JPH0248404B2 - SERAMITSUKUSUNOKAATSUIKOMISEIKEIHOHO - Google Patents

SERAMITSUKUSUNOKAATSUIKOMISEIKEIHOHO

Info

Publication number
JPH0248404B2
JPH0248404B2 JP28762786A JP28762786A JPH0248404B2 JP H0248404 B2 JPH0248404 B2 JP H0248404B2 JP 28762786 A JP28762786 A JP 28762786A JP 28762786 A JP28762786 A JP 28762786A JP H0248404 B2 JPH0248404 B2 JP H0248404B2
Authority
JP
Japan
Prior art keywords
mold
pressure
hydrophobic
injection port
permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28762786A
Other languages
Japanese (ja)
Other versions
JPS63141702A (en
Inventor
Hiroyuki Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP28762786A priority Critical patent/JPH0248404B2/en
Priority to US07/126,168 priority patent/US5156856A/en
Priority to DE19873741002 priority patent/DE3741002A1/en
Publication of JPS63141702A publication Critical patent/JPS63141702A/en
Publication of JPH0248404B2 publication Critical patent/JPH0248404B2/en
Priority to US07/916,269 priority patent/US5296175A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はセラミツクスの成形に使用する加圧鋳
込成形方法に関するものである。さらに詳しく
は、オイル等の疎水性加圧媒体を介してセラミツ
クス泥漿の加圧および脱水を行うこと特徴とする
ものである。 (従来の技術) 従来、セラミツクスの成形方法としては、プレ
ス成形方法、射出成形方法、鋳込成形方法等とと
もに、近年加圧鋳込成形方法が注目されている。
この加圧鋳込成形方法は、第5図、第6図に示す
ように所望形状の鋳込型17の一方の注入口12
からセラミツクスの泥漿15を注入し、この注入
口12から空気18等の気体により加圧するとと
もに、鋳込型17の他方から透過性機能をもつた
型(透過性型)13を通して脱水することによ
り、高密度のセラミツク成形体を得ている。 (発明が解決しようとする問題点) しかしながら、上述した従来の加圧鋳込成形方
法によれば、鋳込んだ泥漿を空気、ガス等の気体
を介して直接加圧しているため、特に10Kg/cm2
上での使用にあつては、高圧ガス取締法による使
用上の規制を受けるとともに爆発等の事故を起こ
した場合の危険が大きく、容易に使用できない欠
点があつた。また、透過性機能をもたない型(非
透過性型)あるいは透過性型と脱水後の成形体の
離型を容易にするために、非透過性型あるいは透
過性型とセラミツクス泥漿が接する部分には、予
め離型剤が付与されるが、加圧鋳込途中に加圧ま
たは加圧吸引により透過性型を通して透過されて
しまい、非透過性型あるいは透過性型と成形体の
離型が困難となる欠点があつた。また、成形体の
形状、大きさにより、さらに離型が困難となる欠
点も生じる。さらに、注入口から空気等で加圧す
るとともに鋳込型の他方から透過性機能をもつた
型を通して脱水すると、成形完了近くに非透過性
型と成形体の界面の一部または、透過性型と成形
体の界面の一部を空気等が通り、空気が通る部分
だけ乾燥が進み乾燥クラツクが発生しやすい欠点
があつた。 本発明の目的は上述した不具合が解消して、成
形完了後の離型が容易であるとともに、成形体表
面にクラツクの発生がないセラミツクスの加圧鋳
込成形方法を提供しようとするものである。 (問題点を解決するための手段) 本発明のセラミツクスの加圧鋳込成形方法は、
鋳込型の一方の注入口からセラミツクスの泥漿を
注入し、該注入口から加圧するとともに、鋳込型
の他方から透過性機能をもつた型を通して脱水す
ることにより、高密度のセラミツクス成形体を得
る成形方法であつて、所定のセラミツクス泥漿を
鋳込型中へ注入後、前記注入口に疎水性加圧媒体
を満たすことにより、疎水性加圧媒体を介してセ
ラミツクスの泥漿の加圧および脱水を行うことを
特徴とするものである。 (作用) 以下、図面を用いて本発明を詳細に説明する。 第1図は本発明の加圧鋳込成形方法の概念を説
明するための断面図である。第1図において、1
は透過性を有しない非透過性の型、2はセラミツ
クスの泥漿(スラリー)を注入するための注入
口、3は透過性を有する透過性型、4は疎水性加
圧媒体、5は成形すべきセラミツクスの泥漿(ス
ラリー)、6は水分を透過性型3を介して吸引す
るための吸引口である。疎水性加圧媒体として
は、液状で流動性があり水とはまざらない、例え
ばオリーブ油、菜種油等の動植物油類やダフニー
スパーマルチ32(商品名)等の工作機械用潤滑油
類が好適に使用される。また、透過性型として
は、セラミツクス/金属の複合体、合成樹脂/無
機化合物の複合体、石膏、多孔質金属焼結体等
が、さらに非透過性型としては、金属、硬質アク
リル、セラミツクス等の非透過性で加圧に耐える
物が好適に使用できる。なお、本発明では、加圧
力は10Kg/cm2以上が好ましい。この理由は、目的
とする高密度のセラミツクスを短時間に工業的に
得ることができるからである。また、10Kg/cm2
上の圧力を得る方法として液体による加圧と気体
による加圧とが考えられるが、気体による加圧は
高圧ガス取締法により使用上の制限を受けるた
め、液体による加圧が好ましい方法として選択さ
れることとなる。また、直接疎水性加圧媒体を油
圧ポンプ等を用いて加圧してもよい。上述した構
成において、実際の加圧鋳込操作は以下のように
して実施する。 まず、成形すべき所定のセラミツク泥漿5を注
入口2を介して鋳込型内に注入する。次にオリー
ブ油等の疎水性加圧媒体4を注入口2に満たし、
注入口2の上方から油圧装置等により加圧すると
ともに、吸引口6を介して真空ポンプ等の真空装
置または、水流ポンプ等の減圧装置等によりセラ
ミツクス泥漿5中の水分を透過性型3を介して透
過吸引する。この場合、吸引口6からの真空また
は減圧による吸引は必須ではなく、吸引はなくて
も良いが、吸引を行つたほうが成形体の保形性を
良くするために好ましい。また、注入口2からの
加圧力は一定でも良いが、成形体形状、透過性型
の位置等により、加圧途中に加圧力を変化させた
ほうが成形体クラツクの発生防止のために好まし
い。この方法によると、成形完了時に非透過性型
1と成形体の界面に疎水性加圧媒体4が浸入し離
型剤として作用するため、離型を容易に行うこと
ができる。 透過性型3からの離型は、成形体と透過性型の
接する部分が単純形状であるため離型時に吸引口
6より空気等にて加圧しながら成形体を離型する
と容易に離型ができる。このときの吸引口6より
の圧力は、2〜3Kg/cm2と低い圧力でよい。 また、直接セラミツクス泥漿を空気等で加圧し
た場合オリーブ油等の疎水性加圧媒体4を流し込
む時期が成形完了後であると、成形体と非透過性
型1の界面を空気等が入り込み成形体が部分的に
乾燥して割れの原因となるので、望ましくは成形
完了時までにオリーブ油等の疎水性加圧媒体4を
流し込むのが良い。さらに、疎水性加圧媒体4を
流し込む量は、成形体の形状、大きさ、加圧力、
加圧時間による異なるため、各々にあつた量を定
める必要がある。すなわち、少なくとも成形体の
全表面をおおう程度の量が必要である。 第2図は、透過性型が成形体と多くの割合で接
するように配置されている場合についての断面図
である。なお、第2図において第1図に示す実施
例と同一の部材には同一の符号を付し、その説明
を省略する。 まず、形成すべき所定のセラミツクス泥漿5を
所定量注入口2を介して鋳込型内に注入する。こ
のとき、セラミツクス泥漿5の注入量は、所望す
る成形体の形状肉厚により量を定める必要があ
る。次に、オリーブ油等の疎水性加圧媒体4を注
入口2に満たし、注入口2の上方から油圧装置等
により加圧するとともに、吸引口6を介して真空
ポンプ等の真空装置によりセラミツクス泥漿5中
の水分を透過性型3を介して透過吸引する。透過
性型へ着肉が進行するにつれて泥漿上部の液面が
下がるためやがて疎水性加圧媒体4は透過性型3
に到達し、透過性型3の一部を介して透過吸引さ
れるようになる。この場合、吸引を行わなくて
も、透過性型3の一部を介して疎水性加圧媒体4
は透過される。このとき、吸引口6からの吸引を
停止し、加圧力を低下または加圧を停止すること
により、成形体と透過性型3の界面及び透過性型
の成形体側付近に疎水性加圧媒体4が浸入し離型
剤として作用するため、離型を容易に行うことが
できる。この場合、疎水性加圧媒体4の浸入を容
易にするため吸引口6からの吸引を停止するだけ
でなく、吸引口6から加圧しても良いが、透過性
型3中の水分が成形体のほうに流れるため、透過
性型3中の水分量が成形体に損傷及び離型に影響
しないことを確認し、疎水性加圧媒体4の浸入を
阻止しない圧力で加圧する必要がああ。また、注
入口2からの加圧力を低下したときの加圧力は、
成形体形状、透過性型3の気孔の大きさ等により
異なるため各々にあつた加圧力を設定する必要が
ある。さらに、注入口2からの加圧を停止した場
合、再び加圧しても良くこのときの加圧力も成形
体形状、透過性型3の気孔の大きさ等により異な
るため、各々にあつた加圧力を設定する必要があ
る。 離型は鋳込型内い残つたセラミツクス泥漿5及
び疎水性加圧媒体4を注入口2より排出後、吸引
口6より空気等にて加圧しながら成形体を離形す
るとより容易に離型できる。 以下、第3,4図を参照して実際の例について
説明する。なお、第3,4図において第1図に示
す実施例と同一の部材には同一の符号を付し、そ
の説明を省略する。 実施例 1 焼結助剤を含むSi3N4粉末100重量部に、水58
重量部、トリエチルアミン(解膠剤)1重量部、
結合剤1.4重量部を混合し泥漿を得た。次に、泥
漿中の空気を取り除くため、泥漿を撹拌しながら
真空度73cmHgの雰囲気に5分間保持し真空脱気
をした。この泥漿を第3図に示すタービンロータ
ー型に注入口2より100c.c.流し込み、その後疎水
性加圧媒体としてダフニースパーマルチ32を注入
口2より流し込み、油圧装置を用い注入口2より
加圧力70Kg/cm2で加圧を行うとともに吸引口6よ
り吸引脱水を行い8分間で成形を完了した。この
とき、成形体と非透過性型1及び透過性型3との
離型性は良好であつた。また、同一泥漿にて成形
条件を変えた成形結果を第1表に示す。
(Industrial Application Field) The present invention relates to a pressure casting method used for molding ceramics. More specifically, it is characterized in that the ceramic slurry is pressurized and dehydrated via a hydrophobic pressurized medium such as oil. (Prior Art) Conventionally, in addition to press molding methods, injection molding methods, cast molding methods, etc., pressure casting methods have been attracting attention in recent years as methods for molding ceramics.
In this pressure casting method, as shown in FIGS. 5 and 6, one injection port 12 of a casting mold 17 having a desired shape is
By injecting the ceramic slurry 15 from the inlet, pressurizing it with gas such as air 18 from the injection port 12, and dehydrating it through the mold 13 having a permeable function (permeable mold) from the other side of the casting mold 17, A high-density ceramic molded body is obtained. (Problems to be Solved by the Invention) However, according to the conventional pressure casting method described above, the cast slurry is directly pressurized via gas such as air or gas, so in particular When used above cm 2 , it is subject to usage regulations under the High Pressure Gas Control Law, and there is a high risk of an accident such as an explosion, so it has the disadvantage that it cannot be used easily. In addition, in order to facilitate the release of the mold without a permeable function (non-permeable mold) or the permeable mold and the molded product after dehydration, the area where the non-permeable mold or permeable mold contacts the ceramic slurry is added. A mold release agent is applied in advance to the mold release agent, but it is permeated through the permeable mold by pressure or pressure suction during pressure casting, and the mold release agent from the non-permeable mold or permeable mold and the molded product is not able to be released. There were some drawbacks that made it difficult. Further, depending on the shape and size of the molded product, there is also the drawback that it becomes more difficult to release the molded product. Furthermore, when pressurizing with air or the like from the injection port and dehydrating through a mold with a permeable function from the other side of the casting mold, near the completion of molding, a part of the interface between the non-permeable mold and the molded object, or a part of the interface between the non-permeable mold and the molded object, Air, etc. pass through a part of the interface of the molded body, and the drying progresses only in the part through which the air passes, resulting in a drawback that drying cracks are likely to occur. An object of the present invention is to provide a pressure casting method for ceramics that eliminates the above-mentioned problems, allows easy release from the mold after completion of molding, and does not cause cracks on the surface of the molded product. . (Means for solving the problems) The pressure casting method for ceramics of the present invention includes:
A high-density ceramic molded body is produced by injecting ceramic slurry from one injection port of the casting mold, pressurizing it from the injection port, and dewatering it from the other casting mold through a mold with a permeable function. A molding method to obtain a molding method, wherein after injecting a predetermined ceramic slurry into a casting mold, the injection port is filled with a hydrophobic pressurizing medium, thereby pressurizing and dewatering the ceramic slurry through the hydrophobic pressurizing medium. It is characterized by performing the following. (Function) Hereinafter, the present invention will be explained in detail using the drawings. FIG. 1 is a sectional view for explaining the concept of the pressure casting method of the present invention. In Figure 1, 1
2 is an injection port for injecting ceramic slurry, 3 is a permeable mold that is permeable, 4 is a hydrophobic pressurizing medium, and 5 is a molding port. The ceramic slurry 6 is a suction port for sucking moisture through the permeable mold 3. Suitable hydrophobic pressure media include animal and vegetable oils such as olive oil and rapeseed oil, which are liquid and fluid and do not mix with water, and lubricating oils for machine tools such as Daphne Super Multi 32 (trade name). used. Transparent types include ceramic/metal composites, synthetic resin/inorganic compound composites, gypsum, porous metal sintered bodies, etc., and non-permeable types include metals, hard acrylic, ceramics, etc. Non-permeable materials that can withstand pressure can be suitably used. In the present invention, the pressing force is preferably 10 Kg/cm 2 or more. The reason for this is that the desired high-density ceramics can be industrially obtained in a short time. In addition, pressurization with liquid and pressurization with gas are possible ways to obtain a pressure of 10 kg/cm 2 or more, but pressurization with gas is subject to restrictions on use under the High Pressure Gas Control Law, so pressurization with liquid will be selected as the preferred method. Alternatively, the hydrophobic pressurizing medium may be directly pressurized using a hydraulic pump or the like. In the above-described configuration, the actual pressure casting operation is performed as follows. First, a predetermined ceramic slurry 5 to be molded is injected into a casting mold through the injection port 2. Next, fill the injection port 2 with a hydrophobic pressurized medium 4 such as olive oil,
Pressurization is applied from above the injection port 2 using a hydraulic device or the like, and water in the ceramic slurry 5 is removed through the permeable mold 3 using a vacuum device such as a vacuum pump or a pressure reducing device such as a water jet pump through the suction port 6. Aspirate permeation. In this case, suction by vacuum or reduced pressure from the suction port 6 is not essential, and suction may be omitted, but it is preferable to perform suction in order to improve the shape retention of the molded article. Furthermore, although the pressing force from the injection port 2 may be constant, it is preferable to change the pressing force during pressurization depending on the shape of the molded body, the position of the transparent mold, etc., in order to prevent the occurrence of cracks in the molded body. According to this method, when the molding is completed, the hydrophobic pressurized medium 4 enters the interface between the non-permeable mold 1 and the molded body and acts as a mold release agent, so that the mold can be easily released. The mold can be easily released from the transparent mold 3 by pressing the molded product with air or the like through the suction port 6 during mold release, since the contact area between the molded product and the transparent mold has a simple shape. can. The pressure from the suction port 6 at this time may be as low as 2 to 3 kg/cm 2 . In addition, if the ceramic slurry is directly pressurized with air or the like, if the hydrophobic pressurizing medium 4 such as olive oil is poured after the completion of molding, air or the like will enter the interface between the molded body and the impermeable mold 1 and the molded body It is preferable to pour in the hydrophobic pressurizing medium 4, such as olive oil, by the time the molding is completed, since this may dry partially and cause cracks. Furthermore, the amount of the hydrophobic pressurized medium 4 to be poured depends on the shape and size of the molded body, the pressurizing force, etc.
Since the amount varies depending on the pressurization time, it is necessary to determine the appropriate amount for each. In other words, an amount of at least enough to cover the entire surface of the molded body is required. FIG. 2 is a cross-sectional view of the case where the transparent mold is arranged so as to be in contact with the molded body in a large proportion. In FIG. 2, the same members as those in the embodiment shown in FIG. 1 are designated by the same reference numerals, and their explanations will be omitted. First, a predetermined amount of ceramic slurry 5 to be formed is injected into the casting mold through the injection port 2. At this time, the amount of ceramic slurry 5 to be injected must be determined depending on the desired shape and thickness of the molded body. Next, the injection port 2 is filled with a hydrophobic pressurizing medium 4 such as olive oil, and pressurized from above the injection port 2 by a hydraulic device or the like, and the ceramic slurry 5 is poured into the ceramic slurry 5 through the suction port 6 by a vacuum device such as a vacuum pump. The moisture is permeated and sucked through the permeable mold 3. As the ink buildup progresses to the permeable type, the liquid level above the slurry decreases, and eventually the hydrophobic pressurized medium 4 changes to the permeable type 3.
The liquid reaches the point where it is permeated and sucked through a part of the permeable mold 3. In this case, the hydrophobic pressurized medium 4 can be passed through a part of the permeable mold 3 without suction.
is transmitted. At this time, by stopping the suction from the suction port 6 and reducing or stopping the pressurizing force, the hydrophobic pressurized medium 4 is applied to the interface between the molded body and the transparent mold 3 and near the molded body side of the transparent mold. penetrates and acts as a mold release agent, making it easy to release the mold. In this case, in order to facilitate the infiltration of the hydrophobic pressure medium 4, suction from the suction port 6 may be stopped as well as pressure may be applied from the suction port 6; Therefore, it is necessary to confirm that the amount of water in the permeable mold 3 does not damage the molded product or affect mold release, and to apply pressure at a pressure that does not prevent the hydrophobic pressurizing medium 4 from penetrating. In addition, the pressurizing force when the pressurizing force from the injection port 2 is reduced is:
Since the pressure varies depending on the shape of the molded body, the size of the pores in the permeable mold 3, etc., it is necessary to set a suitable pressure for each. Furthermore, when the pressure from the injection port 2 is stopped, the pressure may be applied again, and the pressure applied at this time also varies depending on the shape of the molded product, the size of the pores of the permeable mold 3, etc. need to be set. The mold can be released more easily if the ceramic slurry 5 and hydrophobic pressure medium 4 remaining in the casting mold are discharged from the injection port 2, and then the molded body is released while being pressurized with air or the like from the suction port 6. can. An actual example will be described below with reference to FIGS. 3 and 4. In FIGS. 3 and 4, the same members as those in the embodiment shown in FIG. 1 are designated by the same reference numerals, and their explanations will be omitted. Example 1 58 parts by weight of water was added to 100 parts by weight of Si 3 N 4 powder containing a sintering aid.
parts by weight, 1 part by weight of triethylamine (peptizer),
A slurry was obtained by mixing 1.4 parts by weight of a binder. Next, in order to remove the air in the slurry, the slurry was kept in an atmosphere with a vacuum degree of 73 cmHg for 5 minutes while stirring to perform vacuum degassing. 100 c.c. of this slurry was poured into the turbine rotor type shown in Fig. 3 from the injection port 2, and then Daphne Super Mulch 32 was poured from the injection port 2 as a hydrophobic pressurizing medium, and pressure was applied from the injection port 2 using a hydraulic device. Pressure was applied at 70 kg/cm 2 and suction dehydration was performed through the suction port 6 to complete molding in 8 minutes. At this time, the releasability between the molded body and the non-transparent mold 1 and the transparent mold 3 was good. Further, Table 1 shows the molding results obtained by changing the molding conditions using the same slurry.

【表】 得られた成形体を恒温恒湿器(40℃80%→60℃
50%)および定温乾燥器(100℃)にて4日間で
乾燥し、成形助剤を取り除くため大気中500℃で
3時間仮焼後、N2雰囲気1750℃で1時間焼結し
た。この焼結体は、第2表に示すように室温曲げ
強さ、密度の部分的な差がなく、外観的損傷もな
く所望の形状を満足する良好なものであつた。な
お、室温曲げ強さはJIS−1601に従つて3点曲げ
試験方法を用いた。
[Table] The obtained molded body was placed in a constant temperature and humidity chamber (40℃80% → 60℃
50%) and a constant temperature dryer (100°C) for 4 days, calcined in the air at 500°C for 3 hours to remove the forming aid, and then sintered at 1750°C in an N 2 atmosphere for 1 hour. As shown in Table 2, this sintered body had no local differences in room temperature bending strength or density, was free from external damage, and was in good condition, satisfying the desired shape. Note that the room temperature bending strength was determined using a three-point bending test method in accordance with JIS-1601.

【表】 実施例 2 焼結助剤を含むSiC粉末100重量部に、水45重
量部、ポリカルボン酸(解膠剤)1重量部を混合
し泥漿を得た。次に、泥漿を実施例1と同じく真
空脱気した。この泥漿を第3図に示すタービンロ
ーター型に210c.c.流し込み、注入口2よりピスト
ン式加圧装置にて加圧力20Kg/cm2で加圧を行うと
ともに吸引口6より吸引脱水を30分間行つた。そ
の後、注入口2より余分な泥漿を取り除き注入口
2より疎水性加圧媒体としてオリーブ油を120c.c.
流し込み、さらにエアーコンプレツサーにて注入
口2より加圧力8Kg/cm2で加圧を行うとともに吸
引口6より吸引脱水を5分間行い成形を完了し
た。このとき、流し込んだオリーブ油が成形体の
上部に残る程度で成形を完了した。 得られた成形体は離型性が良く、実施例1と同
様に乾燥した後Ar雰囲気中2100℃で1時間焼結
したところ、密度約3.1の焼結体が得られた。こ
の焼結体は、部分的な密度差、外観的損傷もな
く、所望の形状を満足する良好なものであつた。 実施例 3 実施例1と同様の泥漿調製を行い第4図に示す
割型に泥漿を注入口2より520c.c.流し込み、その
後疎水性加圧媒体としてダフニースパーハイドロ
ウリツクフイルド32を注入口2より流し込み、油
圧装置を用い注入口2より加圧力30Kg/cm2で加圧
を行うとともに吸引口6より吸引脱水を1分間行
つた。その後、吸引脱水を停止し加圧を1分間停
止した後、加圧力を3Kg/cm2にし3分間加圧して
成形を完了した。つぎに、鋳込型内に残つた泥漿
及びダフニースパーハイドロウリツクフイルド32
を排出し離型をした。離型は吸引口6より空気に
て2Kg/cm2の圧力で加圧しながら行つた。得られ
た成形体は離型性が良く、外観的損傷もなく良好
なものであつた。その後、成形体に対して、実施
例1と同様に乾燥、仮焼、焼結を行つた結果、肉
厚約10mmの焼結体が得られた。この焼結体は部分
的に密度差、肉厚差がなく、外観的損傷もなく所
望の形状を満足する良好なものであつた。 (発明の効果) 以上詳細に説明したところから明らかなよう
に、本発明のセラミツクスの加圧鋳込成形方法に
よれば、注入口に疎水性加圧媒体を満たしてこの
疎水性加圧媒体を介して加圧および脱水を行うこ
とにより、高い加圧力において安全かつ容易に成
形ができる。また、成形完了後においても非透過
性型及び透過性型と成形体の界面に疎水性加圧媒
体が侵入して離型剤としての働きをするため、離
型が容易になるとともに、表面が乾燥することな
くクラツクの発生を防止することもできる。
[Table] Example 2 45 parts by weight of water and 1 part by weight of polycarboxylic acid (peptizer) were mixed with 100 parts by weight of SiC powder containing a sintering aid to obtain a slurry. Next, the slurry was vacuum degassed as in Example 1. 210 c.c. of this slurry is poured into the turbine rotor type shown in Figure 3, pressurized with a pressure of 20 kg/cm 2 from the injection port 2 using a piston-type pressurizing device, and suction dewatered from the suction port 6 for 30 minutes. I went. After that, remove the excess slurry from the inlet 2 and add 120 c.c. of olive oil as a hydrophobic pressurized medium to the inlet 2.
After pouring, the mixture was further pressurized with a pressure of 8 kg/cm 2 from the injection port 2 using an air compressor, and suction dehydration was performed from the suction port 6 for 5 minutes to complete the molding. At this time, the molding was completed to the extent that the poured olive oil remained on the upper part of the molded product. The obtained compact had good mold releasability, and when it was dried in the same manner as in Example 1 and sintered at 2100° C. for 1 hour in an Ar atmosphere, a sintered compact with a density of about 3.1 was obtained. This sintered body had no local density differences or external damage, and was in good condition, satisfying the desired shape. Example 3 A slurry was prepared in the same manner as in Example 1, and 520 c.c. of the slurry was poured into the split mold shown in FIG. 2, and pressurized with a pressure of 30 kg/cm 2 from the injection port 2 using a hydraulic device, and suction dehydration was performed from the suction port 6 for 1 minute. Thereafter, suction dehydration was stopped and pressurization was stopped for 1 minute, and then the pressure was increased to 3 kg/cm 2 for 3 minutes to complete molding. Next, the slurry remaining in the casting mold and the Daphne spar hydraulic fluid 32
was discharged and released from the mold. The mold release was performed while pressurizing the mold with air from the suction port 6 at a pressure of 2 kg/cm 2 . The obtained molded product had good mold releasability and was in good condition with no external damage. Thereafter, the molded body was dried, calcined, and sintered in the same manner as in Example 1, and as a result, a sintered body with a wall thickness of approximately 10 mm was obtained. This sintered body had no local density difference or wall thickness difference, and was satisfactory in that it had no external damage and satisfied the desired shape. (Effects of the Invention) As is clear from the above detailed explanation, according to the pressure casting method for ceramics of the present invention, the injection port is filled with a hydrophobic pressurizing medium and the hydrophobic pressurizing medium is By performing pressurization and dehydration through the wafer, molding can be performed safely and easily under high pressure. In addition, even after molding is completed, the hydrophobic pressurized medium enters the interface between the non-permeable mold and the permeable mold and the molded object and acts as a mold release agent, making mold release easier and the surface smoother. It is also possible to prevent cracks from occurring without drying.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2図は本発明の加圧鋳込成形方法の概念
を説明するための断面図、第3,4図は本発明の
加圧鋳込成形方法を実施する装置の一実施例を示
す断面図、第5,6図は従来の加圧鋳込成形方法
の概念を説明するための断面図である。 1……非透過性型、2……注入口、3……透過
性型、4……疎水性加圧媒体、5……泥漿、6…
…吸引口、7……鋳込型。
Figures 1 and 2 are cross-sectional views for explaining the concept of the pressure casting method of the present invention, and Figures 3 and 4 show an embodiment of an apparatus for carrying out the pressure casting method of the present invention. 5 and 6 are cross-sectional views for explaining the concept of the conventional pressure casting method. 1... Non-permeable type, 2... Inlet, 3... Permeable type, 4... Hydrophobic pressurized medium, 5... Slime, 6...
...Suction port, 7...Cast mold.

Claims (1)

【特許請求の範囲】 1 鋳込型の一方の注入口からセラミツクスの泥
漿を注入し、該注入口から加圧するとともに、鋳
込型の他方から透過性機能をもつた型を通して脱
水することにより、高密度のセラミツクス成形体
を得る成形方法であつて、 所定のセラミツクス泥漿を鋳込型中へ注入後、
前記注入口に疎水性加圧媒体を満たすことによ
り、疎水性加圧媒体を介してセラミツクスの泥漿
の加圧および脱水を行うことを特徴とするセラミ
ツクスの加圧鋳込成形方法。 2 前記鋳込型が固形鋳込型である特許請求の範
囲第1項記載のセラミツクスの加圧鋳込成形方
法。
[Scope of Claims] 1. By injecting ceramic slurry from one injection port of a casting mold, pressurizing it from the injection port, and dehydrating it from the other casting mold through a mold with a permeable function, A molding method for obtaining a high-density ceramic molded body, which comprises: after pouring a specified ceramic slurry into a casting mold;
A method for pressure casting and molding of ceramics, characterized in that the injection port is filled with a hydrophobic pressurizing medium to pressurize and dehydrate the ceramic slurry through the hydrophobic pressurizing medium. 2. The pressure casting method for ceramics according to claim 1, wherein the casting mold is a solid casting mold.
JP28762786A 1986-12-04 1986-12-04 SERAMITSUKUSUNOKAATSUIKOMISEIKEIHOHO Expired - Lifetime JPH0248404B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP28762786A JPH0248404B2 (en) 1986-12-04 1986-12-04 SERAMITSUKUSUNOKAATSUIKOMISEIKEIHOHO
US07/126,168 US5156856A (en) 1986-12-04 1987-11-27 Mold for forming molded body
DE19873741002 DE3741002A1 (en) 1986-12-04 1987-12-03 Mould and method of producing a moulding
US07/916,269 US5296175A (en) 1986-12-04 1992-07-21 Method of forming molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28762786A JPH0248404B2 (en) 1986-12-04 1986-12-04 SERAMITSUKUSUNOKAATSUIKOMISEIKEIHOHO

Publications (2)

Publication Number Publication Date
JPS63141702A JPS63141702A (en) 1988-06-14
JPH0248404B2 true JPH0248404B2 (en) 1990-10-25

Family

ID=17719690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28762786A Expired - Lifetime JPH0248404B2 (en) 1986-12-04 1986-12-04 SERAMITSUKUSUNOKAATSUIKOMISEIKEIHOHO

Country Status (1)

Country Link
JP (1) JPH0248404B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533362Y2 (en) * 1988-09-29 1993-08-25

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290263A (en) * 2006-04-26 2007-11-08 Imuno Science Kk Method for molding of titanium compound
JP6058334B2 (en) * 2012-09-25 2017-01-11 日本特殊陶業株式会社 Ceramic sintered body and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533362Y2 (en) * 1988-09-29 1993-08-25

Also Published As

Publication number Publication date
JPS63141702A (en) 1988-06-14

Similar Documents

Publication Publication Date Title
US5296175A (en) Method of forming molded body
CN108748611B (en) Method for forming ceramic body
JPH0677924B2 (en) Mold and method for molding ceramics using the same
JPH0248404B2 (en) SERAMITSUKUSUNOKAATSUIKOMISEIKEIHOHO
EP0210027B1 (en) Method for forming cast article by slip casting
CN115196976A (en) Gradient porous ceramic and preparation method thereof
JPS63221010A (en) Molding die, molding method of article by using said die and pressure casting molding method
CN110465627A (en) A kind of surface layer densification internal defect ceramic core manufacturing method for hollow turbine vane hot investment casting
JPS6089303A (en) High-pressure casting molding method of ceramic material
JP2863085B2 (en) Casting mold and casting method
JP3224645B2 (en) Ceramics molding method
JPS61252102A (en) Method of molding ceramic
JPS6384902A (en) Manufacture of ceramic sintered body
JPS6213303A (en) Slip casting molding method
JPS6362703A (en) Method of molding ceramics
JPS6445779A (en) Production of fiber-reinforced ceramics
JPH0564804A (en) Forming method of sintering compact
JPH02225004A (en) Solid cast molding method
JPH0788862A (en) Slip cast molding of ceramic
JPH0829535B2 (en) Mold and method for hydraulic molding
JPH01186303A (en) Cast molding method
JP2829165B2 (en) Manufacturing method of hollow body
SU1491719A1 (en) Method of producing concrete and ferroconcrete articles
JPH0834674A (en) Composition for low pressure slip cast molding and production of molded body
JPH0596523A (en) Method of drying inorganic powder compact