JPH0247640B2 - - Google Patents
Info
- Publication number
- JPH0247640B2 JPH0247640B2 JP58154791A JP15479183A JPH0247640B2 JP H0247640 B2 JPH0247640 B2 JP H0247640B2 JP 58154791 A JP58154791 A JP 58154791A JP 15479183 A JP15479183 A JP 15479183A JP H0247640 B2 JPH0247640 B2 JP H0247640B2
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- liquid
- pressure pulsation
- pressure
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000010349 pulsation Effects 0.000 claims description 68
- 239000007788 liquid Substances 0.000 claims description 30
- 230000001603 reducing effect Effects 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 230000003584 silencer Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000012530 fluid Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 230000001902 propagating effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Landscapes
- Pipe Accessories (AREA)
- Vibration Prevention Devices (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は液体管路系の圧力脈動低減装置に係
り、特にポンプ配管系のようにある特定周波数の
圧力脈動が伝搬するのを低減するのに好適な圧力
脈動低減装置に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a pressure pulsation reducing device for a liquid piping system, and in particular to a device for reducing pressure pulsations at a certain frequency such as in a pump piping system. The present invention relates to a pressure pulsation reducing device suitable for.
ポンプ等の流体機械の駆動によつて生起する圧
力脈動が配管系に伝搬すると、配管系を振動させ
騒音を放射する。例えば、ポンプにおいては羽根
車の羽根が吐出しボリユート入口を通過する際に
生ずる圧力変化、すなわち羽根枚数×回転速度の
周波数の脈動が発生し、この脈動は配管内の水柱
を伝搬し管路系全体を振動させて騒音を発生させ
る問題を生じていた。このような脈動の発生に対
処するために、従来種々の脈動低減装置が配置さ
れている。その一例を第1図について説明する。
When pressure pulsations caused by driving a fluid machine such as a pump propagate to a piping system, the piping system vibrates and radiates noise. For example, in a pump, when the impeller blades pass through the discharge volute inlet, a pressure change occurs, which is a pulsation with a frequency equal to the number of blades x the rotational speed, and this pulsation propagates through the water column in the pipe and is transmitted through the pipe system. This caused the problem of the whole unit vibrating and generating noise. In order to cope with the occurrence of such pulsation, various pulsation reduction devices have been conventionally provided. An example of this will be explained with reference to FIG.
図において、配管1の途中には空気室2が配置
されており、配管1と空気室2とは断面積a、長
さLの細管3によつて接続されている。この空気
室2内の圧力脈動の固有値foは
となる。ここに、Cは空気室内のコンプライアン
ス、Vは空気室の容積、そして、L′は上記細管の
長さLに端末補正分を加えた等価長さである。 In the figure, an air chamber 2 is disposed in the middle of a pipe 1, and the pipe 1 and the air chamber 2 are connected by a thin tube 3 having a cross-sectional area a and a length L. The eigenvalue f o of the pressure pulsation in the air chamber 2 is becomes. Here, C is the compliance in the air chamber, V is the volume of the air chamber, and L' is the equivalent length of the capillary, which is the length L plus the terminal correction.
上記固有値foが配管系を伝搬する圧力脈動の周
波数を一致すると、空気室2内は共振し、一方の
配管系を伝搬する圧力脈動は減少する。 When the above-mentioned eigenvalue fo matches the frequency of the pressure pulsations propagating through the piping system, the inside of the air chamber 2 resonates, and the pressure pulsations propagating through one of the piping systems decreases.
ところで前記コンプライアンスCの値は空気室
2内の空気の圧縮性に係る値であり、空気室2内
に空気量によつて変化する。したがつて、配管系
を伝搬する特定周波数の圧力脈動に対し常に空気
室内を共振させ顕著な圧力脈動低減効果を得るた
めには上記コンプライアンスの値を一定に保つ必
要がある。
By the way, the value of the compliance C is a value related to the compressibility of the air in the air chamber 2, and changes depending on the amount of air in the air chamber 2. Therefore, in order to always cause the air chamber to resonate with the pressure pulsations of a specific frequency propagating through the piping system and to obtain a significant pressure pulsation reduction effect, it is necessary to keep the above-mentioned compliance value constant.
しかしながら、空気室内の空気は配管内の液体
を混合したり、液体に溶け込んで配管中に流出し
たり、また逆に配管内の液体に含有する空気が空
気室に流れ込んで前記空気量が変化する。このた
め空気室の共振周波数が配管系を伝搬する圧力脈
動の周波数とずれを生じてしまい、前記空気室の
圧力脈動低減効果が減少するという問題があつ
た。前記空気室の失なつた空気量を常時補充する
には空気圧縮機、空気配管、弁等の設備を要し、
また補充のための操作作業を要する。この空気量
の変動を解決するため、空気の代りに窒素ガス等
の乾燥した気体を弾性体よりなる袋体に収納して
空気室内に配置し、その袋体周囲を液体で満す案
もあるが、構造が複雑な上に高価になり、液質に
よつては袋体の耐久性が問題となる不都合があ
る。 However, the air in the air chamber mixes with the liquid in the piping, or dissolves into the liquid and flows out into the piping, or conversely, the air contained in the liquid in the piping flows into the air chamber, changing the amount of air. . For this reason, there is a problem in that the resonant frequency of the air chamber deviates from the frequency of pressure pulsations propagating through the piping system, and the pressure pulsation reducing effect of the air chamber is reduced. In order to constantly replenish the amount of air lost in the air chamber, equipment such as an air compressor, air piping, and valves are required.
Further, operation work is required for replenishment. In order to solve this fluctuation in the amount of air, there is a proposal to store dry gas such as nitrogen gas instead of air in a bag made of elastic material, place it inside the air chamber, and fill the area around the bag with liquid. However, the structure is complicated and expensive, and depending on the quality of the liquid, the durability of the bag may be a problem.
また、液体管路系の圧力脈動低減装置の他の従
来例として特開昭56−86296号公報に記載のもの
がある。この従来例は、流体配管の外側に、共鳴
洞を備え脈動を低減するものである。この従来例
のものは共鳴洞に流入した脈動と配管内脈動とを
干渉させて脈動を低減するものであるため、共鳴
洞の長さを1/4波長分とる必要があり、共鳴洞
が大型化する欠点がある。また、干渉による脈動
低減をするものであるため、共鳴洞入口が広く開
口しており、このため共振による脈動低減作用は
ほとんどない。 Further, as another conventional example of a pressure pulsation reducing device for a liquid pipe system, there is one described in JP-A-56-86296. In this conventional example, a resonant cavity is provided outside the fluid piping to reduce pulsation. This conventional example reduces pulsation by interfering with the pulsation flowing into the resonance cavity and the pulsation inside the pipe, so the length of the resonance cavity must be 1/4 wavelength, and the resonance cavity is large. There are drawbacks to becoming Furthermore, since the pulsation is reduced by interference, the entrance of the resonant cavity is wide open, and therefore there is almost no pulsation reduction effect by resonance.
本発明の目的は圧力脈動の低減効果の変動が少
く、かつコンパクトで圧力脈動低減効果の優れた
液体管路系の圧力脈動低減装置を得ることにあ
る。 An object of the present invention is to obtain a pressure pulsation reducing device for a liquid pipe system that is compact and has an excellent pressure pulsation reducing effect, with little variation in the pressure pulsation reducing effect.
上記目的を達成するため本発明は、液体管路の
外側に剛性材料で密閉構成された共振室を配置
し、該共振室と前記管路内とを細管で接続し、前
記共振室内に前記管路内と同一の液体を充満さ
せ、かつ前記共振室の容積Vr(m3)、管路の内径
をD(m)低減すべき圧力脈動の周波数をf(Hz)
としたとき、
25/f≦Vr/D2≦250/f
を満足するように前記共振室の容積を定めたもの
である。
In order to achieve the above object, the present invention arranges a resonant chamber sealed with a rigid material outside a liquid conduit, connects the resonant chamber and the inside of the conduit with a thin tube, and provides a tube inside the resonant chamber. The frequency of the pressure pulsation to be filled with the same liquid as the inside of the pipe, and the volume of the resonance chamber V r (m 3 ) and the inner diameter of the pipe to be reduced by D (m) is f (Hz).
The volume of the resonance chamber is determined so as to satisfy 25/f≦V r /D 2 ≦250/f.
本発明は上記のように構成したことにより、配
管内を伝搬する圧力脈動に対し、共振室が共振
し、配管内の圧力脈動を低減させることができ
る。その際、25/f≦Vr/D2≦250/fを満足するよう
に
共振室の容積Vrを定めたことにより、コンパク
トでかつ顕著な脈動低減効果を得ることができ
る。
By configuring the present invention as described above, the resonance chamber resonates with respect to the pressure pulsations propagating within the piping, and the pressure pulsations within the piping can be reduced. At this time, by determining the volume V r of the resonance chamber so as to satisfy 25/f≦V r /D 2 ≦250/f, it is possible to obtain a compact and significant pulsation reduction effect.
一般に配管内および空気室内に気体を充満させ
たもの、即ち気体配管用の圧力脈動吸収装置は、
共鳴型サイレンサーとして知られている。
In general, pressure pulsation absorbers for gas piping, in which the pipes and air chambers are filled with gas, are
Known as a resonance silencer.
しかしながらこの圧力脈動吸収装置は、気体の
代りに液体を充満させて液体配管系に用いること
は全く実施されていない。 However, this pressure pulsation absorbing device has never been used in a liquid piping system filled with liquid instead of gas.
この理由は、液体は気体にくらべ圧縮率が非常
に小さいため、前記空気室を液体で充満させた場
合、気体をつめたものと同等な効果を得るには、
空気室の容積を非常に大きなものとする必要があ
ると考えられていたためである。 The reason for this is that the compressibility of liquid is much lower than that of gas, so when filling the air chamber with liquid, in order to obtain the same effect as filling the air chamber with gas,
This is because it was considered necessary to make the volume of the air chamber very large.
即ち、液体、例えば水の圧縮率は約4.75×1063
cm3/Kgであるのに対し、気体は、
β=ΔV/V1ΔP=−1/Pであるから、例えば管内圧
力を、5Kg/cm2とすればβ=0.2Kg/cm2となり水
の約4200倍となる。ここにβは圧縮率、Vは、気
体の体積(cm3)、Pは圧力(Kg/cm2)であり、
ΔVは圧力をΔPだけ変化させたときの気体の体
積の変化量である。 That is, the compressibility of a liquid, for example water, is approximately 4.75×10 63
cm 3 /Kg, whereas for gas β=ΔV/V 1 ΔP=-1/P, for example, if the pressure inside the pipe is 5Kg/cm 2 , β=0.2Kg/cm 2 and water This is approximately 4,200 times the amount. Here, β is the compressibility, V is the volume of gas (cm 3 ), and P is the pressure (Kg/cm 2 ),
ΔV is the amount of change in gas volume when the pressure is changed by ΔP.
したがつて、管内の圧力をゆるやかに変化させ
た場合、同一体積の流体が空気室(以下共振室と
呼ぶ)を出入するためには、水で充満した共振室
の容積は、空気を充満させたときの容積の約4200
倍必要となることになる。 Therefore, when the pressure inside the pipe is changed slowly, in order for the same volume of fluid to enter and exit the air chamber (hereinafter referred to as the resonance chamber), the volume of the resonance chamber filled with water is equal to the volume of the resonance chamber filled with air. Approximately 4200 of the volume when
It will require twice as much.
したがつて共振室は大型となり、圧力脈動低減
装置の製造コストが高くなり、大きな設置スペー
スを必要とする。 Therefore, the resonance chamber becomes large, the manufacturing cost of the pressure pulsation reduction device increases, and a large installation space is required.
このようなことから、従来はもつぱら空気室が
用いられ、共振室に液体を充満した圧力脈動低減
装置は寸法が過大となり全く実用的でないものと
考えられていた。 For this reason, pressure pulsation reduction devices that have conventionally used air chambers and whose resonant chambers are filled with liquid have been considered to be completely impractical due to their excessive dimensions.
しかしながら、発明者らは種々試験を行い、前
記共振室内を剛性材料で密閉構成し、これを液体
で満し、かつ細管で管路内と接続することによ
り、共振室を大形にせず、しかも脈動低減効果の
大きい圧力脈動低減装置を発明したものである。 However, the inventors conducted various tests and found that by sealing the resonant chamber with a rigid material, filling it with liquid, and connecting it to the inside of the conduit with a thin tube, the resonant chamber could not be made large. We have invented a pressure pulsation reduction device that has a large pulsation reduction effect.
次に本発明の具体的実施例を第2図〜第8図に
より説明する。 Next, specific embodiments of the present invention will be described with reference to FIGS. 2 to 8.
第2図、第3図において、液体を輸送する配管
1の途中に共振室2を接続したもので、上記配管
と共振室とは長さL、断面積aの細管3を介して
通じている。共振室2の最上部には弁4が設けて
あり、共振室内の気体はこの弁を開くことにより
完全に排除される。常時運転中は弁4は閉じてお
く。この共振室内の圧力脈動の固有値foは、
となる。ここにαは共振室内の液中での音速、
Vrは共振室の容積、そしてL′は共振室と配管と
の細管の等価長さである。 In Figs. 2 and 3, a resonance chamber 2 is connected to the middle of a pipe 1 for transporting liquid, and the pipe and the resonance chamber communicate through a thin tube 3 having a length L and a cross-sectional area a. . A valve 4 is provided at the top of the resonance chamber 2, and gas within the resonance chamber is completely removed by opening this valve. Valve 4 is kept closed during continuous operation. The eigenvalue f o of the pressure pulsation in this resonant chamber is becomes. Here α is the sound speed in the liquid inside the resonance chamber,
V r is the volume of the resonant chamber, and L′ is the equivalent length of the capillary between the resonant chamber and the pipe.
第4図において、第2図と異なる点は配管1と
共振室2との細管3′の形状である。即ち第2図
においては接続部の形状は円形断面の通路から成
るが、第4図はスリツト状となつている。 In FIG. 4, the difference from FIG. 2 is the shape of the thin tube 3' of the pipe 1 and the resonance chamber 2. That is, in FIG. 2, the shape of the connecting portion is a passage with a circular cross section, but in FIG. 4, it is in the form of a slit.
第5図にはこの圧力脈動低減装置をポンプ管路
系へ適用した例を示す。ポンプ5の吐出配管6の
途中に、本発明の圧力脈動低減装置2が設けてあ
る。ポンプ吸込配管7および吐出配管6の末端は
タンク8に接続し、ここでポンプより伝わる圧力
脈動は反射し、定常数が生じる。第5図でポンプ
は回転速度2600rpm、羽根枚数5枚であり、圧力
脈動の周波数は217Hzとなる。また圧力脈動低減
装置は、配管径0.15mに対し、共振室の容積は
0.0045m3である。これは後述するように一般に気
体に用いられている共鳴型サイレンサーより小型
である。 FIG. 5 shows an example in which this pressure pulsation reducing device is applied to a pump piping system. The pressure pulsation reducing device 2 of the present invention is provided midway through the discharge piping 6 of the pump 5. The ends of the pump suction pipe 7 and the discharge pipe 6 are connected to a tank 8, where the pressure pulsations transmitted by the pump are reflected and a constant number is generated. In Figure 5, the pump has a rotational speed of 2600 rpm and 5 blades, and the frequency of pressure pulsation is 217 Hz. In addition, the pressure pulsation reduction device has a piping diameter of 0.15m, but the volume of the resonance chamber is
It is 0.0045m3 . As will be described later, this is smaller than a resonance type silencer generally used for gases.
第6図には、第4図の配管系の圧力脈動の分布
の実測結果を示すが、図より本発明の圧力脈動低
減装置を用いた場合(〇印)用いない場合(×
印)にくらべ圧力脈切の最大値が約1/6に低減
しており、圧力脈動低減効果が顕著なことがわか
る。尚、Zの値は共振室内の圧力脈動幅を示す。 Fig. 6 shows the actual measurement results of the distribution of pressure pulsation in the piping system shown in Fig. 4. The figure shows the case where the pressure pulsation reduction device of the present invention is used (○ mark), and the case where it is not used (x).
It can be seen that the maximum value of pressure pulsation is reduced to about 1/6 compared to that shown in the figure (marked), and the effect of reducing pressure pulsation is remarkable. Note that the value of Z indicates the pressure pulsation width within the resonance chamber.
ところで、共鳴型サイレンサーの透過損失
(TL)の理論式は下記のように表わされる。 By the way, the theoretical formula for transmission loss (TL) of a resonant silencer is expressed as follows.
TL=10log{1+(X/f/fn−fn/f)2} …(3)
ここに、fは管内の圧力脈動の周波数、foはサイ
レンサーの共鳴周波数Aは管路の断面積を示す。 TL=10log{1+(X/f/fn−fn/f) 2 } …(3) Here, f is the frequency of pressure pulsation in the pipe, and f o is the resonance frequency of the silencer. A is the cross-sectional area of the pipe.
第7図に圧力脈動の周波数fとTLとの関係を
示す。fがfoに一致すると、TLは(3)式より無限
大になるが、実際には共振室入口部を出入する流
体の抵抗損失のため、f=frとなつても無限大と
はならない。例えば空気配管に用いるサイレンサ
ーでは破線で示すようになる。したがつて、サイ
レンサーとして実用するには上記Xの値は過小と
ならぬように選定する必要があり、従来空気用の
共鳴型サイレンサーではX≧1.0の範囲で用いら
れている。 FIG. 7 shows the relationship between the frequency f of pressure pulsation and TL. When f matches f o , TL becomes infinite according to equation (3), but in reality, due to the resistance loss of the fluid flowing in and out of the resonant chamber entrance, even if f = f r , it is not infinite. It won't happen. For example, a silencer used for air piping is shown by a broken line. Therefore, for practical use as a silencer, the value of X needs to be selected so as not to be too small, and conventional resonance type silencers for air use a range of X≧1.0.
ところが、発明者らは共振室内を液体で充たし
た液体配管用圧力脈動低減装置は、上記Xが小さ
な値であつても大きな脈動低減効果が得られるこ
とを実験により確認した。即ち、第6図の例はX
=0.17いう値であるにもかかわらず、配管系の圧
力脈動は著るしく低減している。 However, the inventors have confirmed through experiments that a pressure pulsation reduction device for liquid piping in which the resonance chamber is filled with liquid can obtain a large pulsation reduction effect even when the above-mentioned X is a small value. That is, the example in FIG.
= 0.17, the pressure pulsations in the piping system are significantly reduced.
この理由としては、液体は気体にくらべ、音響
特性インピーダンスρα(Kg・s2/m3)が著るしく大
きいため、脈動圧力に対する粒子速度が著るしく
小さく、このため共振室入口部で出入する流体の
抵抗が小さく、したがつて第7図において、液体
用圧力脈動低減装置では、ffo付近において
TLは破線のようにならず、実線で示す理論値に
近い値で変化し、より大きなTL値が得られるた
めと考えられる。即ち、管内の脈動圧力ΔPと脈動
に伴う粒子速度ΔVの関係は次式で表わされる。 The reason for this is that the acoustic characteristic impedance ρα (Kg・s 2 /m 3 ) of liquid is significantly larger than that of gas, so the particle velocity with respect to pulsating pressure is extremely small, and therefore, the particles enter and exit at the entrance of the resonance chamber. Therefore, in the pressure pulsation reduction device for liquid, the resistance of the fluid to
This is thought to be because the TL does not change as shown by the broken line, but changes at a value close to the theoretical value shown by the solid line, resulting in a larger TL value. That is, the relationship between the pulsating pressure ΔP in the pipe and the particle velocity ΔV accompanying the pulsation is expressed by the following equation.
ΔP=ραΔV …(5)
ここに ΔP;脈動圧力(Kg/m2)
ρα;音響特性インピーダンス(Kg・
s2/m3)
ΔV;脈動粒子速度m/s
である。ここでρμ値は空気の場合約30Kg・s2/m3
であるのに対し水の場合は約105Kg・s2/m3とな
る。したがつて、同一のΔPに対し、粒子速度
ΔVは、水のの場合、空気に対し約1/3300とな
る。このことより、サイレンサーの共振室入口部
で出入する流量は水では空気の場合にくらべ1/
3300でよいことになり、この部分での流体の抵抗
損失が著るしく小さくてすむ。 ΔP=ραΔV …(5) where ΔP: Pulsating pressure (Kg/m 2 ) ρα: Acoustic characteristic impedance (Kg・
s 2 /m 3 ) ΔV; pulsating particle velocity m/s. Here, the ρμ value is approximately 30Kg・s 2 /m 3 in the case of air.
In contrast, in the case of water, it is approximately 10 5 Kg・s 2 /m 3 . Therefore, for the same ΔP, the particle velocity ΔV of water is approximately 1/3300 of that of air. From this, the flow rate of water entering and exiting at the inlet of the resonance chamber of the silencer is 1/1 compared to that of air.
3300 will suffice, and the fluid resistance loss in this part can be significantly reduced.
第8図は、第5図において圧力脈動低減装置の
共振室の容積を変えて、圧力脈動低減効果を調べ
た結果を示す。図で横軸のXは(4)式の値であり、
縦軸は、圧力脈動低減装置を用いない場合に対す
る脈動振巾の比を示す。図より、圧力脈動を有効
に低減するためには、X≧0.1であることが必要
であり、またXを1.0より大としても圧力脈動の
低減効果はほとんど変わらないことがわかる。即
ちXの値として、0.1≦×≦1.0の範囲に選定する
のが合理的である。 FIG. 8 shows the results of examining the pressure pulsation reduction effect by changing the volume of the resonance chamber of the pressure pulsation reduction device in FIG. 5. In the figure, X on the horizontal axis is the value of equation (4),
The vertical axis indicates the ratio of the pulsation amplitude to that when no pressure pulsation reduction device is used. The figure shows that in order to effectively reduce pressure pulsations, it is necessary that X≧0.1, and even if X is greater than 1.0, the effect of reducing pressure pulsations remains almost the same. That is, it is reasonable to select the value of X within the range of 0.1≦×≦1.0.
上記再式よりa/L′を消去すればX=πfrVr/α・
Aとな
る。f〜frで用いること、および0.1≦×≦1.0に
選定することを考慮すると、
0.1/πf≦Vr/a・A≦1.0/πf
ここでA=π/4D2,α=1000m/s(水配管)
であるから
25/f≦Vr/D2≦250/f
となる。即ち上式のように管路の内径D(m)に
対し、共振室の容量Vr(m3))を定めれば、コン
パクトでかつ圧力脈動低減効果のすぐれたサイレ
ンサーを得ることができる。 If a/L' is eliminated from the above reformulation, X=πf r V r /α・
It becomes A. Considering that it is used for f ~ f r and that it is selected as 0.1≦×≦1.0, 0.1/πf≦V r /a・A≦1.0/πf where A=π/4D 2 , α=1000 m/s (Water piping) Therefore, 25/f≦V r /D 2 ≦250/f. That is, by determining the capacity V r (m 3 ) of the resonant chamber with respect to the inner diameter D (m) of the conduit as in the above equation, it is possible to obtain a silencer that is compact and has an excellent pressure pulsation reducing effect.
尚、第8図中のS値は第2図の実施例の場合、
P値は第4図の実施例の場合である。 In addition, the S values in FIG. 8 are as follows for the embodiment shown in FIG.
The P value is for the embodiment shown in FIG.
以上説明したように、本発明によれば液体管路
の外側に剛性材料で構成した共振室を配置し、共
振室と管路を細管で接続し、共振室内に管路内と
同一液体を充満させるようにしたから、圧力脈動
低減効果の変動を少なく構成でき、構造が簡単で
コンパクトであり、かつ耐久性に強い液体管路用
の圧力脈動低減装置を得ることができる。
As explained above, according to the present invention, a resonant chamber made of a rigid material is arranged outside the liquid conduit, the resonant chamber and the conduit are connected by a thin tube, and the resonant chamber is filled with the same liquid as the inside of the conduit. By doing so, it is possible to obtain a pressure pulsation reducing device for liquid pipes that has a simple and compact structure, has a simple structure, and has strong durability, with less variation in the pressure pulsation reducing effect.
第1図は従来の圧力脈動低減装置の要部断面
図、第2図は本発明の圧力脈動低減装置の要部断
面図、第3図は第2図の―線断面図、第4図
は本発明の他の実施例を示す断面図、第5図は圧
力脈動低減装置の試験装置系統図、第6図および
第8図は第5図における試験結果の線図、第7図
は共鳴型サイレンサーの透過損失に関する線図で
ある。
1…配管、2…共振室、3…配管と共振室との
接続部、4…弁、5…ポンプ、6…吐出配管、7
…吸込配管、8…タンク。
FIG. 1 is a sectional view of the main part of a conventional pressure pulsation reducing device, FIG. 2 is a sectional view of the main part of the pressure pulsation reducing device of the present invention, FIG. 3 is a sectional view taken along the line - A sectional view showing another embodiment of the present invention, FIG. 5 is a system diagram of a test device for a pressure pulsation reduction device, FIGS. 6 and 8 are line diagrams of the test results in FIG. 5, and FIG. 7 is a resonant type It is a diagram regarding the transmission loss of a silencer. DESCRIPTION OF SYMBOLS 1...Piping, 2...Resonance chamber, 3...Connection part between piping and resonance chamber, 4...Valve, 5...Pump, 6...Discharge piping, 7
...Suction piping, 8...Tank.
Claims (1)
共振室を配置し、該共振室と前記管路内とを細管
で接続し、前記共振室内に前記管路内と同一の液
体を充満させ、かつ前記共振室の容積Vr(m3)、
管路の内径をD(m)、低減すべき圧力脈動の周波
数をf(Hz)としたとき、 25/f≦Vr/D2≦250/f を満足するよう前記共振室の容積を定めたことを
特徴とする液体管路系の圧力脈動低減装置。 2 前記共振室の上端に空気抜き弁を配置したこ
とを特徴とする特許請求の範囲第1項記載の液体
管路系の圧力脈動低減装置。[Scope of Claims] 1. A resonant chamber sealed with a rigid material is arranged outside the liquid conduit, the resonant chamber and the inside of the conduit are connected by a thin tube, and the inside of the conduit is connected to the inside of the resonant chamber. filled with the same liquid, and the volume of the resonance chamber V r (m 3 ),
When the inner diameter of the pipe is D (m) and the frequency of pressure pulsation to be reduced is f (Hz), the volume of the resonance chamber is determined to satisfy 25/f≦V r /D 2 ≦250/f. A pressure pulsation reducing device for a liquid piping system, characterized in that: 2. The pressure pulsation reducing device for a liquid pipeline system according to claim 1, characterized in that an air vent valve is disposed at the upper end of the resonance chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15479183A JPS6049185A (en) | 1983-08-26 | 1983-08-26 | Reducer for pressure pulsation of liquid duct system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15479183A JPS6049185A (en) | 1983-08-26 | 1983-08-26 | Reducer for pressure pulsation of liquid duct system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6049185A JPS6049185A (en) | 1985-03-18 |
JPH0247640B2 true JPH0247640B2 (en) | 1990-10-22 |
Family
ID=15591972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15479183A Granted JPS6049185A (en) | 1983-08-26 | 1983-08-26 | Reducer for pressure pulsation of liquid duct system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6049185A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019157753A (en) * | 2018-03-13 | 2019-09-19 | 株式会社荏原製作所 | Pump pulsation suppression device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5686296A (en) * | 1979-12-18 | 1981-07-13 | Tokyo Shibaura Electric Co | Pipings for fluid |
-
1983
- 1983-08-26 JP JP15479183A patent/JPS6049185A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5686296A (en) * | 1979-12-18 | 1981-07-13 | Tokyo Shibaura Electric Co | Pipings for fluid |
Also Published As
Publication number | Publication date |
---|---|
JPS6049185A (en) | 1985-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4445829A (en) | Apparatus for dampening pump pressure pulsations | |
RU2464532C2 (en) | Very low frequency vibratory flow metre | |
US8289179B2 (en) | Vibratory flow meter and method for correcting for entrained gas in a flow material | |
CA2497487A1 (en) | Noise attenuation apparatus for borehole telemetry | |
JP2006072574A5 (en) | ||
JPS6010238B2 (en) | Pulsation prevention device for air fluid inside piping system | |
JP2001141533A (en) | Ultrasonic measuring instrument for measuring flow rate | |
Kwong et al. | Unsteady flow in diffusers | |
JPH0247640B2 (en) | ||
JP3604402B2 (en) | Pulsation reduction device | |
CN115324892A (en) | Screw compressor | |
JP2001082989A (en) | Flowmeter | |
JP2002372445A (en) | Ultrasonic flowmeter | |
JPS59194194A (en) | Pressure pulsation absorber for piping system | |
GB2303925A (en) | Fluid delivery systems | |
CN221220728U (en) | Amortization structure, compressor and air conditioner | |
RU207508U1 (en) | Device for damping pressure pulsations in the pipeline | |
JP2000266574A (en) | Flowmeter and pressure change absorber | |
US3473360A (en) | Acoustic turbulent water-flow tunnel | |
JP2584565Y2 (en) | Fluid pulsation absorber | |
JPH05106550A (en) | Pulsation reducing device for hydraulic pump | |
JPH0372877B2 (en) | ||
JPH11281438A (en) | Pulsation absorbing structure for flow meter | |
RU2353907C1 (en) | Compact vibration flow metre for measurement of polyphase substance flow parametres | |
JPH08135880A (en) | Pressure fluctuation suppressing device |