JPH0247832B2 - RADENNETSUSENNYORUKONKURIITOYOJOKANETSUSOCHIOYOBIKANETSUKAN - Google Patents
RADENNETSUSENNYORUKONKURIITOYOJOKANETSUSOCHIOYOBIKANETSUKANInfo
- Publication number
- JPH0247832B2 JPH0247832B2 JP2088184A JP2088184A JPH0247832B2 JP H0247832 B2 JPH0247832 B2 JP H0247832B2 JP 2088184 A JP2088184 A JP 2088184A JP 2088184 A JP2088184 A JP 2088184A JP H0247832 B2 JPH0247832 B2 JP H0247832B2
- Authority
- JP
- Japan
- Prior art keywords
- heating
- steel
- pipe
- steel pipe
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 claims description 78
- 229910000831 Steel Inorganic materials 0.000 claims description 58
- 239000010959 steel Substances 0.000 claims description 58
- 239000004567 concrete Substances 0.000 claims description 29
- 239000004570 mortar (masonry) Substances 0.000 claims description 13
- 239000000843 powder Substances 0.000 claims description 13
- 238000003466 welding Methods 0.000 claims description 7
- 239000000919 ceramic Substances 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 4
- 239000000395 magnesium oxide Substances 0.000 claims description 4
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 4
- 238000009415 formwork Methods 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000005485 electric heating Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 229910001120 nichrome Inorganic materials 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- -1 cypronickel Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Landscapes
- Resistance Heating (AREA)
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
Description
【発明の詳細な説明】
この発明は裸電熱線によるコンクリート養生加
熱装置及び加熱管に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a concrete curing heating device and heating tube using bare heating wires.
コンクリート打設後の養生期間を短縮するた
め、蒸気加熱することが広く行われている。蒸気
は加熱と加湿を同時に行えるため養生には好適な
熱源である。しかし、コンクリート工事現場での
ボイラー設置許可、オイルタンク設置の認可、ボ
イラーマンの専従、ボイラー据付、配管等、蒸気
発生のためには面倒な事も少くなく、しかも蒸気
養生は熱効率良好といえなかつた。この発明はよ
り簡単な電熱を加熱源とし、熱効率を高めて経済
的にも蒸気養生に劣らないようにする事に成功し
た。そのために必要な電熱加熱管を開発した。 Steam heating is widely used to shorten the curing period after concrete is poured. Steam is a suitable heat source for curing because it can heat and humidify at the same time. However, there are many troublesome things involved in generating steam, such as obtaining permission to install a boiler at a concrete construction site, obtaining permission to install an oil tank, having a full-time boilerman, installing the boiler, and piping, and moreover, steam curing is not very efficient. Ta. This invention succeeded in using simpler electric heat as a heating source, increasing thermal efficiency, and making it economically comparable to steam curing. For this purpose, we developed an electric heating tube.
コンクリートの電熱養生の従来例は、米国特許
第3938922号のように、長大なコンクリートスラ
ブ製造用コンクリート製(成形面は鋼板)型枠兼
プレテンシヨン・ベンチの型枠側コンクリートに
電熱線を直接、埋込んでいる。電熱線が成形面鉄
板に触れないで、なるべく近づけるため型枠側コ
ンクリートの打設が面倒であるが、それはさてお
き、発生熱の大半がコンクリート加熱に費される
熱効率の悪さと、一たん電熱線を埋込んだら、焼
き切れても修理不能という問題点がある。 A conventional example of electric heating curing of concrete is as shown in U.S. Patent No. 3,938,922, in which heating wires are directly connected to the concrete on the formwork side of a concrete formwork (forming surface is a steel plate) formwork/pretension bench for producing long concrete slabs. embedded. Placing the concrete on the side of the formwork is troublesome because the heating wire is placed as close as possible to the steel plate on the molding surface without touching it, but apart from that, there is a problem of poor thermal efficiency as most of the generated heat is used to heat the concrete, and once the heating wire The problem with this is that if it is embedded, it cannot be repaired even if it burns out.
本発明者は型枠の成形面鋼板の裏側にコンクリ
ートを打つて補強する場合でも電熱設備が邪魔に
ならない事、電熱線発生熱の大半を成形面鋼板へ
伝えられる事、電熱線が焼切れても簡単に取換え
られる事の三条件を満たす養生加熱設備を探究し
た。 The inventor of the present invention discovered that even when reinforcing the forming surface steel plate of a formwork by pouring concrete on the back side, the electric heating equipment does not get in the way, that most of the heat generated by the heating wire can be transmitted to the forming surface steel plate, and that the heating wire does not burn out. We searched for curing heating equipment that satisfies the three conditions of easy replacement.
蒸気発生用石油に比べ高価な電力を使うには熱
効率を高める事が第一で、そのため熱伝導のよい
絶縁物を介して電熱線を直接、成形面鋼板に接触
させる事をまず考えた。これにより発生熱の大半
を養生用にまわす事が可能になる。それには市販
の、絶縁物で被覆した加熱ケーブルを成形面鋼板
裏面に密着させればよい。しかし、それでは第三
の条件が満たされない。内部の電熱線が焼切れた
時、絶縁体もろ共、取換えねばならず、補強コン
クリートに埋込んだ場合はそれも不可能になる。 In order to use electric power, which is more expensive than oil for steam generation, the first priority was to increase thermal efficiency, so we first considered bringing the heating wire into direct contact with the forming steel plate through an insulator with good thermal conductivity. This allows most of the heat generated to be used for curing purposes. To do this, a commercially available heating cable coated with an insulator may be brought into close contact with the back surface of the formed steel plate. However, this does not satisfy the third condition. When the internal heating wire burns out, the insulator must be replaced as well, which is impossible if it is embedded in reinforced concrete.
こうして従来、加熱具、加熱ケーブルの概念と
して常に一体に作られていた電熱線、絶縁被覆体
を、敢えて分離し、電熱線だけ随時、交換できる
加熱管という画期的構想を得、この発明に達した
のである。 In this way, the heating wire and insulating sheath, which had traditionally been made as a single unit in the concept of heating tools and heating cables, were deliberately separated, and the revolutionary concept of a heating tube in which only the heating wire could be replaced at any time was achieved, and this invention was achieved. It was reached.
まず在来の加熱具、加熱ケーブルと、この発明
の加熱管の相違を述べると、前者は第1図に示す
断面構造で、中心に電熱線(コレスタンタン、ニ
クロム)1、その外周に強圧で一体化した絶縁性
粉末(酸化マグネシウム)2、金属管(銅、キユ
プロニツケル、ステンレス鋼)3があり、後者、
つまりこの発明の加熱管は第2図に示すように、
中央に電熱線(クロム鉄、ニクロム)10を自由
に動けるように納めた耐熱ガラス又はセラミツク
製内管11、そして外周の直線状鋼管13内壁と
内管11との間隙に注入し充満させたモルタル又
は絶縁性粉末(酸化マグネシウム等)12ででき
ている。前者の金属管3に比し後者の鋼管13は
段違いに溶接しやすい。 First, to explain the difference between conventional heating tools and heating cables and the heating tube of the present invention, the former has a cross-sectional structure shown in Figure 1, with a heating wire (cholestantan, nichrome) 1 in the center, and a strong pressure wire on the outer periphery. There are two integrated insulating powders (magnesium oxide) and metal tubes (copper, cypronickel, stainless steel).
In other words, the heating tube of this invention, as shown in Figure 2,
A heat-resistant glass or ceramic inner tube 11 in which a heating wire (chrome iron, nichrome) 10 is housed in the center so that it can move freely, and a straight steel tube 13 on the outer periphery A mortar injected into the gap between the inner wall and the inner tube 11 to fill it. Or, it is made of insulating powder (such as magnesium oxide) 12. Compared to the former metal pipe 3, the latter steel pipe 13 is easier to weld at different levels.
第1図の在来加熱具は外周からの加圧で全体が
一体化されているが、第2図のこの発明の加熱管
は絶縁体である内管11と電熱線10の間に大き
な空隙がある。しかし、鋼管13の両端が、裸電
熱線10への給電線だけ通して密封されているか
ら、熱が逸出せず、発生熱はすべて内管11、モ
ルタル又は粉末12を経て鋼管13に達する。 The conventional heating device shown in FIG. 1 is integrated as a whole by applying pressure from the outer periphery, but the heating tube of the present invention shown in FIG. There is. However, since both ends of the steel pipe 13 are sealed with only the power supply line to the bare heating wire 10 passed through, the heat cannot escape, and all the generated heat reaches the steel pipe 13 through the inner pipe 11, mortar or powder 12.
裸電熱線10を直接、受け支えるのは内管11
であるが、裸電熱線10の通電温度は、スライダ
ツク等により電流を加減して徐々に昇温させられ
るから、内管11がセラミツクに比べ熱に弱い耐
熱ガラス管でも、800℃程度まで亀裂なしに耐え
られる。しかし、仮りに内管11にひゞ割れを生
じても、外周が鋼管13によつて包まれていて気
密は保たれ、外部から空気(酸素)が補給されな
いから、電熱線10の昇温による酸化が阻止され
るのである。コンクリートの養生温度は60℃程度
で、それもゆるやかに昇降させるから、電熱線1
0の温度は300℃程度で足りる。従つて内管11
は、長尺物が入手しやすく安価な耐熱ガラスでよ
い。電熱線も安価なクロム鉄で十分である。もつ
とも、この加熱管でも、内管11をセラミツクに
し電熱線10をニクロムにして1000℃まであげる
事も可能である。 The inner tube 11 directly receives and supports the bare heating wire 10.
However, since the current temperature of the bare heating wire 10 is gradually raised by controlling the current using a slider, etc., even if the inner tube 11 is a heat-resistant glass tube that is weaker than ceramic, it will not crack up to about 800 degrees Celsius. can withstand. However, even if cracks occur in the inner tube 11, the outer periphery is surrounded by the steel tube 13 and airtightness is maintained, and air (oxygen) is not supplied from the outside. Oxidation is prevented. The curing temperature of concrete is about 60℃, and since it is raised and lowered slowly, heating wire 1
A temperature of about 300°C is sufficient for zero. Therefore, the inner pipe 11
can be made of heat-resistant glass, which is easily available in long lengths and is inexpensive. Cheap chrome iron heating wires are sufficient. However, even with this heating tube, it is possible to heat the temperature up to 1000°C by making the inner tube 11 of ceramic and the heating wire 10 of nichrome.
しかし、この加熱管の長所は、在来品のように
一体化した工場製品でなく、工事現場で特別の設
備を用いずに随時組立てられる事、従来不可能だ
つた溶接による設置位置への取付けが可能な事、
裸電熱線を自由に出し入れ、交換できる事、しか
も安あがりな事である。 However, the advantage of this heating tube is that it is not an integrated factory product like conventional products, but can be assembled at any time at the construction site without using special equipment, and it can be installed at the installation location by welding, which was previously impossible. is possible,
It is possible to freely take out and take out bare heating wires and replace them, and it is also inexpensive.
さて、加熱管の説明が先行してしまつたが、発
明の当初の目的であつたコンクリート養生加熱装
置について、次に説明する。 Now, although the heating pipe has been explained first, the concrete curing heating device, which was the original purpose of the invention, will be explained next.
第3,4図は第5,6図に示すような長大な
PCコンクリートスラブ製造用型枠下型20に、
この発明を適用した実施例説明図である。この下
型20の上を本発明者が開発した摺動成形用上型
(図略)を走らせて、下型20上に敷いたコンク
リートを図示例では波板状PCコンクリート・ス
ラブである製品14に成形し、そのまゝ養生後、
剥離脱型するものである。 Figures 3 and 4 are long
For the lower formwork mold 20 for manufacturing PC concrete slabs,
FIG. 2 is an explanatory diagram of an embodiment to which the present invention is applied. An upper mold for sliding molding (not shown) developed by the present inventor is run over this lower mold 20, and the concrete spread on the lower mold 20 is converted into a product 14, which is a corrugated PC concrete slab in the illustrated example. After molding and curing,
It is a peel-off type.
製品14を成形した下型20の成形面は鋼板2
0aで作られ、これを型枠内コンクリート15に
より補強している。従つて、電熱線10の発生熱
の大半を成形面鋼板20aへ伝えれば、その上の
製品14のコンクリートの養生が最も効率よく行
われる、という着想が、この発明の発端である。 The molding surface of the lower mold 20 that molded the product 14 is the steel plate 2
0a, and reinforced with concrete 15 in the formwork. Therefore, the origin of this invention is that if most of the heat generated by the heating wire 10 is transmitted to the forming surface steel plate 20a, the concrete of the product 14 thereon will be most efficiently cured.
具体的には、型枠の成形面鋼板20aの裏面全
域に、適当間隔で電熱線10入り鋼管13を並列
させて飛石溶接で固定した。外周に普通鋼管13
をもつ、この発明の加熱管は、型枠鋼板への溶接
固定が容易で、溶接できない在来の加熱管を取付
ける場合のような面倒がない。溶接部16はそれ
自身が熱伝導路となるほか、その冷却収縮により
鋼管13を鋼板20aに押付ける働きをする。熱
交換装置に用いるフイン管の、フイン(ひれ)と
管とを飛石溶接すると同様な効果を生ずるのであ
る。 Specifically, the steel pipes 13 containing the heating wires 10 were arranged in parallel at appropriate intervals over the entire back surface of the forming surface steel plate 20a of the formwork and fixed by stepping stone welding. Ordinary steel pipe 13 on the outer periphery
The heating tube of the present invention can be easily welded and fixed to a formwork steel plate, and there is no trouble associated with attaching conventional heating tubes that cannot be welded. The welded portion 16 itself serves as a heat conduction path, and also serves to press the steel pipe 13 against the steel plate 20a by cooling and shrinking. A similar effect is produced when the fins of a fin tube used in a heat exchanger are welded with flying stones.
第2図において、電熱線10に発生した熱は放
射、伝導により内管11、モルタル又は粉末12
を経て鋼管13に達する。この鋼管13は周囲を
コンクリートと溶接部16を介した鋼板20aで
囲まれているから、鋼管13の全周へ達した熱
が、管壁を自由に流れて溶接部16又は鋼板20
aとの接触部へ集り、大部分が鋼板20aへ流れ
込むから熱効率が良い。 In FIG. 2, the heat generated in the heating wire 10 is transferred to the inner tube 11, mortar or powder 12 by radiation or conduction.
It reaches the steel pipe 13 through. Since this steel pipe 13 is surrounded by concrete and a steel plate 20a via the welded part 16, the heat that reaches the entire circumference of the steel pipe 13 flows freely through the pipe wall and is transferred to the welded part 16 or the steel plate 20a.
Thermal efficiency is good because most of the heat flows into the steel plate 20a.
養生加熱による製品コンクリートの温度経過は
頂上で温度60℃程度のゆるやかな岡の形になるよ
う時間をかけて昇降させるので、成形面鋼板20
a裏面が間隔をあけた並列鋼管13により加熱さ
れても熱伝導のよい鋼板20a内で温度がほぼ均
等化する。それを考えて加熱鋼管13を配列すれ
ばよい。型枠20の長さに応じて、第5,6図の
ように、加熱範囲を区分することもできる。一区
分ごとに成形面鋼板20aの下に前後隔壁17を
設け、その隔壁17,17間に加熱鋼管13を気
密に取付け、隔壁17の外側で電熱線10相互、
又は電熱線10と給電線18を接続する。第5図
の19は電源、19aは計器類で電源開閉器、過
電流遮断器、漏電遮断、警報器、自動温度記録
計、電圧、電流計、積算計、自動温度調整器、そ
の他である。 The temperature of the product concrete due to curing heating is raised and lowered over time so that it forms a gentle hill with a temperature of about 60℃ at the top, so the forming surface steel plate 20
Even if the back surface of the steel plate 20a is heated by the parallel steel pipes 13 spaced apart, the temperature is almost equalized within the steel plate 20a, which has good thermal conductivity. The heating steel pipes 13 may be arranged with this in mind. Depending on the length of the formwork 20, the heating range can be divided as shown in FIGS. 5 and 6. A front and rear partition wall 17 is provided under the forming surface steel plate 20a for each section, and a heating steel pipe 13 is airtightly installed between the partition walls 17, 17, and heating wires 10 are connected to each other outside the partition wall 17.
Alternatively, the heating wire 10 and the power supply line 18 are connected. Reference numeral 19 in FIG. 5 indicates a power supply, and 19a indicates instruments such as a power supply switch, an overcurrent breaker, an earth leakage breaker, an alarm, an automatic temperature recorder, a voltage, an ammeter, an integrated meter, an automatic temperature regulator, and others.
内管11に通した電熱線10と給電線18との
接続は従来どおりで、養生加熱の場合、電熱線1
0の温度が300℃程度ゆえ問題ない。第7図に鋼
管13両端の密閉方法の一例と、電熱線10、給
電線18接続部の一例を示す。管端にプチルゴム
栓24をはめて内管11を支え、内管11端と接
続用耐熱線18aとを耐熱バテ25によつて気密
接続している。耐熱線18aは銅管21、グラス
フアイバ22、テフロン23で構成した周知のも
のである。 The connection between the heating wire 10 passed through the inner tube 11 and the power supply line 18 is the same as before, and in the case of curing heating, the heating wire 1
There is no problem because the temperature at 0 is about 300℃. FIG. 7 shows an example of a method of sealing both ends of the steel pipe 13, and an example of the connecting portion of the heating wire 10 and the power supply line 18. A butyl rubber stopper 24 is fitted to the end of the tube to support the inner tube 11, and the end of the inner tube 11 and the connecting heat-resistant wire 18a are hermetically connected by a heat-resistant batten 25. The heat-resistant wire 18a is a well-known wire made of a copper tube 21, a glass fiber 22, and a Teflon 23.
第6図の一区間の鋼管13や、その内部の内管
11は原則として一本物を用いる。しかし、途中
で接続しなければならない場合、第8図のように
すればよい。つまり鋼管13は内面のプチルゴム
栓24又は耐熱パテで気密接続し、内管11相互
間は耐熱テープ又はテフロンチユーブ26で接続
している。なお第8図は鋼管13に分岐管27を
設け、ゴムホース28によりモルタル又は絶縁性
粉末12を注入できるようにしている。しかし、
一般には第7図のようにゴム栓24で鋼管13端
をふさぐ前にモルタル又は絶縁性粉末12を在来
注入具で注入しておき、これを押込むように栓2
4を詰める方がよい。モルタルや粉末を詰めてお
くのは、比較的もろい内管11がひゞ割れしても
移動せず、電熱線10が鋼管13に触れるおそれ
がないようにするためであるから、適当な密度に
なるよう注入すればよい。 As a general rule, a single piece of steel pipe 13 in one section of FIG. 6 and the inner pipe 11 inside it are used. However, if it is necessary to make a connection midway, it may be done as shown in FIG. That is, the steel pipes 13 are airtightly connected with a butyl rubber stopper 24 or heat-resistant putty on the inner surface, and the inner pipes 11 are connected with each other using a heat-resistant tape or a Teflon tube 26. In FIG. 8, a branch pipe 27 is provided in the steel pipe 13 so that mortar or insulating powder 12 can be injected through a rubber hose 28. but,
Generally, as shown in Fig. 7, before closing the end of the steel pipe 13 with a rubber stopper 24, mortar or insulating powder 12 is injected with a conventional injection tool, and the mortar is pushed into the stopper.
It's better to pack 4. The purpose of packing mortar or powder is to prevent the inner tube 11, which is relatively fragile, from moving even if it cracks, and to prevent the heating wire 10 from touching the steel tube 13. Just inject it to make sure.
なお第3,4図に一本だけ示したPC鋼線29
は無論、多数配設されるものである。また下型2
0内コンクリート15の厚肉部に、コンクリート
が入らない空洞部30を設けているのは、下型内
コンクリート15の容積を減じ、コンクリートの
吸収熱量を減じたのである。 Note that only one PC steel wire 29 is shown in Figures 3 and 4.
Of course, a large number of such devices are provided. Also, lower mold 2
The reason why the hollow part 30 into which concrete cannot enter is provided in the thick part of the concrete 15 in the lower mold is to reduce the volume of the concrete 15 in the lower mold and reduce the amount of heat absorbed by the concrete.
以上、一実施例によつて説明したが、この発明
は二重になつた加熱管の中で電熱線が交換可能に
納められている事、その加熱管をコンクリート型
枠の成形面鋼板の裏面に溶接固定した事を主な特
徴とするもので、その要旨を変えることなく実施
条件に応じて多様に変化、応用が行われ得るもの
である。 As explained above with reference to one embodiment, the present invention is characterized in that heating wires are housed in a double heating tube in a replaceable manner, and that the heating tube is placed on the back side of a forming surface steel plate of a concrete formwork. Its main feature is that it is fixed by welding, and it can be varied and applied in a variety of ways depending on the implementation conditions without changing its gist.
この発明は、コンクリート型枠成形面の鋼板裏
面に普通鋼鋼管を飛石溶接し、この鋼管を内部の
電熱線により加熱するようにしたので、高価な電
力による発生熱の大半が最も流れやすい鋼板の方
へ流れるため熱効率良く、電熱養生を経済的にも
成立つものにした。またコンクリート型枠は現場
で据付けられる場合が多く、養生加熱装置も現場
組立てに適したものでなければならないが、この
発明の加熱管は適用位置への溶接取付けに適し、
内管、電熱線の挿入、モルタル、粉末の注入、
栓、パテによる密封が容易で、現場作業員だけで
完成できる。 In this invention, an ordinary steel pipe is welded with flying stones to the back side of the steel plate on the forming surface of the concrete form, and this steel pipe is heated by an internal heating wire, so that most of the heat generated by expensive electricity is transferred to the steel plate where it is most likely to flow. Because the heat flows in the opposite direction, the heat is efficient, making electric heating economically viable. In addition, concrete formwork is often installed on site, and the curing heating device must also be suitable for on-site assembly, but the heating pipe of this invention is suitable for welding installation at the application location.
Inner tube, heating wire insertion, mortar, powder injection,
It is easy to seal with a stopper and putty, and can be completed by on-site workers alone.
また、この発明は裸電熱線をガラス又はセラミ
ツク内管に通し、これをモルタル又は粉末を介し
て普通鋼管で気密に包むことにより、安価で、溶
接取付け可能、電熱線交換可能な新しい加熱具の
型式を創出した。普通鋼鋼管は強い保護能力をも
ち、これと耐熱ゴム栓、耐熱パテ等により内部を
密封するため熱気を封じ込め、万一、内管にひゞ
割れを生ずるほどの熱的、機械的衝撃が加わつて
も、内管外周のモルタル又は粉末がこれを支える
ため電熱線が鋼管に触れるおそれがない。靭性充
分な普通鋼鋼管により気密を保持されるから、
ひゞ割れ部分から空気が侵入して電熱線の酸化を
進めるおそれもないのである。 In addition, this invention creates a new heating tool that is inexpensive, can be installed by welding, and can be replaced by welding, by passing a bare heating wire through a glass or ceramic inner tube and wrapping it airtight with a common steel tube through mortar or powder. Created a model. Ordinary steel pipes have a strong protective ability, and the inside is sealed with heat-resistant rubber plugs, heat-resistant putty, etc. to contain hot air, and in the unlikely event that a thermal or mechanical shock sufficient to cause cracks is applied to the inner pipe. However, since the mortar or powder on the outer periphery of the inner tube supports it, there is no risk of the heating wire touching the steel tube. Airtightness is maintained by ordinary steel pipes with sufficient toughness,
There is no risk of air entering through the cracks and oxidizing the heating wire.
第1図は従来の加熱具の断面図、第2図はこの
発明の加熱管一実施例の断面図、第3図はこの発
明をPCコンクリートスラブ成形用型枠下型に適
用した実施例の斜視図、第4図はその要部拡大説
明図、第5図は同じく電気配線を示す平面図、第
6図は同じく長手方向断面図、第7図は加熱管両
端の密封部分の実施例及び電熱線、接続用耐熱
線、給電線の接続部説明図、第8図は鋼管相互及
び内管相互接続部の説明図である。
10……裸電熱線、11……内管、12……モ
ルタル又は絶縁性粉末、18……給電線。
Fig. 1 is a cross-sectional view of a conventional heating tool, Fig. 2 is a cross-sectional view of an embodiment of a heating tube of the present invention, and Fig. 3 is a cross-sectional view of an embodiment in which the present invention is applied to a lower formwork mold for forming a PC concrete slab. FIG. 4 is an enlarged explanatory view of the main parts, FIG. 5 is a plan view showing the electric wiring, FIG. 6 is a longitudinal sectional view, and FIG. 7 is an example of the sealed portion at both ends of the heating tube. FIG. 8 is an explanatory diagram of the connecting portions of the heating wire, the heat-resistant wire for connection, and the power supply line, and FIG. 8 is an explanatory diagram of the mutual connecting portions of steel pipes and inner pipes. 10... Bare heating wire, 11... Inner tube, 12... Mortar or insulating powder, 18... Power supply line.
Claims (1)
に、適当間隔で並列させて溶接で固定した普通鋼
鋼管、 これら鋼管の内部全長に通した耐熱ガラス又は
セラミツク製内管、 上記鋼管内壁と内管との間隙に注入し充満させ
たモルタル又は酸化マグネシウム等の絶縁性粉
末、及び 上記各内管に通した裸電熱線と、それらへの給
電配線とを備え、 上記鋼管の両端は上記裸電熱線への給電線だけ
通し密封されていることを特徴とする裸電熱線に
よるコンクリート養生加熱装置。 2 直線状普通鋼鋼管、 この鋼管の内部全長に通した耐熱ガラス又はセ
ラミツク製内管、 上記鋼管内壁と内管との間隙に注入し充満させ
たモルタル又は酸化マグネシウム等の絶縁性粉
末、及び 上記内管に通した裸電熱線、 を備え、 上記鋼管の両端は上記裸電熱線への給電線だけ
通し密封されていることを特徴とする裸電熱線に
よる加熱管。[Scope of Claims] 1. Ordinary steel pipes arranged in parallel at appropriate intervals and fixed by welding to the entire back surface of the forming surface steel plate of a concrete form; A heat-resistant glass or ceramic inner pipe passed through the entire internal length of these steel pipes; Insulating powder such as mortar or magnesium oxide injected into the gap between the inner wall of the steel pipe and the inner pipe, bare heating wires passed through each of the inner pipes, and power supply wiring to them, provided at both ends of the steel pipe. is a concrete curing heating device using bare heating wires, characterized in that only the power supply line to the bare heating wires is passed through and sealed. 2. A straight ordinary steel pipe, an inner pipe made of heat-resistant glass or ceramic that runs along the entire length of the steel pipe, an insulating powder such as mortar or magnesium oxide injected into the gap between the inner wall of the steel pipe and the inner pipe, and the above. A heating tube using a bare heating wire, comprising: a bare heating wire passed through the inner tube, and both ends of the steel pipe are sealed so that only a power supply line to the bare heating wire is passed through and sealed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2088184A JPH0247832B2 (en) | 1984-02-09 | 1984-02-09 | RADENNETSUSENNYORUKONKURIITOYOJOKANETSUSOCHIOYOBIKANETSUKAN |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2088184A JPH0247832B2 (en) | 1984-02-09 | 1984-02-09 | RADENNETSUSENNYORUKONKURIITOYOJOKANETSUSOCHIOYOBIKANETSUKAN |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60165207A JPS60165207A (en) | 1985-08-28 |
JPH0247832B2 true JPH0247832B2 (en) | 1990-10-23 |
Family
ID=12039532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2088184A Expired - Lifetime JPH0247832B2 (en) | 1984-02-09 | 1984-02-09 | RADENNETSUSENNYORUKONKURIITOYOJOKANETSUSOCHIOYOBIKANETSUKAN |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0247832B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007055225A (en) * | 2005-07-29 | 2007-03-08 | Asami Seisakusho:Kk | Curing method for concrete, mold for concrete and curing apparatus for concrete product |
CN102848459A (en) * | 2012-08-13 | 2013-01-02 | 吴江市万事达防水建材有限公司 | Cement curing box |
-
1984
- 1984-02-09 JP JP2088184A patent/JPH0247832B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS60165207A (en) | 1985-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3849630A (en) | Electric heating device | |
US3971416A (en) | Preinsulated pipe assembly and pipeline | |
US3874239A (en) | Surface thermocouple | |
US3890485A (en) | Electric heaters | |
JPS6252197B2 (en) | ||
US3476915A (en) | Immersion heaters | |
US2611567A (en) | Insulated pipe anchor | |
EP0146205B1 (en) | Repeating thermocouple | |
US4043200A (en) | Surface thermocouple | |
JPH0247832B2 (en) | RADENNETSUSENNYORUKONKURIITOYOJOKANETSUSOCHIOYOBIKANETSUKAN | |
US4031611A (en) | Method of making preinsulated pipe assembly | |
US2339809A (en) | Thermocouple structure | |
US4004130A (en) | Hot plates | |
CN214889462U (en) | Building water pipe connecting device | |
US20020017390A1 (en) | Temperature-resistant communications cable | |
US2378214A (en) | Expansion means | |
JPH0222437Y2 (en) | ||
GB2183909A (en) | Mineral insulated thermocouple cable | |
EP0484327A1 (en) | Arrangement for converting electrical energy to heat energy | |
US3363049A (en) | Joints for electric cables | |
KR200229366Y1 (en) | A heater of connection structure | |
JPS57196849A (en) | Squirrel-cage rotor for induction motor | |
SU1185117A1 (en) | Method of producing the thermocouple hot junction | |
JP2002246079A (en) | Cable connection structure and its formation method | |
CN210042275U (en) | Waterproof PTC electrothermal tube |