JPH0248294B2 - - Google Patents
Info
- Publication number
- JPH0248294B2 JPH0248294B2 JP57003473A JP347382A JPH0248294B2 JP H0248294 B2 JPH0248294 B2 JP H0248294B2 JP 57003473 A JP57003473 A JP 57003473A JP 347382 A JP347382 A JP 347382A JP H0248294 B2 JPH0248294 B2 JP H0248294B2
- Authority
- JP
- Japan
- Prior art keywords
- coke
- molded
- activated
- sulfuric acid
- coal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 58
- 239000000571 coke Substances 0.000 claims description 47
- 238000006477 desulfuration reaction Methods 0.000 claims description 17
- 230000023556 desulfurization Effects 0.000 claims description 17
- 239000002994 raw material Substances 0.000 claims description 15
- 239000003245 coal Substances 0.000 claims description 12
- 238000000465 moulding Methods 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000003763 carbonization Methods 0.000 claims description 5
- 230000003213 activating effect Effects 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 238000010306 acid treatment Methods 0.000 description 9
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 230000008569 process Effects 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- 229910052815 sulfur oxide Inorganic materials 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000011338 soft pitch Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
- Treating Waste Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
本発明は改良された脱硝能力を有する脱硫、脱
硝用成型活性コークス及びその製造方法に関す
る。
各種廃ガス中に含まれる硫黄酸化物及び窒素酸
化物を除去するための方法として湿式法あるいは
乾式法による脱硫、脱硝プロセスが多数提案され
ている。これらの脱硫、脱硝プロセスのうち乾式
法においては通常吸着還元剤として活性炭が用い
られているが、活性炭の粒子はその強度が低く循
環使用する際の損耗が大きく経済性において劣る
ところから、乾式脱硫、脱硝プロセスの大きな欠
点となつていた。また通常の活性炭を使用する場
合その脱硝能力も充分ではなく、活性炭にTi,
Cr,Mn,Fe,Vなどの金属を担持させる方法
(例えば特公昭52−48589号公報、特開昭53−
81475号公報)、あるいは表面を過酸化水素、硝酸
などの酸化剤で処理した活性炭を使用する方法
(特公昭52−30144号公報)などが試みられている
が、これらの方法も高価な副原料を必要とするほ
か、なお強度が低いという欠点を残している。
本発明者らはこれらの従来法の欠点を改良すべ
く検討した結果、特定の製造方法により製造した
成型活性コークスが脱硫、脱硝用吸着還元剤とし
て優れた性能を有することを見出し先に出願した
(特願昭55−174566号)。
しかしながら、この成型活性コークスは強度的
には充分改良されているもののその脱硝能力の点
ではなお不充分であり、さらに検討を重ねた結果
本発明に到達した。
すなわち、本発明は特定の製造方法により製造
した活性化した成型コークスを硫酸で処理し、表
面のフエノール性水酸基、カルボキシル基などの
活性基を増加させたことを特徴とする脱硫、脱硝
用成型活性コークス、及び特定の製造方法により
製造した活性化した成型活性コークスを硫酸溶液
で処理して硫酸を添着せしめたのち、不活性ガス
又は弱酸化性ガスの雰囲気下で300〜500℃に加熱
処理することを特徴とする表面のフエノール性水
酸基、カルボキシル基などの活性基を増加させた
脱硫、脱硝用成型活性コークスの製造方法であ
る。
本発明の脱硫、脱硝用成型活性コークスは従来
の活性炭に比較し極めて高い強度を有するので移
動層あるいは流動層形式のプロセスに好適であ
り、吸着、再生のくり返し使用が可能である。さ
らに硫酸処理をしていない成型活性コークスに比
較しその脱硝能力が著しく改良され、極めて優れ
た脱硫、脱硝能力を有している。
本発明で使用する活性化した成型コークスは、
石炭から活性度の高い半成コークスを製造して、
これを主原料とし、これに副原料として数種の石
炭を配合した混合炭に結合剤を加え成型原料と
し、該成型原料のロガ指数を20〜30%の範囲にな
るように調整し、該成型原料を成型した成型物を
低温乾留続いて高温乾留したコークスを賦活して
得られる活性化した成型コークスであつて、比表
面積が100〜400m2/gの範囲に入るものが好まし
い。比表面積が100m2/g未満では得られる脱硫、
脱硝用成型コークスの活性度が低く、また400
m2/gを越えると強度が低下するためいずれも好
ましくない。
硫酸処理は通常次のように実施する。
前記の方法によつて製造した活性化した成型コ
ークスを硫酸溶液中に浸漬した後、過、遠心分
離等の物理的手段により余分の硫酸溶液を除去す
るか、あるいは硫酸溶液を噴霧する等の方法によ
り該活性化した成型コークスに硫酸を添着せしめ
る。使用する硫酸溶液の濃度、硫酸の使用量、浸
漬時間あるいは浸漬処理温度等は目的とする製品
に要求される性能及び操作の容易さ等の条件によ
り適宜定めればよいが、通常硫酸の添着量は活性
化した成型コークス1重量部に対しH2SO4とし
て0.05〜2.00重量部が好ましく、また硫酸溶液は
予め100〜180℃程度に加熱しておけば浸漬時間は
短かくても充分効果が得られるので好都合であ
る。
次いで硫酸を添着せしめた活性化した成型コー
クスを窒素等の不活性ガス又は二酸化炭素、酸素
等を含む弱酸化性ガスの雰囲気下に300〜500℃で
加熱処理し、コークス表面に化学変化を生起せし
めると共に余分の硫酸分を除去する。処理温度が
300℃未満では効果が充分でなく、また500℃を越
えるとコークスの消耗が増すなどの不利益があ
る。硫酸処理は通常1回で充分な効果が得られる
が、不充分のときは2回以上くり返して処理すれ
ば良い。
これらの処理によつて得られる本発明の脱硫、
脱硝用成型活性コークスは、原料の活性化した成
型コークスの有する強度を保持し、特にその脱硝
能力が実施例に示すように大巾に改良されてい
る。この硫酸処理の効果の作用機構は未だ明らか
ではないが実施例に示すように硫酸処理により成
型活性コークスのフエノール性水酸基、カルボキ
シル基などの活性基が硫酸処理前に比較して著し
く増加し、それが脱硝能力の向上に寄与している
ものと推定される。
尚、本発明の成型活性コークスは硫黄酸化物、
窒素酸化物以外の有害物質の除去にも有効である
のは勿論である。
以下実施例により本発明を具体的に示す。
なお実施例に示した脱硫率、脱硝率及び強度は
次のようにして測定した。
〔脱硫率、脱硝率〕
次の条件で測定して、下記計算式により脱硫
率、脱硝率を求めた。
The present invention relates to a molded activated coke for desulfurization and denitrification having improved denitrification ability and a method for producing the same. Many wet or dry desulfurization and denitrification processes have been proposed as methods for removing sulfur oxides and nitrogen oxides contained in various waste gases. Among these desulfurization and denitrification processes, activated carbon is usually used as an adsorption-reducing agent in the dry method, but activated carbon particles have low strength and are subject to wear and tear during cyclic use, making them less economical. , which has become a major drawback of the denitrification process. In addition, when using ordinary activated carbon, its denitrification ability is not sufficient, and activated carbon contains Ti and
Methods of supporting metals such as Cr, Mn, Fe, and V (for example, Japanese Patent Publication No. 48589/1989,
81475) or a method using activated carbon whose surface has been treated with an oxidizing agent such as hydrogen peroxide or nitric acid (Japanese Patent Publication No. 52-30144), but these methods also use expensive auxiliary materials. In addition to requiring the following, it still has the disadvantage of low strength. The inventors of the present invention studied to improve the shortcomings of these conventional methods, and found that the shaped activated coke produced by a specific production method has excellent performance as an adsorption-reducing agent for desulfurization and denitrification. (Special Application No. 174566, 1983). However, although this molded activated coke has been sufficiently improved in terms of strength, it is still insufficient in its denitrification ability, and as a result of further studies, the present invention has been arrived at. That is, the present invention provides a molded coke for desulfurization and denitration, which is characterized in that activated molded coke produced by a specific production method is treated with sulfuric acid to increase active groups such as phenolic hydroxyl groups and carboxyl groups on the surface. Coke and activated molded activated coke produced by a specific production method are treated with a sulfuric acid solution to impregnate sulfuric acid, and then heat treated at 300 to 500°C in an atmosphere of inert gas or weakly oxidizing gas. This is a method for producing shaped activated coke for desulfurization and denitrification, which has an increased number of active groups such as phenolic hydroxyl groups and carboxyl groups on the surface. The shaped activated coke for desulfurization and denitrification of the present invention has extremely high strength compared to conventional activated carbon, so it is suitable for moving bed or fluidized bed type processes, and can be used repeatedly for adsorption and regeneration. Furthermore, its denitrification ability is significantly improved compared to molded activated coke that has not been treated with sulfuric acid, and it has extremely excellent desulfurization and denitrification abilities. The activated molded coke used in the present invention is
By producing highly active semi-coke from coal,
This is used as the main raw material, and a binder is added to the mixed coal mixed with several types of coal as an auxiliary raw material to make the molding raw material.The loga index of the molding raw material is adjusted to be in the range of 20 to 30%. Activated molded coke obtained by activating coke obtained by carbonizing a molded product obtained by molding a molding raw material at a low temperature followed by carbonization at a high temperature, and preferably has a specific surface area in the range of 100 to 400 m 2 /g. When the specific surface area is less than 100 m 2 /g, desulfurization
The activity of molded coke for denitrification is low, and
If it exceeds m 2 /g, the strength decreases, so both are not preferable. Sulfuric acid treatment is usually carried out as follows. A method such as immersing the activated molded coke produced by the above method in a sulfuric acid solution, and then removing the excess sulfuric acid solution by physical means such as filtration or centrifugation, or spraying the sulfuric acid solution. The activated molded coke is impregnated with sulfuric acid. The concentration of the sulfuric acid solution used, the amount of sulfuric acid used, the immersion time, the immersion treatment temperature, etc. may be determined as appropriate depending on the performance required of the target product and the ease of operation, etc., but usually the amount of sulfuric acid impregnated is is preferably 0.05 to 2.00 parts by weight of H 2 SO 4 per 1 part by weight of activated molded coke, and if the sulfuric acid solution is preheated to about 100 to 180°C, it will be sufficiently effective even if the immersion time is short. It is convenient because it can be obtained. The activated molded coke impregnated with sulfuric acid is then heat-treated at 300 to 500°C in an atmosphere of an inert gas such as nitrogen or a weakly oxidizing gas containing carbon dioxide, oxygen, etc. to cause chemical changes on the surface of the coke. At the same time, excess sulfuric acid is removed. The processing temperature
If it is less than 300°C, the effect is not sufficient, and if it exceeds 500°C, there are disadvantages such as increased consumption of coke. A sufficient effect can usually be obtained by performing the sulfuric acid treatment once, but if the effect is insufficient, the treatment may be repeated two or more times. The desulfurization of the present invention obtained by these treatments,
The shaped activated coke for denitrification maintains the strength of the activated shaped coke as a raw material, and in particular, its denitrification ability has been greatly improved as shown in the examples. The mechanism of action of this effect of sulfuric acid treatment is not yet clear, but as shown in the examples, sulfuric acid treatment significantly increases active groups such as phenolic hydroxyl groups and carboxyl groups in molded activated coke compared to before sulfuric acid treatment. It is estimated that this contributes to the improvement of the denitrification capacity. In addition, the molded activated coke of the present invention contains sulfur oxides,
Of course, it is also effective in removing harmful substances other than nitrogen oxides. The present invention will be specifically illustrated by examples below. Note that the desulfurization rate, denitrification rate, and strength shown in the examples were measured as follows. [Desulfurization rate, denitration rate] Measurement was performed under the following conditions, and the desulfurization rate and denitration rate were determined using the following calculation formula.
【表】【table】
【表】【table】
測定方法は次の通りである。
JIS―M―8801に記載されているロガ試験方法
測定装置を用い、まず回転ドラム内に6mm以上の
試料20gを装入する。次にドラムを1000回転
(50rpm)させたのち内容物を6mmの篩で篩分け、
その篩上重量を秤り次式で表示する。
強度=6mm篩上重量/供試試料重量×100(%)
実施例 1
半成コークス62%、ウイツトバンク炭25%及び
軟ピツチ13%を配合した成型炭(直径9mm、長さ
15mmのタブレツト型)を加熱速度15℃/minで
800℃まで乾留して製造した成型コークスを900℃
で45分間水蒸気で賦活して得た成型活性コークス
300gを、濃度45%の硫酸300gに浸し、かきまぜ
ながら160℃で2時間保持した。次いで遠心分離
法により余分の硫酸分を除去し、硫酸の添着した
成型活性コークスを得た。これを350℃に加熱し
た窒素ガス雰囲気下の炉に装入し1時間加熱処理
して脱硫、脱硝用成型活性コークス303gを得た。
硫酸処理前後の成型活性コークスについての各測
定値を、同一の原料を用いて同様の硫酸処理を2
回繰返したものの測定値と共に表1に示す。
The measurement method is as follows. Using the loga test method measuring device described in JIS-M-8801, first charge 20 g of a sample of 6 mm or more into a rotating drum. Next, after rotating the drum 1000 times (50 rpm), the contents were sieved through a 6 mm sieve.
The weight on the sieve is weighed and expressed using the following formula. Strength = 6 mm sieve weight / test sample weight x 100 (%) Example 1 Molded coal (diameter 9 mm, length
15mm tablet type) at a heating rate of 15℃/min.
Molded coke produced by carbonization to 800℃ is heated to 900℃.
Molded activated coke obtained by activation with steam for 45 minutes at
300g was immersed in 300g of 45% sulfuric acid and kept at 160°C for 2 hours while stirring. Next, excess sulfuric acid was removed by centrifugation to obtain shaped activated coke impregnated with sulfuric acid. This was charged into a furnace under a nitrogen gas atmosphere heated to 350°C and heat-treated for 1 hour to obtain 303 g of shaped activated coke for desulfurization and denitrification.
The measured values for the molded activated coke before and after the sulfuric acid treatment were calculated using the same raw material and the same sulfuric acid treatment.
Table 1 shows the measured values after repeated measurements.
【表】
表1から明らかなように硫酸処理によりコーク
ス中のフエノール性水酸基、カルボキシル基及び
スルホン基の含有率が増加し、比表面積の変化も
少なく、かつ、処理前の強度及び脱硫率を保持し
たまま脱硝率が著しく大きくなり脱硝能力の大巾
な向上が認められる。
実施例 2
半成コークス62%、ピークダウン炭25%及び軟
ピツチ13%配合の成型炭(直径9mm、長さ15mmの
タブレツト型)を実施例1と同じ乾留賦活条件で
処理して得た成型活性コークス、及び比較例とし
て市販の外国製活性コークス(本発明で使用する
成型活性コークスとは原料、製法ともに異なるも
の)を用いて実施例1と同様に硫酸処理した結果
を表2に示す。この結果から本発明の特定の成型
活性コークスを使用したものの方が強度、脱硝率
とも優れていることがわかる。[Table] As is clear from Table 1, sulfuric acid treatment increases the content of phenolic hydroxyl groups, carboxyl groups, and sulfone groups in coke, and changes in specific surface area are small, while maintaining the strength and desulfurization rate before treatment. The denitrification rate was significantly increased, and a significant improvement in the denitrification capacity was observed. Example 2 Molded coal (tablet type with a diameter of 9 mm and length of 15 mm) containing 62% semi-formed coke, 25% peak down coal and 13% soft pitch was treated under the same carbonization activation conditions as in Example 1. Table 2 shows the results of sulfuric acid treatment in the same manner as in Example 1 using activated coke and a commercially available foreign-made activated coke as a comparative example (different raw materials and manufacturing method from the shaped activated coke used in the present invention). From this result, it can be seen that the product using the specific molded activated coke of the present invention is superior in both strength and denitrification rate.
Claims (1)
て、これを主原料とし、これに副原料として数種
の石炭を配合した混合炭に結合剤を加え、ロガ指
数を20〜30%の範囲になるように調整したものを
成型原料とし、該成型原料を成型した成型物を低
温乾留続いて高温乾留したコークスを賦活して得
られる活性化した成型コークスを硫酸で処理し、
表面のフエノール性水酸基、カルボキシル基など
の活性基を増加させたことを特徴とする脱硫、脱
硝用成型活性コークス。 2 石炭から活性度の高い半成コークスを製造し
て、これを主原料とし、これに副原料として数種
の石炭を配合した混合炭に結合剤を加え、ロガ指
数を20〜30%の範囲になるように調整したものを
成型原料とし、該成形原料を成型した成型物を低
温乾留続いて高温乾留したコークスを賦活して得
られる活性化した成型コークスを硫酸溶液で処理
し、該成型コークスに硫酸を添着せしめたのち、
不活性ガス又は弱酸化性ガスの雰囲気下で300〜
500℃に加熱処理することを特徴とする表面のフ
エノール性水酸基、カルボキシル基などの活性基
を増加させた脱硫、脱硝用成型活性コークスの製
造方法。[Claims] 1. Semi-formed coke with high activity is produced from coal, and this is used as the main raw material, and a binder is added to mixed coal made by blending several types of coal as auxiliary raw materials, and the loga index is increased. The molded coke adjusted to a range of 20 to 30% is used as a molding raw material, and the molded product made from the molding raw material is carbonized at a low temperature, and the activated molded coke obtained by activating the coke that has been carbonized at a high temperature is treated with sulfuric acid. death,
Molded activated coke for desulfurization and denitration, characterized by an increased number of active groups such as phenolic hydroxyl groups and carboxyl groups on the surface. 2. Produce semi-formed coke with high activity from coal, use this as the main raw material, and add a binder to a mixed coal made by blending several types of coal as auxiliary raw materials, and create a loga index in the range of 20 to 30%. The molded coke obtained by molding the molding raw material is subjected to low-temperature carbonization, followed by high-temperature carbonization.The activated molded coke obtained by activating the coke is treated with a sulfuric acid solution to form the molded coke. After impregnating sulfuric acid with
300~ under an atmosphere of inert gas or weakly oxidizing gas
A method for producing molded activated coke for desulfurization and denitrification with increased active groups such as phenolic hydroxyl groups and carboxyl groups on the surface, which is characterized by heat treatment at 500°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57003473A JPS58122042A (en) | 1982-01-14 | 1982-01-14 | Molded active coke for desulfurization and denitration and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57003473A JPS58122042A (en) | 1982-01-14 | 1982-01-14 | Molded active coke for desulfurization and denitration and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58122042A JPS58122042A (en) | 1983-07-20 |
JPH0248294B2 true JPH0248294B2 (en) | 1990-10-24 |
Family
ID=11558294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57003473A Granted JPS58122042A (en) | 1982-01-14 | 1982-01-14 | Molded active coke for desulfurization and denitration and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58122042A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995013868A1 (en) * | 1993-11-19 | 1995-05-26 | Mitsui Mining Co., Ltd. | Method of manufacturing active cokes for simultaneous desulfurization and denitration processes |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04219308A (en) * | 1990-12-17 | 1992-08-10 | Mitsui Mining Co Ltd | Production of formed active coke for desulfurization and denitration having high denitration performance |
JP2015174076A (en) * | 2014-03-18 | 2015-10-05 | コスモ石油株式会社 | Solid acid catalyst and manufacturing method thereof |
CN105174350B (en) * | 2015-09-07 | 2017-10-24 | 延安大学 | Using the method for magnetic semi-coke adsorbent Phenol-Containing Wastewater Treatment |
CN110743521B (en) * | 2019-11-27 | 2020-11-27 | 山东大学 | Mercury-absorbing coke sinking type rapid desorption system and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5645745A (en) * | 1979-09-20 | 1981-04-25 | Hitachi Ltd | Preparation of adsorbent for sulfur oxide |
JPS56113341A (en) * | 1980-02-12 | 1981-09-07 | Hitachi Ltd | Production of desulfurizing agent for dry exhaust desulfuring process |
-
1982
- 1982-01-14 JP JP57003473A patent/JPS58122042A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5645745A (en) * | 1979-09-20 | 1981-04-25 | Hitachi Ltd | Preparation of adsorbent for sulfur oxide |
JPS56113341A (en) * | 1980-02-12 | 1981-09-07 | Hitachi Ltd | Production of desulfurizing agent for dry exhaust desulfuring process |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995013868A1 (en) * | 1993-11-19 | 1995-05-26 | Mitsui Mining Co., Ltd. | Method of manufacturing active cokes for simultaneous desulfurization and denitration processes |
Also Published As
Publication number | Publication date |
---|---|
JPS58122042A (en) | 1983-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2685356B2 (en) | Catalytic activated carbon | |
US3926590A (en) | Process for treatment of waste gases | |
JP3669373B2 (en) | Process for producing activated coke for simultaneous desulfurization and denitrification | |
US3778387A (en) | Activated carbon with antioxidant properties and a method of preparing the same | |
Ku et al. | Treatment of activated carbon to enhance catalytic activity for reduction of nitric oxide with ammonia | |
US4855116A (en) | Activated coke method of removing nitrogen oxides from exhaust gases | |
JP2688386B2 (en) | SOx removal method using carbon catalyst | |
JPH09510912A (en) | Regeneration method of nitrogen-treated carbonaceous coal used for hydrogen sulfide removal | |
US1895724A (en) | Process of removing sulphur compounds from gas mixtures | |
EP0515696B1 (en) | Process for producing formed active coke for desulfurization and denitrification with high denitrification performance | |
US3739550A (en) | Adsorbent for desulfurization of sulfur dioxide containing waste gases | |
JPH0248294B2 (en) | ||
US20030153458A1 (en) | Production of activated carbon exhibiting an elevated catalytic activity | |
JP2001294414A (en) | Manufacturing method of activated coke having high strength and high adsorpability | |
WO2001005704A1 (en) | Process for production of carbonaceous chars having catalytic activity | |
JP3947285B2 (en) | Manufacturing method of activated carbon for desulfurization and denitration with high denitration performance | |
JPH11128737A (en) | Bromine-bearing activated carbon and production of bromine-bearing activated carbon | |
Zhang et al. | Effect of the surface properties of an activated coke on its desulphurization performance | |
JP3234919B2 (en) | Activated carbon fiber catalyst for nitric oxide-ammonia reduction reaction and nitric oxide removing method for nitric oxide containing gas | |
JP4138294B2 (en) | Process for producing activated carbon fiber for flue gas desulfurization | |
JP4002503B2 (en) | Production method of adsorbent using coal as raw material | |
JPH10323565A (en) | Activated carbon fiber for flue gas desulfurization and desulfurization method using the same | |
SU825133A1 (en) | Catalyst for conversion of sulfur-containing gases to elemental sulfur | |
JP2001162174A (en) | Method of regenerating catalyst | |
JP2000015053A (en) | Method for activation of active carbon fibrous desulfurizer and activated active carbon fibrous desulfurizer |