JPH0247508B2 - SEISHINTORYO - Google Patents

SEISHINTORYO

Info

Publication number
JPH0247508B2
JPH0247508B2 JP9516982A JP9516982A JPH0247508B2 JP H0247508 B2 JPH0247508 B2 JP H0247508B2 JP 9516982 A JP9516982 A JP 9516982A JP 9516982 A JP9516982 A JP 9516982A JP H0247508 B2 JPH0247508 B2 JP H0247508B2
Authority
JP
Japan
Prior art keywords
scale
vibration damping
paint
temperature
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9516982A
Other languages
Japanese (ja)
Other versions
JPS58210965A (en
Inventor
Ikutaka Kosugi
Kazuyuki Mine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP9516982A priority Critical patent/JPH0247508B2/en
Publication of JPS58210965A publication Critical patent/JPS58210965A/en
Publication of JPH0247508B2 publication Critical patent/JPH0247508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は使用温度範囲が70℃より高温に至る著
しく広い温度範囲で高度の制振特性をもち、同時
に耐食性と施工性に富んだ新規な制振塗料を提供
するものである。 既に本出願人は熱変形温度が35〜80℃の不飽和
ポリエステル系樹脂と鱗片状無機物とを主成分と
した塗料が振動による騒音防止、所謂制振効果が
著しく大なることを見付け制振塗料の発明を完成
した。(特開昭57−65759号公報) また、更に不飽和ポリエステル系樹脂を除く熱
硬化性合成樹脂の単独または不飽和ポリエステル
系樹脂を含む硬化した状態における熱変形温度を
異にする複数の混合しうる熱硬化性樹脂または硬
化剤、可塑剤、熱可塑性樹脂等によつて硬化した
状態の熱変形温度を調整した単独または混合しう
る複数の熱変形性樹脂100重量部と無機質充填材
10〜200重量部とを主成分として含有し、かつ硬
化した状態における熱変形温度が30〜120℃であ
る制振塗料の発明をも完成した。(特開昭57−
139154号公報) 本発明者等は更に制振塗料に関する研究を継続
して回転先願より、さらに数段優れた制振効果を
もち、かつ温度範囲が一層広く、従つて著しく用
途範囲の広い本発明を完成するに至つたもので、
本発明は熱変形温度が70〜160℃の熱硬化性樹脂
100重量部と鱗片状無機物10〜200重量部にさらに
粉状体充填材を鱗片状無機物に対して0.1〜50重
量パーセントを混合した制振塗料を提供するもの
で、熱硬化性合成樹脂に鱗片状無機物の単独使用
または無機質粉体の単独使用に比べて高度の制振
効果が得られ、また常温より160℃付近に至る著
しく広範囲の温度における制振特性が得られるこ
とと同時に耐油性、耐水性、耐塩水性など環境腐
食液体やガスに対しても優れた抵抗性をもち、さ
らにスプレーなどによる塗装性についても優れた
効果を奏するのである。 本発明の制振塗料は (a) エンジンカバー、オイルパン、シリンダーカ
バー、エアクリーナー、タイミングギヤカバ
ー、導風板、ヒートカバーなどのエンジン廻り
部品 (b) フアンケーシング、羽根、ダクトなどの送風
機まわり部品 (c) 車両床、壁、屋根、集電機カバー、機械カバ
ーなどの車両部品 (d) 船室、機械室の壁、天井などの船舶部品、 (e) コンベアカバー、建屋の天井、壁、エレベー
ター壁、扉、弱電気製品のケーシング、カバー
類、煙道ダクト、温風ダクトなど多くの用途に
使用して有効である。 特に環境の時間的温度変化のある騒音場所に
使用すると効果がある。 熱硬化性樹脂の熱変形温度は本発明においては
ASTMD−648−72に基いて硬化した状態の最終
的塗膜によつて測定した温度で表した。 また、制振特性は、自動車技術第23巻8月号
(1969年)807頁に記載の強制振動共振法
(Oberst法)に基いて測定した損失係数(〓)
が制振特性と比例する関係を示すことにより長さ
400mm、幅40mmの冷延鋼板の片面に乾燥時の塗膜
厚みが略2.5mmになるように塗布し(上記寸法の
鋼板1枚当り約50gの目付量)硬化して得られた
塗装鋼板を試験片として上記強制振動法
(Oberst法)に基いて複合体としての損失係数
(〓comb)を各測定温度毎に測定した値をもつて
制振特性を示した。 本発明に用いられる熱変形温度70の熱硬化性樹
脂としては (イ) 不飽和ジカルボン酸または不飽和ジカルボン
酸と飽和ジカルボン酸とを多価アルコールによ
つて縮重合させたもの及び変性ビニールエステ
ル樹脂をスチレンモノマーまたはビニールトル
エン等のモノマーに溶解したものなどで代表さ
れる不飽和ポリエステル系樹脂、 (ロ) エチレンオキサイド結合をもつたエピクロー
ルヒドリンとビスフエノールの縮合体をアミン
類などで結合したものなどで代表されるエポキ
シ系樹脂。 (ハ) イソシアネートとヒドロキシ化合物よりなる
ウレタン系樹脂などで、これらを単独または混
合して熱変形温度を70〜160℃の範囲に調整し
たものである。 硬化した状態における最終的塗膜の熱変形温度
が70℃未満の場合は制振温度領域が低温側に移る
ため、高温領域における制振性能が低下し、前記
本発明の夫々の用途に対しては制振塗料としては
不充分である。 また、熱変形温度が160℃を超過すると、160℃
以上の高温度領域での制振性能をもたせることが
できるが、本発明の制振塗料は、(常用温度から
いつて)160℃以上の耐熱性を具備していないた
めに耐久性の上で使用はできない。 なお、熱硬化性樹脂の熱変形温度を調整するた
めにアクリル系樹脂などの熱可塑性樹脂やジオク
チルフタレート等の可塑剤を添加することができ
る。 また、ヒンダードフエノール類、燐酸エステル
類などの耐熱性向上剤を添加して熱劣化を防止す
る方法もとることができる。 本発明の他の重要な成分である鱗片状無機物と
してはマイカ、グラフアイトが好ましいが、無機
の鱗片状物質であれば特に制限はない。 その粒度については、平均粒度として数十ミク
ロンより300ミクロン程度のものが望ましい。粒
度が粗くなりすぎると塗装作業性が悪く、塗膜表
面の肌が荒く見映えが劣るようになる。 また、粉状体充填材としては、カーボン粉末、
珪砂、タルク、炭酸カルシウム、炭酸マグネシウ
ム、アルミ粉体、銅粉、ガラス粉、酸化チタン
粉、フエノール樹脂粉末、メラミン樹脂粉末、ウ
レタン樹脂粉末のような熱硬化性樹脂粉末並びに
木粉、これらの粉体は単独または併用しても差支
えない。 前記鱗片状無機物の使用量は熱硬化性樹脂100
重量部に対して10〜200重量部にさらに粉状充填
材を鱗片状無機物に対して0.1〜50重量パーセン
トを混合する。 鱗片状無機物と粉状体充填材との上記範囲以外
の量の添加は何れの場合も被塗物への接着力が低
下して長期使用により塗膜剥離がおこり、また塗
料性状も低下する。さらに制振性能の好ましい混
合割合は熱硬化性樹脂100重量部に対して鱗片状
無機物25〜50重量部を添加し、この鱗片状無機物
に対して粉状体充填材が10〜40重量パーセントで
ある。 次に本発明によつて本発明を説明する。 実施例 1 第1表に示す配合割合により塗料を調整し、圧
送式エアスプレーガン(口径2.5mm空気圧5Kg/
cm2)を用いて厚さ0.8mm、長さ400mm、巾40mmの冷
延鋼板の片面に乾燥時の塗膜厚みが略々2.5mmと
なるように塗布し(上記寸法の鋼板1枚当り約50
gの目付量)、約4時間常温硬化させた。 このようにして得られた塗装鋼板を試験片とし
て強制制振共振法(Oberst法)に準拠して複
合体としての損失係数(〓comb)を各測定温度
毎に測定した結果を第1図に示す。
The present invention provides a novel vibration damping paint that has high vibration damping properties over a significantly wide range of operating temperatures ranging from 70°C to higher temperatures, and at the same time has excellent corrosion resistance and workability. The present applicant has already found that a paint mainly composed of an unsaturated polyester resin with a heat distortion temperature of 35 to 80°C and a scale-like inorganic substance has a significantly greater effect in preventing noise caused by vibration, so-called vibration damping paint. completed the invention of (Japanese Unexamined Patent Publication No. 57-65759) Further, thermosetting synthetic resins other than unsaturated polyester resins may be used singly or in combination with a plurality of thermosetting synthetic resins having different heat distortion temperatures in the cured state including unsaturated polyester resins. 100 parts by weight of a thermosetting resin or a plurality of thermoplastic resins that have their heat distortion temperature adjusted in a cured state with a curing agent, plasticizer, thermoplastic resin, etc., and an inorganic filler.
They have also completed the invention of a damping paint containing 10 to 200 parts by weight as a main component and having a heat deformation temperature of 30 to 120°C in a cured state. (Unexamined Japanese Patent Publication No. 57-
(No. 139154) The present inventors have further continued their research on vibration damping paints, and have created a book that has an even better damping effect than the previous application, has a wider temperature range, and has a significantly wider range of applications. This led to the completion of the invention,
The present invention is a thermosetting resin with a heat distortion temperature of 70 to 160°C.
This product provides a vibration damping paint in which 100 parts by weight of a scale-like inorganic material is mixed with a powder filler of 0.1-50% by weight based on the scale-like inorganic material, and the scale is added to a thermosetting synthetic resin. A higher vibration damping effect can be obtained compared to the use of a single inorganic substance or an inorganic powder alone, and it also has vibration damping properties over a significantly wide range of temperatures from room temperature to around 160°C, as well as being oil resistant and water resistant. It has excellent resistance to environmentally corrosive liquids and gases, such as water resistance and salt water resistance, and is also excellent in terms of paintability with sprays and the like. The vibration damping paint of the present invention can be applied to (a) parts around engines such as engine covers, oil pans, cylinder covers, air cleaners, timing gear covers, baffle plates, heat covers, etc. (b) parts around blowers such as fan casings, blades, ducts, etc. (c) Vehicle parts such as vehicle floors, walls, roofs, collector covers, machine covers, etc. (d) Ship parts such as walls and ceilings of ship cabins and machine rooms, (e) Conveyor covers, building ceilings, walls, and elevator walls. It is effective for use in many applications such as doors, casings for weak electrical products, covers, flue ducts, hot air ducts, etc. It is especially effective when used in noisy locations where the environment has temperature changes over time. In the present invention, the heat distortion temperature of the thermosetting resin is
Expressed as temperature measured with final coating in cured state according to ASTM D-648-72. In addition, the damping characteristics are loss coefficients (〓) measured based on the forced vibration resonance method (Oberst method) described in Automobile Technology Vol. 23, August issue (1969), page 807.
By showing the relationship that is proportional to the damping characteristics, the length
A coated steel plate obtained by coating one side of a cold-rolled steel plate measuring 400 mm and width 40 mm so that the coating film thickness when dry is approximately 2.5 mm (approximately 50 g basis weight per steel plate of the above dimensions) and curing. As a test piece, the loss coefficient (〓comb) as a composite was measured at each measurement temperature based on the above-mentioned forced vibration method (Oberst method), and vibration damping characteristics were shown. Thermosetting resins with a heat distortion temperature of 70 used in the present invention include (a) unsaturated dicarboxylic acids or polycondensation products of unsaturated dicarboxylic acids and saturated dicarboxylic acids with polyhydric alcohols, and modified vinyl ester resins. unsaturated polyester resins such as those dissolved in monomers such as styrene monomer or vinyl toluene; (b) condensates of epichlorohydrin and bisphenol with ethylene oxide bonds bonded with amines Epoxy resin, which is commonly used in products. (c) A urethane resin made of an isocyanate and a hydroxy compound, which may be used alone or in combination, and have a heat deformation temperature adjusted to a range of 70 to 160°C. If the heat distortion temperature of the final coating film in the cured state is less than 70°C, the vibration damping temperature range shifts to the low temperature side, resulting in a decrease in vibration damping performance in the high temperature range, which is detrimental to each of the above-mentioned uses of the present invention. is insufficient as a vibration damping paint. In addition, if the heat distortion temperature exceeds 160℃, 160℃
Although it is possible to provide vibration damping performance in the above-mentioned high temperature range, the vibration damping paint of the present invention does not have heat resistance above 160°C (based on ordinary temperatures), so it has poor durability. Cannot be used. In addition, in order to adjust the heat deformation temperature of the thermosetting resin, a thermoplastic resin such as an acrylic resin or a plasticizer such as dioctyl phthalate can be added. It is also possible to add a heat resistance improver such as hindered phenols or phosphoric esters to prevent thermal deterioration. The scale-like inorganic substance which is another important component of the present invention is preferably mica or graphite, but there are no particular limitations as long as it is an inorganic scale-like substance. Regarding the particle size, an average particle size of about 300 microns is preferable from several tens of microns. If the particle size becomes too coarse, the coating workability will be poor, and the surface of the coating will be rough and the appearance will be poor. In addition, as the powder filler, carbon powder,
Thermosetting resin powders such as silica sand, talc, calcium carbonate, magnesium carbonate, aluminum powder, copper powder, glass powder, titanium oxide powder, phenol resin powder, melamine resin powder, urethane resin powder, wood powder, and these powders The body may be used alone or in combination. The amount of scale-like inorganic material used is 100% of the thermosetting resin.
10 to 200 parts by weight of the powder filler is further mixed in an amount of 0.1 to 50 weight percent of the scale-like inorganic material. In any case where the scale-like inorganic material and the powder filler are added in amounts outside the above ranges, the adhesion to the object to be coated decreases, resulting in peeling of the coating film after long-term use, and also deteriorating the properties of the coating material. Furthermore, the preferred mixing ratio for vibration damping performance is to add 25 to 50 parts by weight of the scale-like inorganic material to 100 parts by weight of the thermosetting resin, and to add 10 to 40 parts by weight of the powder filler to this scale-like inorganic material. be. Next, the present invention will be explained by the present invention. Example 1 Paint was adjusted according to the compounding ratio shown in Table 1, and a pressure-feed air spray gun (diameter 2.5 mm, air pressure 5 kg/
cm 2 ) to one side of a cold-rolled steel plate with a thickness of 0.8 mm, a length of 400 mm, and a width of 40 mm so that the dry coating thickness is approximately 2.5 mm (approx. 50
g), and was cured at room temperature for about 4 hours. Figure 1 shows the results of measuring the loss coefficient (〓comb) of the composite body using the thus obtained coated steel plate as a test piece according to the forced damping resonance method (Oberst method) at each measurement temperature. show.

【表】 この結果60℃より160℃に至る広範囲の温度領
域における高度の性能をもつた制振塗料が得られ
た。 実施例 2 第2表に示す配合により塗料を調製し、実施例
1と同じ方法で試験片を作成し強制振動共振法
(Oberst法)に準拠して複合体としての損失係
数(〓comb)を各測定温度毎に測定した結果を
第2図、第3図に示す。
[Table] As a result, a damping paint with high performance in a wide temperature range from 60℃ to 160℃ was obtained. Example 2 A paint was prepared according to the formulation shown in Table 2, a test piece was prepared in the same manner as in Example 1, and the loss coefficient (〓comb) as a composite was determined according to the forced vibration resonance method (Oberst method). The results of measurements at each measurement temperature are shown in FIGS. 2 and 3.

【表】【table】

【表】 第2図の結果よりグラフアイト鱗片物に対して
カーボンを0.1〜50重量%混合した制振塗料はカ
ーボン無添加のものに比較して制振性能が高いこ
とが分る。 実施例 3 第3表に示す配合により塗料を調制し、こて塗
りで試験片を作成し、Oberst法に準拠して複
合体としての損失係数(〓comb)を各測定温度
毎に測定した結果を第4図、第5図に示す。
[Table] From the results shown in Figure 2, it can be seen that vibration damping paints containing graphite scales mixed with 0.1 to 50% by weight of carbon have higher vibration damping performance than those containing no carbon. Example 3 The paint was adjusted according to the formulation shown in Table 3, a test piece was prepared by troweling, and the loss coefficient (〓comb) as a composite was measured at each measurement temperature according to the Oberst method. are shown in Figs. 4 and 5.

【表】 第3表の結果実施例1の不飽和ポリエステル系
樹脂の場合と同様にグラフアイトにカーボンの適
正な混合比において、グラフアイト鱗片物単独の
場合に比べて、制振性能の高いものが得られた。 実施例 4 第4表に示す配合により塗料を調製し、これ塗
りで試験片を作成し、Oberst法に準拠して複
合体としての損失係数(〓comb)を各測定温度
毎に測定した結果を第5表に示す。
[Table] Results from Table 3 As in the case of the unsaturated polyester resin in Example 1, at the appropriate mixing ratio of graphite and carbon, vibration damping performance was higher than when graphite scales were used alone. was gotten. Example 4 A paint was prepared according to the formulation shown in Table 4, a test piece was created by coating it, and the loss coefficient (〓comb) as a composite was measured at each measurement temperature according to the Oberst method. It is shown in Table 5.

【表】【table】

【表】【table】

【表】 第5表の結果よりマイカに対してカーボン
(HF)を適正量添加することにより制振効果の
高いものが得られることがわかつた。 実施例 5 第6表に示す配合により塗料を調製し、エアス
プレーガンを用いて試験片を作成し、Oberst
法に準拠して複合体としての損失係数(〓comb)
を各測定温度毎に測定した結果を第7表に示す。
[Table] From the results in Table 5, it was found that by adding an appropriate amount of carbon (HF) to mica, a product with a high vibration damping effect could be obtained. Example 5 A paint was prepared according to the formulation shown in Table 6, a test piece was prepared using an air spray gun, and Oberst
Loss factor (〓comb) as a complex according to the law
Table 7 shows the results of measurements for each measurement temperature.

【表】【table】

【表】 粒状体充填材がタルクや軽質炭酸カルシウムな
どの場合でも、同様な傾向が確認できた。粉状体
充填材の単体添加のみならず複数の粉状体を用い
ても鱗片状無機物に対して0.1〜50重量パーセン
トを混合することにより制振性能の向上をはかる
ことができる。同時に使用温度範囲の拡大などに
効果があり、また粉状体充填材の併用は経済的に
も有利である。 実施例 6 第8表に示す配合により塗料を調製し、エアス
プレーガンを用いて試験片を作成しOberst法
に準拠して複合体としての損失係数(〓comb)
を各測定温度毎に測定した結果を第9表に示す。
有機質粉状体単独または複数使用しても制振効果
が認められる。
[Table] A similar trend was confirmed even when the granular filler was talc or light calcium carbonate. Not only by adding a single powder filler, but also by using a plurality of powder fillers, vibration damping performance can be improved by mixing 0.1 to 50% by weight with respect to the scale-like inorganic material. At the same time, it is effective in expanding the operating temperature range, and the use of a powder filler in combination is also economically advantageous. Example 6 A paint was prepared according to the formulation shown in Table 8, a test piece was prepared using an air spray gun, and the loss coefficient (〓comb) as a composite was determined according to the Oberst method.
Table 9 shows the results of measurements for each measurement temperature.
A damping effect is observed even when organic powder is used alone or in combination.

【表】【table】

【表】 次に本発明者が本発明に到達する途上におい
て、鱗片状無機物の種々な長さに分級したものと
粉状体との制振特性に及す効果について実験した
一例を下記に示す。 市販の鱗片状無機物を篩で分級するために若干
の粒度分布をもつているが、これをさらに細分級
を行い特定サイズをもつた鱗片状無機物をベース
にして各種試料の〓combを測定した。 第9表には特定サイズ別のグラフアイトをベー
スにした配合例を示し、前記各実施例と同様にし
て試料を作成した。 第10表に各々の〓combを示す。
[Table] Next, an example of an experiment carried out by the present inventor on the vibration damping properties of scale-like inorganic materials classified into various lengths and powdered materials is shown below. . Commercially available scale-like inorganic materials have a slight particle size distribution because they are classified with a sieve, but this was further classified and the comb of various samples was measured using the scale-like inorganic materials with a specific size as a base. Table 9 shows formulation examples based on graphite of specific sizes, and samples were prepared in the same manner as in each of the above Examples. Table 10 shows each 〓comb.

【表】【table】

【表】 鱗片状無機物の形状の大小は第9表のサイズ即
ち、10μ〜300μの範囲では制振性能に殆んど差が
認められない。 一方カーボンのように0.1μの粉体単体使用の場
合では性能が劣るが鱗片状無機物と粉状体充填材
の一定の混合比系では制振特性が向上するのであ
る。 一般的に金属などの基材の片面に制振塗料が被
覆された所謂非拘束型制振構造(Extensional
type)の場合には基材の固体振動によつて生じる
曲げ反複挙動に対して粘弾性高分子材料からなる
制振塗料がのび変形をなし、抑止作用がある。 これが制振効果として現われる。 この制振効果は制振塗材のもつロスモジユラス
(E″)の大なるもの程大きい。 一方ロスモジユラス(E″)は材料の内部摩擦
(tanδ)と動的弾性率(E′)との即ちE″=tanδ・
E′で表わされる。 鱗片状無機物に対する粉状体充填材の特定比率
の混入によつてマトリツクス中に配向分散した鱗
片状無機物の間隙に粉状体充填材が介在して動的
弾性率(E′)を高めるが内部摩擦(tanδ)を損う
ことがないのである。 従つてロスモジユラス(E″)が向上する。一
方粉状体充填材の過剰の混入によつて動的弾性率
(E′)を上げるに留まり、内部摩擦(tanδ)を大
きく低下させ、結果的に制振性能を低減するに至
る。 なお、鱗片状無機物単独の方が粉状体充填材単
独よりも制振効果が良いのは鱗片状物とマトリツ
クスである高分子材料との界面応力が粉体よりも
三次元的に大きく働き基材の変形に対して拘束力
を持ち、内部摩擦(tanδ)と動的弾性率(E′)の
両方に効果があるためであると推論される。 また本発明の制振塗料の耐食性、耐候性、サー
マルシヨツクに対する抵抗性などの物性について
も本願発明は第11表に示す如く著しく優秀である
ことがわかる。 前記実施例2の第2表に示す配合による試験片
にて耐食性、耐候性などを試験した結果を第11表
に示す。
[Table] Regarding the size of the shape of the scale-like inorganic material, there is almost no difference in damping performance in the size range of 10μ to 300μ, that is, the size shown in Table 9. On the other hand, when a 0.1μ powder such as carbon is used alone, the performance is inferior, but when a certain mixing ratio of the scale-like inorganic material and the powder filler is used, the damping characteristics are improved. In general, a so-called non-constrained vibration damping structure (Extension
In the case of (type), the vibration damping paint made of a viscoelastic polymer material stretches and deforms against the repeated bending behavior caused by solid vibration of the base material, and has a suppressing effect. This appears as a damping effect. This damping effect increases as the loss modulus (E″) of the damping coating material increases. On the other hand, the loss modulus (E″) is the sum of the material's internal friction (tanδ) and dynamic elastic modulus (E′), that is, E ″=tanδ・
It is represented by E′. By mixing a specific ratio of the powder filler to the scale-like inorganic material, the powder filler is interposed in the gaps between the scale-like inorganic materials oriented and dispersed in the matrix, increasing the dynamic elastic modulus (E'), but the internal There is no loss of friction (tanδ). Therefore, the loss modulus (E″) is improved.On the other hand, by mixing in an excessive amount of powder filler, the dynamic elastic modulus (E′) is only increased, and the internal friction (tanδ) is greatly reduced, resulting in The reason why the scale-like inorganic material alone has a better vibration-damping effect than the powder filler alone is that the interfacial stress between the scale-like material and the polymeric material that is the matrix It is inferred that this is because it acts three-dimensionally and has a restraining force against the deformation of the base material, and has an effect on both internal friction (tan δ) and dynamic elastic modulus (E′). It can be seen that the vibration damping paint of the present invention has extremely excellent physical properties such as corrosion resistance, weather resistance, and resistance to thermal shock as shown in Table 11. According to the formulation shown in Table 2 of Example 2 above. Table 11 shows the results of testing corrosion resistance, weather resistance, etc. on the test pieces.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1における本発明の制振塗料の
各温度における〓comb値、第2図は実施例2に
おける本発明の制振塗料のカーボン添加量(%)
と〓comb値、第3図は実施例2における本発明
の制振塗料の各温度における〓comb、値、 第4図は実施例3における本発明の制御振塗料
のカーボン添加量(%)と〓comb値、第5図は
実施例3における本発明の制振塗料の各温度にお
ける〓comb値を示す。 2,3,4,5,6,7,8,9,10,1
1,12,13,14,15,18,19,2
0,21,22は本発明の夫々の各温度における
〓combの曲線及びカーボン添加量(%)におけ
る〓combの曲線を示す。
Figure 1 shows the comb value at each temperature of the vibration damping paint of the present invention in Example 1, and Figure 2 shows the carbon addition amount (%) of the vibration damping paint of the present invention in Example 2.
Figure 3 shows the comb value at each temperature of the damping paint of the present invention in Example 2. Figure 4 shows the carbon addition amount (%) of the controlled vibration paint of the present invention in Example 3. Figure 5 shows the comb values of the damping paint of the present invention in Example 3 at various temperatures. 2, 3, 4, 5, 6, 7, 8, 9, 10, 1
1, 12, 13, 14, 15, 18, 19, 2
0, 21, and 22 show the 〓comb curve at each temperature and the 〓comb curve according to the carbon addition amount (%), respectively, according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 熱変形温度が70〜160℃の熱硬化性樹脂100重
量部と鱗片状無機物10〜200重量部に、更に粉状
体充填材を鱗片状無機物に対して0.1〜50重量パ
ーセントを混合してなる制振塗料。
1. Mix 100 parts by weight of a thermosetting resin with a heat distortion temperature of 70 to 160°C and 10 to 200 parts by weight of a scale-like inorganic material, and further mix powder filler in an amount of 0.1 to 50 percent by weight based on the scale-like inorganic material. Anti-vibration paint.
JP9516982A 1982-06-02 1982-06-02 SEISHINTORYO Expired - Lifetime JPH0247508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9516982A JPH0247508B2 (en) 1982-06-02 1982-06-02 SEISHINTORYO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9516982A JPH0247508B2 (en) 1982-06-02 1982-06-02 SEISHINTORYO

Publications (2)

Publication Number Publication Date
JPS58210965A JPS58210965A (en) 1983-12-08
JPH0247508B2 true JPH0247508B2 (en) 1990-10-19

Family

ID=14130256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9516982A Expired - Lifetime JPH0247508B2 (en) 1982-06-02 1982-06-02 SEISHINTORYO

Country Status (1)

Country Link
JP (1) JPH0247508B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496003U (en) * 1991-01-14 1992-08-20
JPH04294208A (en) * 1991-03-22 1992-10-19 Murata Mfg Co Ltd Inclination sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203678A (en) * 1984-03-29 1985-10-15 Toyotsuu Eng Kk Method of formation of vibration-damping film
JP2003238897A (en) * 2002-02-14 2003-08-27 Nippon Tokushu Toryo Co Ltd Heat and sound insulating paint and process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496003U (en) * 1991-01-14 1992-08-20
JPH04294208A (en) * 1991-03-22 1992-10-19 Murata Mfg Co Ltd Inclination sensor

Also Published As

Publication number Publication date
JPS58210965A (en) 1983-12-08

Similar Documents

Publication Publication Date Title
US3399103A (en) Vibration damping composition and laminated construction
US3399104A (en) Vibration damping composition and laminated construction
JP2990534B2 (en) Lightweight heat-insulating rubber composition
CN1056398C (en) Acoustically active plastisols
RU2007124551A (en) POWDER COMPOSITION FOR COATING SURFACE OF THERMOSENSITIVE SUBSTRATES
CN1150444A (en) Acoustic plastisols
JP2009544799A (en) Vibration damping material, structural laminate, and manufacturing method thereof
JP2000514574A (en) Lightweight high-performance anti-vibration member
US7772316B2 (en) High temperature polyamide coating for fasteners
JPH0247508B2 (en) SEISHINTORYO
CN113429858B (en) Heat-insulating porcelain-coated material and preparation method and application thereof
JPS6040143A (en) Resin composition for vibration damping
JPH0233747B2 (en)
EP0692005B1 (en) Protective coating composition for motor vehicle underbodies and gravel guards
JPS6324550B2 (en)
CN114702903A (en) Water-based silicon-modified polyester coating and preparation method thereof
CN85100715A (en) Semi-solid damping material
JPS62230868A (en) Coating composition for chipping resistance
JPS626500B2 (en)
CN114787303A (en) Surface treatment composition for vibration damping steel sheet and vibration damping steel sheet
US20220135837A1 (en) Ambient Cure High Temperature Protective Coating
RU2365678C2 (en) Method of obtaining protective lining coating
CN113631674A (en) Single component hydrophobic coating
KR101744010B1 (en) Room temperature hardening paint composition and coated article
JPS63210174A (en) Vibration-damping and soundproof paint