JPH0248286B2 - - Google Patents

Info

Publication number
JPH0248286B2
JPH0248286B2 JP56019737A JP1973781A JPH0248286B2 JP H0248286 B2 JPH0248286 B2 JP H0248286B2 JP 56019737 A JP56019737 A JP 56019737A JP 1973781 A JP1973781 A JP 1973781A JP H0248286 B2 JPH0248286 B2 JP H0248286B2
Authority
JP
Japan
Prior art keywords
melting point
fibers
fiber
filter
filter medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56019737A
Other languages
Japanese (ja)
Other versions
JPS57135021A (en
Inventor
Naohiko Shimono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP56019737A priority Critical patent/JPS57135021A/en
Publication of JPS57135021A publication Critical patent/JPS57135021A/en
Publication of JPH0248286B2 publication Critical patent/JPH0248286B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • B01D39/163Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】 本発明は繰返し使用しても表面の平滑性及び捕
集したケーキの剥離性が低下しないフイルタープ
レス用濾材の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a filter medium for a filter press, which does not deteriorate in surface smoothness and removability of collected cake even after repeated use.

従来よりフイルタープレス用濾材として、編・
織布の片面又は両面に天然繊維、合成繊維等の繊
維ウエブを重ね合せ、ニードルパンチを施してな
るニードルフエルトが用いられている。ニードル
フエルトは構成繊維が三次元的に配列されて内部
に非常に多数の微細な空隙を立体的に有している
ため、濾液の透過速度の低下を起こさずに固体粒
子の捕集効率が向上するという利点を有してい
る。これが織物のみよりなる濾材にあつては、捕
集効率を向上させるようとすると濾液の透過速度
の低下をきたす。しかしながらニードルフエルト
は表面に多数の毛羽を有しているため、ケーキが
剥離しにくいという欠点を有している。更には繊
維ウエブの構成繊維相互間は単に絡合しているの
みであるため、繰り返し使用するとこの絡合がゆ
るみ、構成繊維が脱落したり、内部の微細な空隙
が次第に大きくなるという欠点を有している。こ
のような欠点の存在はフイルタープレス用濾材と
して長期の使用に耐えないことを意味している。
Traditionally, it has been used as a filter material for filter presses.
A needle felt is used, which is made by laminating a fiber web of natural fibers, synthetic fibers, etc. on one or both sides of a woven fabric, and then needle punching the fiber web. Needle felt has constituent fibers arranged three-dimensionally and has an extremely large number of fine voids inside, which improves solid particle collection efficiency without reducing the permeation rate of filtrate. It has the advantage of In the case of a filter medium made only of textiles, an attempt to improve the collection efficiency results in a decrease in the permeation rate of the filtrate. However, since needle felt has a large number of fuzz on its surface, it has the disadvantage that the cake is difficult to peel off. Furthermore, since the constituent fibers of the fiber web are simply intertwined with each other, repeated use may loosen this entanglement, causing the constituent fibers to fall off or the internal fine voids to gradually become larger. are doing. The presence of such defects means that it cannot withstand long-term use as a filter medium for filter presses.

そこで特にケーキの剥離性を改良するために
種々のフイルタープレス用濾材が提案されてい
る。例えば1979年ロンドンで行なわれた
“Second world filtration co−ngress”におい
て発表された“Needle Filter Media、for
Solid/Liquid Separation”という論文の中で、
ニードルフエルトの少くとも原液供給面に存在す
る毛羽をガス焼きすることによつて得られる濾材
やニードルフエルトを加熱プレスロールによつて
カレンダー加工して得られる濾材が提案されてい
る。しかしながらこのような濾材は単に表面のみ
を平滑にしたものにすぎず、内部においては従来
のニードルフエルトと何ら変わらず、それ故次の
ような欠点を有している。ガス焼きによる濾材は
第1図に示すように、毛羽部分が溶融されてでき
た偏平なフイルム状部分1と繊維のみからなる繊
維集合部分2とから、その表面が形成されてい
る。従つて繰り返し使用されると、フイルム状部
分1がこすり落され、結局ニードルフエルトの場
合と同様の欠点が出ることになるのである。また
このことは加熱プレスロールによる濾材について
も言えることである。
Therefore, various filter media for filter presses have been proposed in order to particularly improve the peelability of the cake. For example, “Needle Filter Media, for
In the paper entitled “Solid/Liquid Separation”,
A filter medium obtained by gas firing the fuzz present at least on the raw solution supplying surface of a needle felt, and a filter medium obtained by calendering a needle felt with a heated press roll have been proposed. However, such a filter medium merely has a smooth surface, and the inside is no different from a conventional needle felt, and therefore has the following drawbacks. As shown in FIG. 1, the surface of the gas-fired filter medium is formed of a flat film-like portion 1 formed by melting the fluff portion and a fiber aggregate portion 2 consisting only of fibers. Therefore, when used repeatedly, the film-like portion 1 is rubbed off, resulting in the same drawbacks as in the case of needle felts. This also applies to filter media made from heated press rolls.

そこで本発明者は鋭意検討した結果、加熱プレ
スロールによる方法に改良を施し、本発明に至つ
たものである。即ち本発明は、加熱プレスロール
による方法は、表面に液体透過性及び平滑性を与
えようとすると内部の構成繊維相互間が接着され
ず、逆に内部に接着を与えようとすると表面の液
体透過性が損なわれるという欠点に鑑みなされた
ものであり、特定の繊維より繊維ウエブを形成し
かつ加熱(熱処理)工程とプレス(加圧)工程と
を特定の条件下で分離したことを特徴とするもの
である。
As a result of intensive studies, the inventors of the present invention have improved the method using heated press rolls, resulting in the present invention. In other words, in the method using heated press rolls, when attempting to impart liquid permeability and smoothness to the surface, the internal constituent fibers do not adhere to each other, and conversely, when attempting to impart adhesion to the interior, liquid permeability on the surface occurs. This method was developed in view of the drawback that properties are impaired, and is characterized by forming a fiber web from specific fibers and separating the heating (heat treatment) process and pressing (pressure) process under specific conditions. It is something.

つまり本発明は、ポリエチレンを主体とする低
融点接着成分とポリプロピレンを主体とする高融
点骨格成分とよりからなり、少なくとも表面の一
部は前記低融点接着成分で形成されているポリオ
レフイン系複合繊維を50%以上含有する繊維ウエ
ブと、編・織布とを重ね合せ、ニードルパンチを
施し、次いで無押圧下で前記複合繊維の低融点接
着成分の融点以上、高融点骨格成分の融点以下の
温度で熱処理し、その後直ちに前記複合繊維の低
融点接着成分の軟化点以上融点以下の温度条件で
少なくとも前記繊維ウエブの片面を均一に加圧す
ることを特徴とするフイルタープレス用濾材の製
造方法に関するものである。以下本発明を詳述す
る。
In other words, the present invention provides a polyolefin composite fiber comprising a low melting point adhesive component mainly composed of polyethylene and a high melting point skeleton component mainly composed of polypropylene, and at least a part of the surface is formed of the low melting point adhesive component. A fiber web containing 50% or more and a knitted/woven fabric are overlapped, needle punched, and then, without pressure, at a temperature above the melting point of the low melting point adhesive component of the composite fiber and below the melting point of the high melting point skeleton component. The present invention relates to a method for producing a filter medium for a filter press, which comprises heat-treating and immediately thereafter uniformly pressing at least one side of the fiber web at a temperature above the softening point and below the melting point of the low melting point adhesive component of the composite fiber. . The present invention will be explained in detail below.

本発明の繊維ウエブを形成するポリオレフイン
系複合繊維は、ポリエチレンを主体とする低融点
接着成分とポリプロピレンを主体とする高融点骨
格成分とよりなつている。ポリプロピレンを主体
とする部分は骨格成分であるのでポリエチレンが
軟化、溶融する温度では顕著な影響を受けるもの
ではない。ポリエチレンを主体とする部分は接着
成分であるので、複合繊維の少なくとも表面の一
部を形成する。例えばポリプロピレンを芯としポ
リエチレンをさやとする芯一さや型複合繊維若し
くは半月状のポリプロピレンとポリエチレンとを
貼り合せたサイドバイサイド型複合繊維が好まし
い。ポリオレフイン系繊維は耐酸、耐アルカリ、
耐薬品性に優れているので、種々の濾液に対して
安定であり、フイルタープレス用濾材の材料とし
ては好適である。
The polyolefin composite fiber forming the fiber web of the present invention is composed of a low melting point adhesive component mainly composed of polyethylene and a high melting point skeleton component mainly composed of polypropylene. Since the polypropylene-based portion is a skeletal component, it is not significantly affected by the temperatures at which polyethylene softens and melts. Since the polyethylene-based portion is an adhesive component, it forms at least a part of the surface of the composite fiber. For example, a core-sheath type conjugate fiber having a polypropylene core and a polyethylene sheath, or a side-by-side type conjugate fiber having a half-moon shape of polypropylene and polyethylene bonded together is preferable. Polyolefin fibers are acid resistant, alkali resistant,
Since it has excellent chemical resistance, it is stable against various filtrates and is suitable as a material for filter media for filter presses.

ポリオレフイン系複合繊維は繊維ウエブ中に50
重量%以上含有される。その他の繊維としては公
知の種々のものを用いることができるが、特にポ
リエチレンの融点では影響を受けないポリエステ
ル繊維、ナイロン繊維、アクリル繊維、ビニロン
繊維、コツトン繊維、羊毛繊維、レーヨン繊維、
炭素繊維、アスベスト繊維等が用いられるが、特
に耐酸、耐アルカリ性で耐薬品性に優れ、ポリエ
チレンによる接着力の高いポリプロピレン繊維が
好ましい。ポリオレフイン系複合繊維が50重量%
未満であると構成繊維間の接着点が相対的に少な
くなり、強度低下が起こるので好ましくない。
Polyolefin composite fiber contains 50% of polyolefin composite fiber in the fiber web.
It is contained in an amount of % by weight or more. Various other known fibers can be used, including polyester fibers, nylon fibers, acrylic fibers, vinylon fibers, cotton fibers, wool fibers, rayon fibers, which are not affected by the melting point of polyethylene.
Carbon fibers, asbestos fibers, etc. can be used, but polypropylene fibers are particularly preferred because they have excellent acid resistance, alkali resistance, chemical resistance, and high adhesive strength with polyethylene. 50% by weight polyolefin composite fiber
If it is less than this, the number of bonding points between the constituent fibers will be relatively small, resulting in a decrease in strength, which is not preferable.

本発明に使用される編・織布としては、種々の
糸で編組、織成されたものであればどのようなも
のでも用いられるが、特にポリエチレンの融点で
は影響を受けないポリプロピレン繊維、ポリエス
テル繊維、ナイロン繊維、アクリル繊維、ビニロ
ン繊維、コツトン繊維、羊毛繊維、レーヨン繊
維、炭素繊維、ガラス繊維、アスベスト繊維等か
ら得られる糸又はこれらの成分よりなるフイラメ
ント糸を適宜編組、織成した布が、フイルタープ
レス用濾材の製造工程上において有害な影響を受
けないので好ましい。特にポリプロピレン糸を用
いた編・織布はポリエチレンとの接着力が大であ
るため最も好ましい材料である。この編・織布は
フイルタープレス用濾材の伸び止めのために用い
られるものである。
The knitted or woven fabric used in the present invention can be any fabric that is knitted or woven with various threads, but in particular polypropylene fibers and polyester fibers that are not affected by the melting point of polyethylene can be used. , nylon fibers, acrylic fibers, vinylon fibers, cotton fibers, wool fibers, rayon fibers, carbon fibers, glass fibers, asbestos fibers, etc., or filament yarns made of these components are appropriately knitted and woven to make filters. This is preferable because it does not have any harmful effect on the manufacturing process of press filter media. In particular, knitted or woven fabrics using polypropylene threads are the most preferred materials because of their strong adhesive strength with polyethylene. This knitted/woven fabric is used to prevent the elongation of filter media for filter presses.

編・織布の両面又は片面に繊維ウエブが重ね合
され、これにニードルパンチが施される。ニード
ルパンチは繊維ウエブ中の構成繊維を絡合させる
と共に構成繊維と編・織布とを絡合させるために
施されるものであり、これにより内部に微細な空
隙が多数形成され、固体粒子の捕集効率が上昇す
るのである。またこの絡合により構成繊維相互間
の接触点が増大し、後に施こす加熱(熱処理)工
程、加圧工程により構成繊維1本当りの接着点が
増大する。この接着点の増大は本発明によつて得
られるフイルタープレス用濾材の毛羽立ち防止に
有効に作用する。
A fibrous web is superimposed on both or one side of the knitted or woven fabric, and then needle punched. Needle punching is performed to entangle the constituent fibers in the fiber web as well as the constituent fibers and the knitted or woven fabric, which creates many fine voids inside and causes the solid particles to become entangled. This increases the collection efficiency. Moreover, this entanglement increases the contact points between the constituent fibers, and the number of adhesion points per constituent fiber increases by the heating (heat treatment) process and pressurizing process that are performed later. This increase in the number of adhesion points effectively works to prevent fuzzing of the filter medium for filter press obtained by the present invention.

ニードルパンチを施した後、無押圧かつ一定の
温度条件で繊維ウエブ中の複合繊維を熱処理す
る。温度条件は複合繊維の低融点接着成分(ポリ
エチレン)の融点以上、高融点骨格成分(ポリプ
ロピレン)の融点以下である。この条件下で低融
点接着成分は接着性を発現する。熱処理が無押圧
下で行なわれるのは、溶融した低融点接着成分が
強制的に流動せしめられ、空隙を塞ぐのを防止す
るためである。無押圧下における熱処理として
は、例えば編・織布と絡み合つて重合せられた繊
維ウエブ中に加熱された空気を貫通させる方法が
好適である。
After needle punching, the composite fibers in the fiber web are heat-treated without any pressure and under constant temperature conditions. The temperature conditions are above the melting point of the low melting point adhesive component (polyethylene) of the composite fiber and below the melting point of the high melting point skeleton component (polypropylene). Under this condition, the low melting point adhesive component develops adhesive properties. The reason why the heat treatment is performed without pressure is to prevent the molten low melting point adhesive component from being forced to flow and clogging the voids. As the heat treatment under no pressure, a method of passing heated air through a fiber web intertwined and superposed with a knitted or woven fabric, for example, is suitable.

次いで直ちに、すなわち前記の加熱(熱処理)
工程で発現された低融点接着成分の接着性が完全
に損なわれる前に、一定の温度条件下で編・織布
と絡み合つて重合せられた繊維ウエブが均一に加
圧される。温度条件は複合繊維の低融点接着成分
(ポリエチレン)の軟化点以上融点以下である。
Then immediately, i.e., heating (heat treatment) as described above.
Before the adhesiveness of the low melting point adhesive component developed in the process is completely impaired, the fibrous web intertwined and superposed with the knitted/woven fabric is uniformly pressed under constant temperature conditions. The temperature conditions are above the softening point and below the melting point of the low melting point adhesive component (polyethylene) of the composite fiber.

この条件下における加圧で低融点接着成分は構
成繊維相互間に形成された空隙を塞ぐような強制
的な流動を生ぜず、かつ加圧表面の毛羽を伏せる
と共にこの毛羽を繊維ウエブの内部の構成繊維に
接着させる。従つて加圧表面は優れた平滑性が得
られる。フイルタープレス用濾材においては原液
供給側つまりケーキが形成される側に平滑性が要
求されるのであるから、少なくとも編・織布と絡
み合つて重合せられた繊維ウエブの片面が一定の
温度条件下において加圧されればよい。この加圧
工程は例えば常温のゴムロール或いは一定の温度
に加熱されたスチールロールと常温のゴムロール
との間を通すことによつてなされるのが都合がよ
い。勿論一定の温度に加熱された二本のスチール
ロール間を通すことによつてもなされる。この工
程によつて前記した毛羽伏せ作用と共に加熱(熱
処理)工程において生じた構成繊維相互間の接着
点を強固にするという作用が生じる。
When pressurized under these conditions, the low-melting point adhesive component does not cause forced flow that would close the voids formed between the constituent fibers, and also lays down the fuzz on the pressurized surface and transfers this fuzz to the inside of the fiber web. Adhere to the constituent fibers. Therefore, the pressurized surface has excellent smoothness. In filter media for filter presses, smoothness is required on the raw solution supply side, that is, the side where the cake is formed, so at least one side of the fibrous web intertwined with the knitted/woven fabric and polymerized must be kept under a certain temperature condition. It is sufficient if the pressure is applied at . This pressing step is conveniently carried out, for example, by passing between a rubber roll at room temperature or a steel roll heated to a certain temperature and a rubber roll at room temperature. Of course, this can also be done by passing it between two steel rolls heated to a constant temperature. This step produces the above-mentioned fluff-binding effect and also the effect of strengthening the adhesion points between the constituent fibers produced in the heating (heat treatment) step.

以上説明した本発明の方法により得られるフイ
ルタープレス用濾材は、表面が第2図に示すよう
に各構成繊維の接触点が接着されていると共に平
滑化されており、更に第3図に示すように構成繊
維間の接着は繊維ウエブの内部にまで及んでい
る。それ故本発明の方法により得られるフイルタ
ープレス用濾材は、初期のケーキ剥離性が良好で
あると共に繰り返し使用により表面の構成繊維が
破断されたとしても繊維ウエブの内部においても
構成繊維が接着されており、しかも構成繊維1本
当りの接着点が多い(つまり接着点間の距離が短
い)ので毛足の長い毛羽の発生がなく、いつまで
もケーキ剥離性の良好なものである。また複合繊
維の低融点接着成分は強制的な流動を起こさずに
構成繊維の接触点のみを接着しているので、構成
繊維間に形成された多数の空隙を塞いでいない。
それ故本発明のフイルタープレス用濾材は、濾液
の透過速度が速くかつ固体粒子の捕集効率が良好
なことは言うまでもない。
The filter medium for filter press obtained by the method of the present invention explained above has a surface in which the contact points of each constituent fiber are bonded and smoothed as shown in FIG. 3, and the surface is smoothed as shown in FIG. The adhesion between the constituent fibers extends to the inside of the fiber web. Therefore, the filter medium for filter press obtained by the method of the present invention has good initial cake releasability, and even if the constituent fibers on the surface are broken due to repeated use, the constituent fibers are still bonded inside the fiber web. Furthermore, since there are many bonding points per constituent fiber (that is, the distance between bonding points is short), there is no generation of long fluff, and the cake releasability remains good. Furthermore, since the low melting point adhesive component of the composite fiber adheres only the contact points of the constituent fibers without causing forced flow, it does not close the numerous voids formed between the constituent fibers.
Therefore, it goes without saying that the filter medium for filter presses of the present invention has a high permeation rate of filtrate and good solid particle collection efficiency.

次に本発明を実施例に基いて説明する。 Next, the present invention will be explained based on examples.

実施例 1 1.5デニール、51mm長のポリエチレン成分(融
点130℃)とポリプロピレン成分(融点165℃)よ
りなるサイドバイサイド型ポリオレフイン系複合
繊維80%と2デニール、6.4mm長のポリプロピレ
ン繊維20%とを混合し気流により開繊してスクリ
ーン上に集積して重量250g/m2の繊維ウエブを
形成した。次いでこの繊維ウエブを25番双子のポ
リプロピレン紡績糸を経緯とも27本/インチに打
込んで織成した重量100g/m2の織布の片面に重
ね合せ繊維ウエブ面より250本/cm2のニードルパ
ンチを行い重量350g/m2厚み2.5mmのニードルフ
エルトを形成した。得られたニードルフエルトを
熱風ドライヤーにて140℃で3分間熱処理しその
後直ちに115℃に加熱した金属ロール間を線圧4
Kg/cmの圧力下で3m/minのスピードで通過さ
せ重量350g/m2、厚み1mm、通気度4c.c./cm2
(フラジール型通気度試験器により圧力差12.7mm
水柱にて測定した値)引張強度縦方向120Kg/5
cm巾、横方向125Kg/5cm巾の表面平滑なフイル
タープレス用濾材を得た。使用したポリプロピレ
ン紡績糸よりなる織布のニードルパンチを行う前
の引張強度は縦方向、横方向とも100Kg/5cm巾
であり、熱処理前のニードルフエルトの引張強度
はニードルパンチにより織布を構成する紡績糸が
損傷を受け縦方向72Kg/5cm巾、横方向78Kg/5
cm巾と低下していたが熱処理後の引張強度は織布
のニードルパンチ前の引張強度よりも高くなつて
いた。これは繊維ウエブ内部の構成繊維と織布の
紡績糸との交点でも繊維間接着が行なわれている
為である。また濾材の断面を顕微鏡観察したとこ
の濾材内部まで繊維間接着が形成されていた。得
られたフイルタープレス用濾材を繊維ウエブ層面
が原液供給側に向くように圧搾機構を持つセンタ
ーフイード型フイルタープレス(濾板面積1000mm
×1000mm、濾室数50室)に取りつけ、濾過圧5
Kg/m2にて固形分として2μ以下の炭酸カルシウ
ム14%を含む濾液を2t/バツチで濾過し、その後
10Kg/cm2で圧搾した。濾過工程中のパツキング性
は良好で、濾枠からの液もれはなかつた。圧搾
後、開枠したところ濾材表面上のケーキの剥離性
は極めて良好であり開枠と同時にケーキは自然落
下し、濾材表面上にケーキの沈積はほとんどなか
つた。この為400バツチまで濾材の洗浄なしで使
用する事ができた。得られたケーキ中の固形分は
平均54%であつた。さらに12バツチ/日で、400
バツチ毎に洗浄しながら1年間使用しても濾材の
表面には実質的変化は見られず、ケーキの剥離性
は良好であつた。
Example 1 80% side-by-side type polyolefin composite fibers consisting of a 1.5 denier, 51 mm long polyethylene component (melting point 130°C) and a polypropylene component (melting point 165°C) were mixed with 20% 2 denier, 6.4 mm long polypropylene fiber. The fibers were opened by air current and collected on a screen to form a fibrous web weighing 250 g/m 2 . Next, this fiber web was layered on one side of a woven fabric with a weight of 100 g/m 2 made by weaving 25 twin polypropylene spun yarns at a rate of 27 yarns/inch in both warp and warp, and needle punched at 250 yarns/cm 2 from the fiber web surface. A needle felt with a weight of 350 g/m 2 and a thickness of 2.5 mm was formed. The obtained needle felt was heat-treated at 140°C for 3 minutes in a hot air dryer, and then immediately heated to 115°C with a linear pressure of 4
Passed at a speed of 3 m/min under a pressure of Kg/cm, weight 350 g/m 2 , thickness 1 mm, air permeability 4 c.c./cm for 2 seconds (pressure difference 12.7 mm by Frazier air permeability tester)
Value measured in water column) Tensile strength longitudinal direction 120Kg/5
A filter medium for a filter press with a width of cm and a width of 125 kg/5 cm in the transverse direction and a smooth surface was obtained. The tensile strength of the woven fabric made from the polypropylene spun yarn used before needle punching is 100 kg/5cm width in both the longitudinal and transverse directions, and the tensile strength of the needle felt before heat treatment is 100 kg/5cm width when needle punched. The thread was damaged and weighed 72kg/5cm width in the vertical direction and 78kg/5cm in the horizontal direction.
The tensile strength after heat treatment was higher than the tensile strength of the woven fabric before needle punching, although the tensile strength decreased by a width of cm. This is because fiber-to-fiber adhesion occurs at the intersections between the constituent fibers inside the fiber web and the spun yarns of the woven fabric. Further, when the cross section of the filter medium was observed under a microscope, it was found that interfiber adhesion was formed even inside the filter medium. The obtained filter press material was pressed using a center feed type filter press (filter plate area: 1000 mm) with a squeezing mechanism so that the fiber web layer surface faced the raw solution supply side.
x 1000mm, number of filtration chambers: 50), filtration pressure 5
The filtrate containing 14% of calcium carbonate with a solid content of 2μ or less at Kg/m 2 is filtered at 2t/batch, and then
It was squeezed at 10Kg/ cm2 . Packing properties during the filtration process were good, and there was no leakage from the filter frame. When the frame was opened after squeezing, the peelability of the cake on the surface of the filter medium was extremely good, and the cake naturally fell as soon as the frame was opened, with almost no cake deposited on the surface of the filter medium. For this reason, up to 400 batches could be used without cleaning the filter media. The average solid content in the resulting cake was 54%. Another 12 batches/day, 400
Even after using the filter medium for one year while washing each batch, no substantial change was observed on the surface of the filter medium, and the cake removability was good.

比較例 1 2デニール、51mm長のポリプロピレン繊維50%
と3デニール、64mm長のポリプロピレン繊維50%
を混合し、気流により開繊してスクリーン上に集
積して重量120g/m2の繊維ウエブを形成した。
この繊維ウエブ2枚の間に300デニールのポリプ
ロピレンフイラメント糸を経緯とも35本/インチ
に打込んで織成した重量90g/m2の織布を入れ、
上下両面より合計350本/cm2のニードルパンチを
行い重量330g/m2、厚み2.3mmのニードルフエル
トを形成した。得られたニードルフエルトを160
℃に加熱した金属ロール間を間隙0.5mm、線圧200
Kg/cmの圧力下で1m/minのスピードで通過さ
せてカレンダー処理し重量330Kg/m2、厚み1.2
mm、通気度4c.c./cm2/sec、引張強度縦方向110
Kg、横方向120Kg/5cm巾の表面平滑なフイルタ
ープレス用濾材を得た。使用したポリプロピレン
フイラメント糸よりなる織布のニードルパンチ前
の引張強度は縦・横方向とも150Kg/5cm巾であ
り、ニードルパンチによつて、強度低下がおこ
り、カレンダー処理によつても、強度の向上は見
られなかつた。濾材の断面を顕微鏡観察したとこ
ろ濾材の両表面では繊維が若干偏平化し、繊維間
接着が行なわれていたが、内部では、繊維間接着
は行なわれていなかつた。
Comparative example 1 2 denier, 51 mm long polypropylene fiber 50%
3 denier, 64mm long polypropylene fiber 50%
were mixed, opened by air current, and collected on a screen to form a fibrous web weighing 120 g/m 2 .
A woven fabric with a weight of 90 g/m 2 made by weaving 300 denier polypropylene filament yarns at a rate of 35 threads/inch in both warp and warp is placed between these two fiber webs.
A total of 350 needle punches/cm 2 were performed from both the upper and lower surfaces to form a needle felt with a weight of 330 g/m 2 and a thickness of 2.3 mm. 160 needle felts obtained
Gap 0.5mm between metal rolls heated to ℃, linear pressure 200
Calendered by passing at a speed of 1 m/min under a pressure of Kg/cm, weight 330 Kg/m 2 , thickness 1.2
mm, air permeability 4 c.c./cm 2 /sec, tensile strength longitudinal direction 110
A filter medium for a filter press with a smooth surface and a width of 120 kg in the transverse direction and a width of 5 cm was obtained. The tensile strength of the woven fabric made from the polypropylene filament yarn used before needle punching was 150 kg/5 cm width in both the vertical and horizontal directions, and the strength decreased due to needle punching, but the strength improved even after calendering. was not seen. When the cross section of the filter medium was observed under a microscope, it was found that the fibers were slightly flattened on both surfaces of the filter medium, and there was adhesion between the fibers, but there was no adhesion between the fibers inside.

得られた濾材を実施例1と同様な条件にて濾過
テストを行つたところ、初めの400バツチまでは
実施例1の濾材とほぼ同様の結果が得られたが、
洗浄したところ表面に若干の毛羽立ちがみられ、
2回目の使用では濾材表面上にケーキの沈積が毛
羽の部分から少しづつ発生し、320のバツチにて
洗浄が必要となつた。2回目の洗浄を行つたとこ
ろ、濾材表面上の毛羽は増加しており、3回目の
使用ではケーキの剥離性が除々に低下して、剥離
作業に時間がかかるようになりかつ目詰りも目立
つて来たために200バツチにて使用を中止した。
When the obtained filter medium was subjected to a filtration test under the same conditions as in Example 1, almost the same results as the filter medium of Example 1 were obtained up to the first 400 batches.
After washing, there was some fluff on the surface.
During the second use, cake deposits gradually formed on the surface of the filter medium starting from the fuzz area, and it was necessary to wash the filter in batches of 320. When the filter was washed for the second time, the amount of fuzz on the surface of the filter medium had increased, and by the third use, the peelability of the cake gradually decreased, making it take longer to remove the filter, and clogging became noticeable. Because of this, we stopped using it after 200 batches.

実施例 2 1.5デニール、51mm長のポリエチレン成分(融
点130℃)とポリプロピレン成分(融点165℃)よ
りなるサイドバイサイド型ポリオレフイン系複合
繊維60%と3デニール64mm長のポリプロピレン繊
維40%とを混合しカード機にて重量150g/m2
繊維ウエブを形成した。この繊維ウエブ2枚の間
に実施例1に使用したと同様なポリプロピレン紡
績糸よりなる織布を入れ、上下両面より合計300
本/cm2のニードルパンチを行い、重量400g/m2
のニードルフエルトを形成した。得られたニード
ルフエルトをサクシヨンドラム、ドライヤーにて
145℃で2分間熱処理し、その後直ちに130℃に加
熱した金属ロール間を線圧5Kg/cmの圧力下で、
3m/minのスピードで通過させ重量400g/m2
厚み1.3mm、通気度5c.c./cm2/sec、引張強度縦方
向110Kg/5cm巾、横方向115Kg/5cm巾の表面平
滑なフイルタープレス用濾材を得た。濾材の断面
を顕微鏡観察したところ繊維間接着は濾材内部に
も形成されていた。得られた濾材を日本工業規格
L−0849に示される学振形摩擦試験機に取りつ
け、摩擦子に180番のエメリーペーパーをとりつ
け、又摩擦子上に600gの荷重錘をのせて耐摩擦
性の試験を行つたところ1000回の摩擦によつても
表面には目立つ毛羽の発生はなくフイルタープレ
ス用濾材として摩擦を受けながら使用しても、毛
羽立たない事が予想された。
Example 2 60% side-by-side type polyolefin composite fibers consisting of a 1.5 denier, 51 mm long polyethylene component (melting point 130°C) and a polypropylene component (melting point 165°C) and 40% 3 denier 64 mm long polypropylene fiber were mixed and processed using a carding machine. A fiber web having a weight of 150 g/m 2 was formed. A woven fabric made of polypropylene spun yarn similar to that used in Example 1 was placed between the two fiber webs, and a total of 300
Perform needle punching of book/ cm2 , weight 400g/ m2
A needle felt was formed. The obtained needle felt is passed through a suction drum and a dryer.
Heat treated at 145℃ for 2 minutes, then immediately heated between metal rolls heated to 130℃ under a linear pressure of 5Kg/cm.
Passed at a speed of 3m/min, weight 400g/ m2 ,
A filter medium for a filter press having a thickness of 1.3 mm, an air permeability of 5 c.c./cm 2 /sec, a tensile strength of 110 kg/5 cm width in the longitudinal direction, and a smooth surface of 115 kg/5 cm width in the transverse direction was obtained. Microscopic observation of the cross section of the filter medium revealed that interfiber adhesion was also formed inside the filter medium. The obtained filter medium was attached to a Gakushin type friction tester specified in Japanese Industrial Standard L-0849, No. 180 emery paper was attached to the friction element, and a 600 g weight was placed on the friction element to test the friction resistance. As a result of the test, there was no noticeable fuzz on the surface even after 1000 times of friction, and it was predicted that no fuzz would form even if it was used as a filter material for a filter press while being subjected to friction.

比較例 2 比較例1で得られた濾材を学振型摩擦試験機を
使用し、実施例2と同様な条件にて耐摩擦試験を
行つたところ、約300回の摩擦により表面の平滑
層は破壊され表面に毛羽立ちがみられ、約500回
の摩擦によつて、表面全体が毛羽でおおわれた。
Comparative Example 2 When the filter medium obtained in Comparative Example 1 was subjected to a friction resistance test using a Gakushin type friction tester under the same conditions as in Example 2, the smooth layer on the surface deteriorated after about 300 frictions. It was destroyed and fluff was visible on the surface, and after about 500 frictions, the entire surface was covered with fluff.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はニードルフエルトを毛焼きして得られ
たフイルタープレス用濾材の表面の拡大図、第2
図は本発明の方法により得られたフイルタープレ
ス用濾材の表面の拡大図であり、第3図は厚み方
向の拡大断面図である。
Figure 1 is an enlarged view of the surface of a filter medium for a filter press obtained by burning needle felt, Figure 2
The figure is an enlarged view of the surface of a filter medium for a filter press obtained by the method of the present invention, and FIG. 3 is an enlarged sectional view in the thickness direction.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエチレンを主体とする低融点接着成分と
ポリプロピレンを主体とする高融点骨格成分とよ
りからなり、少なくとも表面の一部は前記低融点
接着成分で形成されているポリオレフイン系複合
繊維を50%以上含有する繊維ウエブと、編、織布
とを重ね合せ、ニードルパンチを施し、次いで無
押圧下で前記複合繊維の低融点接着成分の融点以
上、高融点骨格成分の融点以下の温度で前記複合
繊維を熱処理し、その後直ちに前記複合繊維の低
融点接着成分の軟化点以上融点以下の温度条件下
で少なくとも前記編、織布と重合せられた繊維ウ
エブの片面を均一に加圧することを特徴とするフ
イルタープレス用濾材の製造方法。
1 Consisting of a low melting point adhesive component mainly composed of polyethylene and a high melting point skeleton component mainly composed of polypropylene, at least a portion of the surface contains 50% or more of polyolefin composite fibers formed of the low melting point adhesive component. The fibrous web and the knitted or woven fabric are layered together, needle punched, and then the conjugate fiber is bonded at a temperature above the melting point of the low melting point adhesive component of the conjugate fiber and below the melting point of the high melting point skeleton component of the conjugate fiber without pressing. A filter characterized in that after heat treatment, immediately after that, at least one side of the fiber web superimposed with the knitted or woven fabric is uniformly pressed under a temperature condition not lower than the softening point and lower than the melting point of the low melting point adhesive component of the composite fiber. A method for producing filter media for presses.
JP56019737A 1981-02-12 1981-02-12 Preparation of filter material for filter press Granted JPS57135021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56019737A JPS57135021A (en) 1981-02-12 1981-02-12 Preparation of filter material for filter press

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56019737A JPS57135021A (en) 1981-02-12 1981-02-12 Preparation of filter material for filter press

Publications (2)

Publication Number Publication Date
JPS57135021A JPS57135021A (en) 1982-08-20
JPH0248286B2 true JPH0248286B2 (en) 1990-10-24

Family

ID=12007638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56019737A Granted JPS57135021A (en) 1981-02-12 1981-02-12 Preparation of filter material for filter press

Country Status (1)

Country Link
JP (1) JPS57135021A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60146595U (en) * 1984-03-08 1985-09-28 市川毛織株式会社 Filter cloth for belt press dehydrator
JPS60166492U (en) * 1984-04-12 1985-11-05 市川毛織株式会社 Filter cloth for belt press dehydrator
JP2779653B2 (en) * 1989-08-05 1998-07-23 大日本印刷株式会社 Filter for coffee dripper and method for producing the same
ATE125581T1 (en) * 1991-06-13 1995-08-15 Chisso Corp NEEDLED FLOOR COVERING.

Also Published As

Publication number Publication date
JPS57135021A (en) 1982-08-20

Similar Documents

Publication Publication Date Title
US4225642A (en) Raised and fused fabric filter and process for producing the same
US5336556A (en) Heat resistant nonwoven fabric and process for producing same
EP0560556B1 (en) Process for producing wiping nonwoven fabric
US7611594B2 (en) Method of making a fiber laminate
CN108543349A (en) A kind of gradient filtration multilayer spun lacing needle-punched composite and its production technology
JP3233988B2 (en) Filter cloth and method for producing the same
JPH0248286B2 (en)
EP0505568B1 (en) Heat-resistant nonwoven fabric and method of manufacturing said fabric
US20050106970A1 (en) Melt processable perfluoropolymer forms
MXPA04001239A (en) Method of producing a nonwoven fabric from filaments.
JP2559872B2 (en) Heat resistant non-woven fabric
CN101484635A (en) Papermaking felt
KR100477859B1 (en) Membrane Support of Polyester Nonwoven Fabric
CN210975364U (en) Papermaking felt suitable for high-speed and high-pressure squeezing at high speed
JPWO2006011453A1 (en) Solid knitted fabric, core material and laminate
CA2383736A1 (en) Melt processable perfluoropolymer forms
JP3384415B2 (en) Needle punching felt for clarification filtration
CN109881522B (en) Papermaking felt suitable for high-speed high-line-pressure pressing and preparation method thereof
CN216726200U (en) Sea-island superfine fiber needling filter cloth
JPH0327662B2 (en)
JPH0236574Y2 (en)
JPH11107147A (en) Chemical-resistant conjugate fabric and formed product obtained by using the same
KR100490515B1 (en) High-tenacity high-modulus drainage filter and preparation thereof
KR100262548B1 (en) A manufacturing process of air cleaner for vehicle
CS258280B1 (en) Filtering fabric suitable especially for liquid filtering on framefilter presses