gを得た。
Example 2 Same as Example 1 except that concentration of potassium fluoride was carried out to 60 wt%, the filtration valve was separated, and the particle size was 200 μm.
, 250 g of fine crystals with a water content of 3 wt% were obtained.

この結晶を実施例1と同じ条件で乾燥、粉砕し、粒径的
150μmの均一微細な無水フッ化カリウム結晶220
gを得た。この結晶の含水率は1wt%以下、嵩密度は
1.3g/c−+++’であった。
These crystals were dried and pulverized under the same conditions as in Example 1, resulting in uniform fine anhydrous potassium fluoride crystals with a particle size of 150 μm.
I got g. The water content of this crystal was 1 wt% or less, and the bulk density was 1.3 g/c-+++'.

比較例1 乾燥時にアルミナボールを入れなかった他は実施例1と
同じにして無水フッ化カリウム粉末をつくった。この粉
状無水フッ化カリウムの粒径は200〜800μmとバ
ラつき、嵩密度は1.0g/cTl′であった。
Comparative Example 1 Anhydrous potassium fluoride powder was prepared in the same manner as in Example 1 except that alumina balls were not added during drying. The particle size of this powdered anhydrous potassium fluoride varied from 200 to 800 μm, and the bulk density was 1.0 g/cTl'.

比較例2 11[30wt%のフッ化カリウム水溶液2000gを
撹拌しながら、浴温90℃で減圧濃縮し、濃度95wt
%まで減縮した。溶液は全体が結晶固化し、これを回転
式熱風乾燥機でアルミナボールを入れて乾燥粉砕したが
、粉砕は充分行なわれず、ブロック化した結晶が得られ
たのみであった。
Comparative Example 2 11 [2000 g of a 30 wt% potassium fluoride aqueous solution was concentrated under reduced pressure at a bath temperature of 90°C to a concentration of 95 wt%.
It was reduced to %. The entire solution solidified into crystals, and was dried and ground in a rotary hot air dryer with alumina balls placed therein, but the grinding was not sufficient and only blocked crystals were obtained.

比較例3 晶析、τ濾過分離の温度を30℃で行なった他は実施例
1と同じにした。その結果、i濾過時にブロック化した
結晶が得られ、また、乾燥粉砕時、アルミナボールによ
る粉砕は充分に行なわれず、ブロック化した粗大結晶が
得られるのみであった。
Comparative Example 3 The procedure was the same as in Example 1 except that the temperature of crystallization and τ filtration separation was 30°C. As a result, blocked crystals were obtained during i-filtration, and during dry pulverization, pulverization with alumina balls was not performed sufficiently, and only coarse blocked crystals were obtained.

実施例3〜8 11度3Qwt%のフッ化カリウム水溶液を濃縮濃度、
晶析の温度、時間、および乾燥粉砕の時間を種々変えて
無水フッ化カリウム粉末をつくり、その嵩密度、粒径を
測定した。結果を第1表に示〔発明の効果〕 以上述べたように本発明に係る無水フッ化カリウム粉末
の製造方法は、装置が簡単で、かつ使用するエネルギー
量が少なく、さらに条件を変えることによって嵩密度、
粒径が調整でき、還元助剤として好適な、嵩密度0.9
〜1.、l/cI!1′の範囲で粒度分布幅の狭い粉末
が安価に得られる優れた方法である。
Examples 3 to 8 Concentration of 11 degrees 3Qwt% potassium fluoride aqueous solution,
Anhydrous potassium fluoride powder was prepared by varying the temperature and time of crystallization, and the time of drying and pulverization, and its bulk density and particle size were measured. The results are shown in Table 1. [Effects of the Invention] As described above, the method for producing anhydrous potassium fluoride powder according to the present invention has a simple device, uses a small amount of energy, and can be improved by changing the conditions. The bulk density,
Particle size can be adjusted and bulk density is 0.9, suitable as a reduction aid.
~1. , l/cI! This is an excellent method for obtaining powder with a narrow particle size distribution in the 1' range at low cost.

Claims (1)

【特許請求の範囲】[Claims] フッ化カリウム水溶液を濃縮、晶析分離して結晶フッ化
カリウムとし、次いでこれを乾燥すると同時に粉砕する
ことを特徴とする無水フッ化カリウム粉末の製造方法。
A method for producing anhydrous potassium fluoride powder, which comprises concentrating and crystallizing an aqueous potassium fluoride solution to obtain crystalline potassium fluoride, which is then dried and simultaneously pulverized.
JP19563988A 1988-08-05 1988-08-05 Production of anhydrous potassium fluoride powder Pending JPH0248413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19563988A JPH0248413A (en) 1988-08-05 1988-08-05 Production of anhydrous potassium fluoride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19563988A JPH0248413A (en) 1988-08-05 1988-08-05 Production of anhydrous potassium fluoride powder

Publications (1)

Publication Number Publication Date
JPH0248413A true JPH0248413A (en) 1990-02-19

Family

ID=16344514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19563988A Pending JPH0248413A (en) 1988-08-05 1988-08-05 Production of anhydrous potassium fluoride powder

Country Status (1)

Country Link
JP (1) JPH0248413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322402A (en) * 1992-03-19 1994-11-22 Showa Denko Kk Method for separating and refining potassium fluoride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322402A (en) * 1992-03-19 1994-11-22 Showa Denko Kk Method for separating and refining potassium fluoride
JP2547500B2 (en) * 1992-03-19 1996-10-23 昭和電工株式会社 How to reduce tantalum

Similar Documents

Publication Publication Date Title
JP2562147B2 (en) sweetener
US3932615A (en) Process for the preparation of granules
US3929503A (en) Production of free-flowing particles of glucose, fructose or the mixture thereof
WO2021010447A1 (en) Production method for crystalline sorbitol powder
JPH01190691A (en) Production of granule of sucrose fatty acid ester
JP3316179B2 (en) Method for producing a mixture rich in 1,6-GPS or 1,1-GPM
JPH0412105B2 (en)
JPH0248413A (en) Production of anhydrous potassium fluoride powder
CN107188798A (en) A kind of process for refining of sodium citrate of controllable granularity and realize device
KR100584828B1 (en) Method of producing crystalline d-sorbitol
EP1142866A9 (en) Method for producing calcium pantothenate
JP2004043258A (en) Method of cutting carbon nanotube
CN102260166A (en) Method for drying citrate monohydrate crystals and obtained citrate monohydrate crystals
KR0139976B1 (en) Process for preparing crystalline sodium silicates having a laminated structure
JPH09110891A (en) Highly fluid maltitol powder and its production
JP3322766B2 (en) Method for producing granulated brown sugar
JPS6344592A (en) Production of alpha-l-aspartyl-l-phenylalanine methyl ester having improved solubility
JPS61104800A (en) Production of powder containing ractulose crystal
JPH0641190A (en) Production of l-alpha-aspartyl-l-phenylalanine methyl ester
JPH08173200A (en) Spherical granule of saccharides and its production
JPH02243699A (en) Preparation of dry crystal of alpha-l-aspartyl-l-phenylala-nine methyl ester having improved solubility
JP2756571B2 (en) Method for producing granular dipeptide sweetener
JP3561565B2 (en) Method for producing mixed powder composition of sugar and sorbitol with high fluidity
JP2604828B2 (en) Method for producing stable sodium ascorbate powder
JP3266662B2 (en) Method for drying and granulating aspartame