JPH024753Y2 - - Google Patents

Info

Publication number
JPH024753Y2
JPH024753Y2 JP13204584U JP13204584U JPH024753Y2 JP H024753 Y2 JPH024753 Y2 JP H024753Y2 JP 13204584 U JP13204584 U JP 13204584U JP 13204584 U JP13204584 U JP 13204584U JP H024753 Y2 JPH024753 Y2 JP H024753Y2
Authority
JP
Japan
Prior art keywords
belt
cooling
water film
metal
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13204584U
Other languages
Japanese (ja)
Other versions
JPS6149659U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13204584U priority Critical patent/JPH024753Y2/ja
Publication of JPS6149659U publication Critical patent/JPS6149659U/ja
Application granted granted Critical
Publication of JPH024753Y2 publication Critical patent/JPH024753Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) この明細書で述べる技術は、溶融金属例えば溶
鋼から厚さが50mm以下にもなる薄肉鋳片を直接製
造する薄肉鋳片連続鋳造機(以下「ベルトキヤス
ター」という)に関し、とくに流水膜によるベル
ト冷却装置(冷却パツド)に取付けて用いるベル
ト幅方向の流水膜コントロールに便利なベルト誘
導・シール部材についての提案である。
[Detailed description of the invention] (Industrial application field) The technology described in this specification is a thin-walled slab continuous casting machine (hereinafter referred to as "thin-walled slab continuous casting machine") that directly produces thin-walled slabs with a thickness of 50 mm or less from molten metal, such as molten steel. Regarding belt casters (referred to as "belt casters"), this is a proposal for a belt guiding/sealing member that is particularly useful for controlling a running water film in the belt width direction when attached to a belt cooling device (cooling pad) using a running water film.

(従来の技術) 溶鋼から直接シートバーの如き鋼板を連続的に
製造する薄肉鋳片連続鋳造機:ベルトキヤスター
としては、例えば特開昭57−100851号等として既
に開示されている。これら既知のベルトキヤスタ
ーとしては種々の形式のものがあるが、代表的な
ものとしては、所定の距離にわたつて溶鋼を保持
するための間隙を維持しつつ、それぞれ複数個の
ガイドロールを介して輪回移動する対向配置した
一対の金属ベルト(背面が冷却水膜で冷却され鋳
片の長辺面を支持する)と、それら両金属ベルト
相互の間に挾まれて各側縁近傍で緊密に接した一
対の短辺面用側板とで4方を限局し鋳造空間を構
してなる構造を有するのが普通である。なお、上
記金属ベルトの背面は、上記金属ベルト内側にあ
る溶鋼の静圧を支持し冷却するための所定厚の冷
却水流水膜を形成する冷却パツドが設けてある。
(Prior Art) A continuous thin-walled cast slab casting machine for continuously producing steel plates such as sheet bars directly from molten steel: A belt caster has already been disclosed in, for example, Japanese Patent Application Laid-Open No. 100851/1983. There are various types of these known belt casters, but a typical belt caster is a belt caster that uses a plurality of guide rolls to maintain a gap for holding molten steel over a predetermined distance. A pair of metal belts (the back side is cooled by a cooling water film and supports the long sides of the cast slab) are placed opposite each other and move in a circular motion. It usually has a structure in which a casting space is defined on four sides by a pair of side plates for the short sides that are in contact with each other. A cooling pad is provided on the back surface of the metal belt to form a cooling water film of a predetermined thickness for supporting and cooling the static pressure of the molten steel inside the metal belt.

さて、上記冷却パツドの機能としては、湯面か
ら鋳片引抜き方向に向うに随つて溶鋼もしくは半
凝固鋳片による静圧が変化するので、鋳造生成物
の各段階(鋳片引抜き方向の各位置)での上記溶
鋼静圧(ベルトにかかるテンシヨン)と冷却水流
水膜の圧力とがつり合うように、冷却パツドの金
属ベルトに面した給水孔の大きさや配置、そこに
供給する流量を調節している。
Now, the function of the cooling pad described above is that the static pressure caused by the molten steel or semi-solidified slab changes as it moves from the hot water level in the slab drawing direction. ) The size and arrangement of the water supply hole facing the metal belt of the cooling pad and the flow rate supplied thereto are adjusted so that the static pressure of the molten steel (tension applied to the belt) and the pressure of the cooling water film are balanced. There is.

(考案が解決しようとする問題点) 上述した従来冷却パツドによる流水膜冷却には
次のような問題点1および2があつた。
(Problems to be Solved by the Invention) The above-mentioned conventional water film cooling using a cooling pad has the following problems 1 and 2.

(1) 流水膜の厚みが均一ではなく、そのため不均
一冷却となりやすくベルトの変形や鋳片の変形
を招く。これは鋳込み方向に対してテンシヨン
をかけることにによつて、ある程度流水膜の厚
みを制御が可能であるが、鋳片巾方向の場合拘
束力が全くないため流水膜厚みが変化しやすい
ということによる。
(1) The thickness of the running water film is not uniform, which tends to cause uneven cooling, which leads to belt deformation and slab deformation. This means that the thickness of the water film can be controlled to some extent by applying tension in the pouring direction, but in the width direction of the slab, there is no restraining force at all, so the thickness of the water film tends to change. by.

この点については、通常ベルトテンシヨンよ
りもベルトの剛性の方が流水膜の厚み変化に大
きく影響を与えるため、金属ベルトの厚みを厚
くすることによつて流水膜の厚み変化に対拠し
ている。しかしながら、金属ベルト厚みをむや
みに厚くすると冷却効果を減じたり、金属ベル
トの温度をさらに上げることになり有利でな
い。またベルト巾方向では端部において水が流
出してしまうため水膜圧力を形成しにくく、無
駄水となる。そればかりかベルト巾方向で異な
る圧力分布を形成し、流水膜厚みの不均一を呼
びおこす。すなわちベルト巾方向においては、
ベルト端部は開放となつているため、どうして
も水膜内に供給した冷却水がベルト端部より流
出するのは避けられず、ベルト巾方向に均等に
給水するとベルト端部での水の流出量が多くな
る。
Regarding this point, since the rigidity of the belt usually has a greater influence on the change in the thickness of the water film than the belt tension, it is possible to counteract the change in the thickness of the water film by increasing the thickness of the metal belt. There is. However, unnecessarily increasing the thickness of the metal belt is not advantageous because it reduces the cooling effect or further increases the temperature of the metal belt. Further, in the width direction of the belt, water flows out at the ends, making it difficult to form a water film pressure, resulting in wasted water. Moreover, a different pressure distribution is formed in the width direction of the belt, causing non-uniformity in the thickness of the water film. In other words, in the belt width direction,
Since the ends of the belt are open, it is unavoidable that the cooling water supplied into the water film will flow out from the ends of the belt.If water is supplied evenly across the width of the belt, the amount of water flowing out at the ends of the belt will decrease. will increase.

したがつて水膜による、ベルト浮上形状はベ
ルト巾方向の中央部が端部に比し相対的に突出
し凸状となつて、得られる鋳片の形状は凹状の
不良品となる。
Therefore, the floating shape of the belt due to the water film is such that the central portion in the width direction of the belt is relatively protruded and convex compared to the end portions, resulting in a defective slab having a concave shape.

又、ベルト端部を通る冷却水の速度は水膜内
圧力と、外気圧力との差により決定されるた
め、溶鋼あるいは鋳片の熱負荷に対し、変化さ
せることができない。
Furthermore, the speed of cooling water passing through the belt end is determined by the difference between the internal pressure of the water film and the outside air pressure, and therefore cannot be changed in response to the thermal load on the molten steel or slab.

冷却能力はほぼ流速によつて決定されるた
め、例えばベルト端部の流速が必要流速より小
さければ、ベルト端部の温度は高くなり、最悪
の場合ベルトに変形を生じる。
Since the cooling capacity is determined approximately by the flow velocity, for example, if the flow velocity at the end of the belt is lower than the required flow velocity, the temperature at the end of the belt will become high, and in the worst case, the belt will be deformed.

以上の要因により、ベルト巾方向で冷却の不
均一を生じ、ベルト変形ひいては鋳片の変形を
惹起する。
The above factors cause non-uniform cooling in the belt width direction, causing belt deformation and eventually deformation of the slab.

(2) 短辺面支持用側板と金属ベルト間のシールの
ための側板近傍の流水膜が不均一となり、これ
がベルト変形を惹起する。すなわち、一般に側
板と金属ベルト間の溶鋼差し込みを防止するた
めに、この間の水膜形成用クリアランスを小さ
めに設定している。そのために第5図に示すよ
うに、金属ベルトは内向きに凸型となり、流水
膜厚み分布がベルト幅方向で大きく変化するた
め、ベルト巾方向で冷却水の流量分布(差)が
でる。(中央部に多く、両側部で少なくなる)。
(2) The running water film near the side plate for sealing between the short side support side plate and the metal belt becomes uneven, which causes belt deformation. That is, in general, in order to prevent molten steel from being inserted between the side plate and the metal belt, the clearance for forming a water film between the side plate and the metal belt is set to be small. For this reason, as shown in FIG. 5, the metal belt becomes inwardly convex, and the water film thickness distribution changes greatly in the belt width direction, resulting in a cooling water flow rate distribution (difference) in the belt width direction. (more in the center and less on both sides).

すなわちベルト端部が開放しているため、こ
こからの冷却水流出により、側板接触部相当位
置の冷却水圧力が低下する。所定圧力を得るた
めには側板接触位置相当部へ、巾中央部に比し
多い冷却水量を供給しなければならない。この
水量の増加は当然ながら巾中央部への流入量の
増加を引き起こし、よつて巾中央部の突出量は
さらに増加しベルト変形量も大きくなる。
That is, since the belt end is open, the cooling water flows out from there, and the cooling water pressure at the position corresponding to the side plate contact portion decreases. In order to obtain a predetermined pressure, a larger amount of cooling water must be supplied to the portion corresponding to the side plate contact position than to the center of the width. This increase in the amount of water naturally causes an increase in the amount of water flowing into the center of the width, so that the amount of protrusion at the center of the width further increases and the amount of belt deformation also increases.

なおベルト巾方向中央での冷却水量を増加さ
せない場合は、側板から外部(ベルト側縁部)
側へ流水膜圧が低下するため、却つて側板部へ
の金属ベルトの押しつけ力を弱め、溶鋼の差し
込みを助長することになる。また側板と金属ベ
ルト部のクリアランスを小さくしたとしてて
も、流水膜の圧力が上がらずまり効果がない。
If the amount of cooling water at the center of the belt width direction is not increased, from the side plate to the outside (belt side edge)
Since the water film pressure decreases toward the side, the pressing force of the metal belt against the side plate part is weakened, and the insertion of molten steel is facilitated. Further, even if the clearance between the side plate and the metal belt portion is made small, the pressure of the running water film will not increase and there will be no effect.

本考案の目的は、金属ベルトの冷却不均一と
くにその両側縁部における主として吐出水流の
流出による弊害を除去し、ベルトの変形や鋳片
の変形を防止せんとするところにある。
The object of the present invention is to eliminate the adverse effects caused by uneven cooling of a metal belt, particularly at the both side edges of the belt, and to prevent deformation of the belt and slab.

(問題点を解決するための手段) ベルト幅方向に全体における流水膜の厚みはコ
ントロールが困難であるという上記の問題点(1)お
よびベルト両側縁近傍(側板近傍)における流水
膜の厚みコントロールが困難であるという上記の
問題点(2)に対し、本考案は、 冷却パツドの介添えにより溶融金属および鋳片
を保持するめの間隙を維持しつつ輪回移動する長
辺面側の一対の金属ベルトと、それら金属ベルト
相互間にあつてそれらと緊密に接している一対の
短辺面用側板とで構成される薄肉鋳片連続鋳造機
において、上記金属ベルトの背面で冷却水流の導
入、排出を司る冷却パツドの両側端部に、冷却水
流水膜の圧力を対抗る向きから該ベルトを制圧す
るベルト端部シール部材、ベルト両側縁部を塞ぐ
ように突設したことを特徴とする薄肉鋳片連続鋳
造機をその解決手段とする。
(Means for solving the problem) The above problem (1) is that it is difficult to control the thickness of the running water film in the belt width direction as a whole, and the thickness of the running water film near both side edges of the belt (near the side plates) can be controlled. In order to solve the above problem (2), the present invention consists of a pair of metal belts on the long sides that move circularly while maintaining a gap to hold the molten metal and slabs with the help of cooling pads. In a continuous casting machine for thin-walled cast slabs, which is composed of a pair of side plates for short sides that are located between the metal belts and are in close contact with them, the back side of the metal belts controls the introduction and discharge of cooling water flow. A continuous thin-walled cast piece characterized in that a belt end seal member for suppressing the pressure of the cooling water film from the opposing direction is provided at both ends of the cooling pad, protruding so as to close both side edges of the belt. A casting machine is the solution.

とくに、上記ベルト端部シール部材を剛性部材
もしくは一部に弾性部材を介在させた剛性部材に
より形成るのが好ましい。
In particular, it is preferable that the belt end sealing member is formed of a rigid member or a rigid member with an elastic member interposed in a portion thereof.

本考案のように、冷却パツドの両側縁部にベル
ト端部シール部材を設けると、ベルト両側縁部で
の冷却水のベルト巾方向への流出が防止でき、無
駄な流膜形成用冷却水をなくと同時に金属ベルト
両側縁部に流水膜の圧力を張り易くし、ベルト巾
方向の流水膜の厚みコントロールが容易になる。
すなわちベルト端部からの冷却水流出を回避きる
ため、ベルト巾方向にわたる流水膜を閉じた系と
する給・排水の制御が可能となり、流水膜厚みを
ベルト巾方向にわり一定にコントロールでき、上
記問題点(1)は解消される。また側板と接する部分
においても、この側板でベルトを抑えつける必要
がなくなり、かかるシール部材で制圧;好ましく
は弾力的に制圧するので、該側板近傍での圧力が
張り易く、かつ流量の確保もできベルト巾方向の
流量分布も均一にすることができる。すなわちベ
ルト端部シール部材によつて流水膜をベルト巾方
向にわたり閉じた系にできるため、この系内で
給・排水制御を行うことによつて膜厚を一定に保
持できる。したがつてベルト変形は回避されると
ともに、側板近傍の流水膜圧を高めることがで
き、上記の問題点(2)は解消される。
By providing belt end sealing members on both side edges of the cooling pad as in the present invention, it is possible to prevent cooling water from flowing out in the belt width direction at both side edges of the belt, thereby saving wasted cooling water for forming a flow film. At the same time, the pressure of the running water film can be easily applied to both side edges of the metal belt, and the thickness of the running water film in the belt width direction can be easily controlled.
In other words, in order to avoid cooling water flowing out from the end of the belt, it is possible to control supply and drainage in a closed system with a running water film spanning the belt width direction, and the thickness of the running water film can be controlled to be constant across the belt width direction. Problem (1) is resolved. In addition, there is no need to press down the belt with the side plate at the part where it contacts the side plate, and the pressure is suppressed by the sealing member; preferably, the pressure is elastically suppressed, so it is easy to build up pressure near the side plate, and the flow rate can be secured. The flow rate distribution in the belt width direction can also be made uniform. That is, since the belt end sealing member allows the running water film to form a closed system across the belt width, the film thickness can be maintained constant by controlling supply and drainage within this system. Therefore, belt deformation is avoided, and the water film pressure near the side plate can be increased, and the above problem (2) is solved.

次に本考案の作用について詳しく述べる。 Next, the operation of the present invention will be described in detail.

され金属ベルトを冷却水にて冷却する場合、冷
却水が沸騰しない限りは、流速により冷却能力が
決定され、流速が遅いと冷却能力は小さく、逆に
速いと大きい。冷却能力は鋳片を冷却し、凝固さ
せるための最低冷却能を確保することが肝要であ
る。
When cooling a metal belt with cooling water, unless the cooling water boils, the cooling capacity is determined by the flow rate; if the flow rate is slow, the cooling capacity is small, and conversely, if the flow rate is fast, the cooling capacity is large. It is important to ensure the minimum cooling capacity to cool and solidify the slab.

最低冷却能力に満たないと、ベルトの温度は上
昇するため、ベルト付近の冷却水が沸騰し、ある
温度にてベルト温度上昇は停止するが、ベルト温
度の不均一をまねく。これはベルトの熱応力分布
の下均一を生じ、さらにベルト内圧縮、引張り応
力の分布が生じる。そして圧縮応力の増加によ
り、ベルトは塑性変形し、結局は永久変形として
残存することになる。
If the minimum cooling capacity is not reached, the temperature of the belt will rise, causing the cooling water near the belt to boil, and although the rise in belt temperature will stop at a certain temperature, this will lead to uneven belt temperature. This results in a uniform bottom thermal stress distribution in the belt, and also in the distribution of compressive and tensile stresses within the belt. Then, due to the increase in compressive stress, the belt is plastically deformed and eventually remains as a permanent deformation.

これに対してベルト端部シール部材によつてベ
ルト端部を塞いで流水膜をベルト巾方向の閉じた
系とした場合、その必要冷却能力を満たす流速を
一定の膜厚の下に確保できる。すなわち給・排水
の手段を適切に選定することにより一定膜厚は達
成できる。
On the other hand, when the belt end is closed with a belt end sealing member to create a system in which the running water film is closed in the belt width direction, a flow rate that satisfies the required cooling capacity can be ensured under a constant film thickness. In other words, a constant film thickness can be achieved by appropriately selecting the means of supply and drainage.

しかしながら従来はベルト端部から冷却水が流
出していたため、ベルト端部における水膜の厚み
はベルト巾中央部より減少し、かつ端部の冷却能
力は端部の流出水の流速で決定されるため、必要
最低冷却能力を必ずしも確保できないよつてベル
ト端部が温度上昇し、ベルト変形が生ずる 一方ベルト端部を守るため、やみくもに流量を
増大すれば、ベルト巾中央部の給・排水のバラン
スが崩れ、中央部での流水膜厚みが増大する。流
量の増分に対し、増大する膜厚みが必ずしも比例
しないため、流量を増大しているにもかわらず、
流速は低下する場合が生じる。すると、ベルト中
央部の温度が上昇することになる。したがつてベ
ルトの不均一冷却は、ベルト端部から流出する冷
却水の流速を制御し得ないために生じることがわ
かる。
However, in the past, cooling water flowed out from the belt ends, so the thickness of the water film at the belt ends was smaller than that at the center of the belt width, and the cooling capacity at the ends was determined by the flow rate of the water flowing out at the ends. Therefore, the required minimum cooling capacity cannot always be secured, and the temperature at the belt ends increases, causing belt deformation.On the other hand, if the flow rate is increased blindly to protect the belt ends, the supply/drainage balance at the center of the belt width will be balanced. collapses, and the thickness of the running water film in the center increases. The increase in film thickness is not necessarily proportional to the increase in flow rate, so even though the flow rate is increased,
The flow rate may decrease. As a result, the temperature at the center of the belt increases. Therefore, it can be seen that the uneven cooling of the belt occurs because the flow rate of the cooling water flowing out from the belt end cannot be controlled.

上記のように、ベルト端部シール部材を設けれ
ば、冷却水の流速はベルト巾全域にわたり制御可
能となるため、ベルト中央部の凸状化を防ぐこと
ができ、給・排水制御によつて均一な厚みの流水
膜が得られる。
As mentioned above, by providing a belt end sealing member, the flow rate of cooling water can be controlled over the entire width of the belt, which prevents the central part of the belt from becoming convex. A running water film of uniform thickness is obtained.

(実施例) 第4図は、本考案を適用する一般的な薄肉鋳片
連続鋳造機の斜視図を示すものであるが、図示の
1は溶鋼、2,8はガイドレール、4,5は金属
ベルト、7,8が冷却パツドである。
(Example) Fig. 4 shows a perspective view of a general continuous caster for thin-walled slabs to which the present invention is applied. Metal belts 7 and 8 are cooling pads.

本考案の好適実施態様は、上記冷却パツド7,
8に対して、第1〜8図に示すような構造のベル
ト端部シール部材10,10aを設けることにあ
る。
A preferred embodiment of the present invention includes the cooling pad 7,
8, belt end seal members 10, 10a having a structure as shown in FIGS. 1 to 8 are provided.

すなわち、第1図aの例は、鋼製の鈎形(略コ
字形)のベルト端部シール部材10,10aを、
冷却パツド7,8の両端部に突設した例である。
このベルト端部シール部材10,10aは、冷却
パツドの給水口12から吐出させた流水膜形成用
冷却水の流出を塞ぐような構造になつており、流
水膜の圧力で金属ベルトが膨らむ方向に対向する
向きから該金属ベルト4,5両側縁部を制圧する
ような形とする。
That is, in the example shown in FIG.
This is an example in which cooling pads 7 and 8 are protruded from both ends.
The belt end sealing members 10, 10a are structured to block the outflow of the cooling water for forming a running water film discharged from the water supply port 12 of the cooling pad, and are arranged in the direction in which the metal belt swells due to the pressure of the running water film. The shape is such that both side edges of the metal belts 4 and 5 are pressed from opposite directions.

なお、ベルト両端部は冷却の必要性が少ないた
め、排出孔がないもしくは小さくても十分条件を
満たすめ、水膜圧力はより張り易い状況となる。
ただし、曲面構造になつている部分においては、
テンシヨンをかけた場合、流水膜を潰す方向の力
が発生するため、第2,3各図に示す隙間はある
程度小さい値をとる必要がある。またその他の部
分においても溶鋼の静圧がかかるため、流水膜圧
力は小なる方向になるため、隙間δの値について
は適切な数字にする必要があるが、一般的には
0.2〜1mm程度が適切である。
Note that since there is less need for cooling at both ends of the belt, the condition is satisfied even if there are no or small discharge holes, and the water film pressure is more likely to increase.
However, in the parts that have a curved structure,
When tension is applied, a force is generated in the direction of crushing the running water film, so the gaps shown in FIGS. 2 and 3 need to be relatively small. In addition, the static pressure of molten steel is applied to other parts, so the water film pressure decreases, so it is necessary to set the value of the gap δ to an appropriate number, but in general,
Approximately 0.2 to 1 mm is appropriate.

一方、このδの数値にフレキシビリテイーをも
たすため、金属ベルトを抑える力を一定とする構
造も有効である。
On the other hand, in order to provide flexibility in the value of δ, a structure in which the force that suppresses the metal belt is constant is also effective.

この例を示したのが、第2,3各図である。こ
の構造のものは弾性部材11例えばシール性を害
さない伸縮型ベローズなどを取りつけることによ
り、一定の力で金属ベルト4,5を抑えようとす
る形態である。ただしこの弾性部材11で抑える
厚みには下限を(例えば0.3mm)設け、金属ベル
ト4,5とパツド7,8が接触して、金属ベルト
4,5摺動への抵抗力が働かないように考慮して
おく。このようにすれば流水膜圧力が大きくなる
と、流水膜厚みが増加し、流水膜圧力が落ちると
いう現象をくり返し、ある一定の膜圧となつて安
定する。
This example is shown in FIGS. 2 and 3. In this structure, the metal belts 4 and 5 are held down with a constant force by attaching an elastic member 11, such as a telescopic bellows that does not impair sealing performance. However, a lower limit is set for the thickness suppressed by this elastic member 11 (for example, 0.3 mm), so that the metal belts 4, 5 and the pads 7, 8 do not come into contact and create resistance to the sliding of the metal belts 4, 5. I'll take it into consideration. In this way, when the water film pressure increases, the water film thickness increases and the water film pressure decreases, a phenomenon that is repeated, and the film pressure becomes stable at a certain constant level.

なお、第2図中のdの値については、金属ベル
ト4,5の蛇行を考慮し、10mm以上とするのがよ
い。
Note that the value of d in FIG. 2 is preferably set to 10 mm or more, taking into consideration the meandering of the metal belts 4 and 5.

本考案装置による操業例 第4図示のベルトキヤスターに本考案ベルト端
部シール部材を採用した。
Example of operation using the device of the present invention The belt end sealing member of the present invention was adopted in the belt caster shown in Figure 4.

従来は、側板と金属ベルトとの間の距離を0.3
mm、側板のない所では横方向のシールは全くなか
つた。そのため金属ベルトの背面に均一な厚みの
流水膜を確保できず、とくに鋳片端部(側板近
傍)でのベルト熱変形が大きく、また鋳片自身も
凹型(1.5〜2mm)となつていた。
Conventionally, the distance between the side plate and the metal belt was set to 0.3
mm, there was no lateral seal at all where there was no side plate. As a result, it was not possible to maintain a running water film of uniform thickness on the back surface of the metal belt, and the belt thermal deformation was particularly large at the end of the slab (near the side plate), and the slab itself was also concave (1.5 to 2 mm).

そこで本考案を採用し、絞り込み部でδ=0.3
mm、側板のない部分ではδ=0.5mmを採用した。
また側板と金属ベルト間の設定を1.0mmへと変更
した。これらの設計変更をもとに、操業を行つた
結果、従来6t/minを要していた金属ベルト冷却
水を、4t/minまで減少させても一定厚みの流水
膜が確保され、よつて金属ベルト中央部での変形
がでず、かつまた鋳片端部に相当する位置でのベ
ルト熱変形もみられなくなつた。これは巾方向へ
の無駄水がなくなつたこと、および側板近傍でも
十分に水量が確保され、金属ベルトの不均一冷却
が解消されたためと考えられる。また鋳片につい
ても多少凹型となるもののその差は0.2mm以下と
なり従来に比較し大きく改善された。
Therefore, we adopted the present invention, and in the narrowing section, δ = 0.3
mm, and δ = 0.5 mm was adopted for parts without side plates.
Also, the setting between the side plate and the metal belt was changed to 1.0mm. As a result of conducting operations based on these design changes, a running water film of a constant thickness was maintained even when the metal belt cooling water, which conventionally required 6 t/min, was reduced to 4 t/min. There was no deformation at the center of the belt, and no thermal deformation of the belt was observed at the position corresponding to the end of the slab. This is thought to be because there was no wasted water in the width direction, and a sufficient amount of water was secured even near the side plates, eliminating uneven cooling of the metal belt. Also, although the slab is slightly concave, the difference is less than 0.2 mm, which is a great improvement compared to the conventional method.

(考案の効果) 以上説明したように本考案によれば、従来流水
膜圧力と側板とのバランスで支持していた金属ベ
ルト両側縁部を、ベルト端部シール部材で支持で
きるのでベルト幅方向への冷却水の流量分布が均
一になるとともに側板部近傍においても十分な流
水膜圧力を形成でき、従つてベルトの熱変形や鋳
片の変形等を防止することができる。
(Effects of the invention) As explained above, according to the invention, both side edges of the metal belt, which were conventionally supported by the balance between the water film pressure and the side plates, can be supported by the belt end sealing member, so that the belt width direction can be increased. The flow rate distribution of the cooling water becomes uniform, and sufficient water film pressure can be formed near the side plate portions, thereby preventing thermal deformation of the belt and deformation of the slab.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは本考案のベルト端部シール部材
について冷却パツドとともに示す断面図、第2図
および第3図は、いずれも本考案の別の実施例を
示す断面図、第4図は、薄肉鋳片連続鋳造機の斜
視図、第5図は、従来の流水膜によるベルト支持
のもようを示す断面図である。 1……溶鋼、2,3……ガイドロール、4,5
……金属ベルト、6……側板、7,8……冷却パ
ツド、10,10a……ベルト端部シール部材、
11……弾性部材、12……給水口。
FIGS. 1a and 1b are cross-sectional views showing the belt end sealing member of the present invention together with a cooling pad, FIGS. 2 and 3 are cross-sectional views showing another embodiment of the present invention, and FIG. FIG. 5 is a perspective view of a continuous thin slab casting machine, and a cross-sectional view showing a conventional belt support system using a running water film. 1... Molten steel, 2, 3... Guide roll, 4, 5
... Metal belt, 6 ... Side plate, 7, 8 ... Cooling pad, 10, 10a ... Belt end seal member,
11...Elastic member, 12...Water supply port.

Claims (1)

【実用新案登録請求の範囲】 1 冷却パツドの介添えにより溶融金属および鋳
片を保持するための間〓を維持しつつ輪回移動
する長辺面側の一対の金属ベルトと、それら金
属ベルト相互間にあつてそれらと緊密に接して
いる一対の短辺面用側板とで構成される薄肉鋳
片連続鋳造機において、 上記金属ベルトの背面で冷却水流の導入、排
出を司る冷却パツドの両側端部に、冷却水流水
膜の圧力に対抗する向きから該ベルトを制圧す
るベルト端部シール部材を、ベルト両側縁部を
塞ぐように突設したことを特徴とする薄肉鋳片
連続鋳造機。 2 上記ベルト端部シール部材を剛性部材もしく
は一部に弾性部材を介在させた剛性部材により
形成することを特徴とする請求の範囲1記載の
薄肉鋳片連続鋳造機。
[Scope of Claim for Utility Model Registration] 1. A pair of metal belts on the long sides that rotate while maintaining a gap for holding molten metal and slabs with the assistance of a cooling pad, and a gap between the metal belts. In a thin slab continuous casting machine, which is composed of a pair of short-side side plates that are in close contact with the thin-walled slab side plates, there are two side plates on both sides of the cooling pads that control the introduction and discharge of cooling water flow on the back side of the metal belt. 1. A continuous caster for thin-walled cast slabs, characterized in that belt end sealing members for suppressing the belt from a direction opposed to the pressure of the cooling water film are protruded so as to close both side edges of the belt. 2. The continuous thin slab casting machine according to claim 1, wherein the belt end sealing member is formed of a rigid member or a rigid member partially interposed with an elastic member.
JP13204584U 1984-09-01 1984-09-01 Expired JPH024753Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13204584U JPH024753Y2 (en) 1984-09-01 1984-09-01

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13204584U JPH024753Y2 (en) 1984-09-01 1984-09-01

Publications (2)

Publication Number Publication Date
JPS6149659U JPS6149659U (en) 1986-04-03
JPH024753Y2 true JPH024753Y2 (en) 1990-02-05

Family

ID=30690609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13204584U Expired JPH024753Y2 (en) 1984-09-01 1984-09-01

Country Status (1)

Country Link
JP (1) JPH024753Y2 (en)

Also Published As

Publication number Publication date
JPS6149659U (en) 1986-04-03

Similar Documents

Publication Publication Date Title
JPH024753Y2 (en)
JPS61129259A (en) Cooling pad for belt type continuous casting machine
US6044896A (en) Method and apparatus for controlling the gap in a strip caster
JPS63144847A (en) Belt cooler for belt type continuous casting machine
JPH10249492A (en) Mold for continuously casting steel
JPS59133940A (en) Mold for continuous casting
JPH01113155A (en) Cooling pad for belt type continuous casting machine
JPH01218747A (en) Continuous casting apparatus for cast strip
JPS62238050A (en) Cooling apparatus for belt type continuous caster
JPS6326246A (en) Method for preventing metal penetration of belt type continuous casting machine
EP0363702B1 (en) Apparatus for continuous casting of metal strip
JPS61154746A (en) Continuous casting device for thin ingot
JPS6268661A (en) Continuous casting machine for thin ingot
JPS6133746A (en) Roll for continuous casting machine
JPH0312986B2 (en)
JPH01237052A (en) Continuous casting machine for cast strip
JPH01284463A (en) Short wall side plate for continuous casting machine for cast strip
JPH03248753A (en) Cooling device in continuous casting machine
JPS61154741A (en) Continuous casting method of thin ingot by belt type continuous casting machine and dummy bar head
JPS6338200Y2 (en)
JPS5844951A (en) Continuous casting device
JPH0323040A (en) Belt type continuous casting apparatus
JPS5870957A (en) Roll device for continuous casting
CA1234673A (en) Cooling pad for use in a continuous casting apparatus for the production of cast sheets
JPH0584455U (en) Support cooling device for slab in continuous casting machine