JPH0247491B2 - - Google Patents

Info

Publication number
JPH0247491B2
JPH0247491B2 JP56134830A JP13483081A JPH0247491B2 JP H0247491 B2 JPH0247491 B2 JP H0247491B2 JP 56134830 A JP56134830 A JP 56134830A JP 13483081 A JP13483081 A JP 13483081A JP H0247491 B2 JPH0247491 B2 JP H0247491B2
Authority
JP
Japan
Prior art keywords
cation exchange
membrane
exchange resin
short fibers
perfluorocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56134830A
Other languages
Japanese (ja)
Other versions
JPS5837030A (en
Inventor
Toshikatsu Sada
Akihiko Nakahara
Masaki Shiromizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP56134830A priority Critical patent/JPS5837030A/en
Publication of JPS5837030A publication Critical patent/JPS5837030A/en
Publication of JPH0247491B2 publication Critical patent/JPH0247491B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規なパーフルオロカーボン系陽イオ
ン交換樹脂膜に関する。 従来、食塩水溶液等の電解を陽イオン交換膜法
電解槽によつて行なう場合、陽イオン交換樹脂膜
としては、耐久性、強度等の面から、パーフルオ
ロカーボン系樹脂の網状体或いは布状体よりなる
補強材を有するパーフルオロカーボン系陽イオン
交換樹脂膜が一般に使用されている。しかしなが
ら、該陽イオン交換樹脂膜は、補強材を有するこ
とにより電解時における性能面で次の様な問題を
有する。即ち、補強材により該陽イオン交換樹脂
膜の実効通電面積が減少し、電気抵抗が増大す
る。また、補強材の網状体或いは布状体が存在す
る部分は必然的に陽イオン交換樹脂層が薄く、こ
れに起因して種々の問題が発生する。例えば、該
陽イオン交換樹脂膜が電解時の電力変動、熱等に
より外力、熱等を受け変形して、補強材と陽イオ
ン交換樹脂層とが剥離して間隙が生じた場合、該
間隙を介してイオンが移動するようになるが、該
部分における樹脂層は厚みが薄いためイオン選択
透過性が著しく低い。そのため、電解時の電流効
率の低下及び前記食塩水溶液の電解においては、
生成苛性ソーダ水溶液中に食塩が混入する等の問
題を生じる。また、製造条件によつては、補強材
が膜表面に露出することがあり、このような場合
は、電解液が補強材を伝つて内部に入り前記陽イ
オン交換樹脂層の厚みが薄い部分でイオンの透過
が起こるため、上記した如く電流効率の低下等の
問題を生じる。このような観点から、補強材と前
記陽イオン交換樹脂成分を接着させるために、補
強材の材質として融点の低い弗素系樹脂を用いる
方法、前記陽イオン交換樹脂成分と親和性の良い
樹脂を用いる方法等が考えられるが、いずれも満
足できるものではない。即ち、融点の低いふつ素
系樹脂を用いても、また、イオン交換樹脂成分と
親和性の良い樹脂を用いても結局前記補強材の厚
みは数10ミクロン〜数100ミクロンの大きさを有
するために、膜の厚みに比して同程度となり、補
強材を用いることに基づく電気抵抗の増大は解消
されない。また、イオン交換樹脂成分と補強材の
接着性にも限度があり、イオン選択性が低下する
問題も完全に解消されたとは言えない。更にパー
フルオロカーボン重合体のフイブリルをパーフル
オロカーボン系陽イオン交換樹脂に混入して、こ
れを成膜することも提案されているが、この場合
も該フイブリルとイオン交換樹脂との極性の違い
から十分な接着性が得られるとは言い難く、特に
イオン交換樹脂膜に張力等がかかつた場合イオン
交換樹脂成分と補強材の剥離を生ずる恐れがあ
る。 また、上述した補強材を有するパーフルオロカ
ーボン系陽イオン交換樹脂膜を使用することによ
る問題を回避するため、補強材を有しないパーフ
ルオロカーボン系陽イオン交換樹脂膜の使用も考
えられる。しかし、該陽イオン交換樹脂膜は、電
気抵抗が小さいこと、電解に使用したときの電流
効率が高いというメリツトはあるが、寸法安定性
に乏しいこと、強度的に不安定であること及び製
品中に他イオンの透過が多いこと等の欠点を有す
るため、工業的に使用できるには至つていない。
従つて、前述した補強材を有する陽イオン交換膜
の欠点を解消し、且つ、寸法安定性及び強度に優
れたパーフルオロカーボン系陽イオン交換樹脂膜
の開発は、工業的に重要な課題である。 本発明者等は、上記課題を達成すべく鋭意研究
を重ねた結果、前記網状体、或いは布状体よりな
る補強材を用いずパーフルオロカーボン系陽イオ
ン交換樹脂膜の樹脂層に短繊維を分散させること
により、所期の目的を達成し得ることを見い出
し、本発明を完成するに至つた。 即ち、本発明は陽イオン交換基又は陽イオン交
換基に変換し得る官能基を有するパーフルオロカ
ーボン系樹脂又はイオン交換能を有する炭素繊維
よりなる短繊維が樹脂層に分散していることを特
徴とするパーフルオロカーボン系陽イオン交換樹
脂膜である。 本発明によれば電気抵抗が小さく、変形による
イオン選択透過性の低下もなく、しかも実用上充
分な寸法安定性及び強度を有するパーフルオロカ
ーボン系陽イオン交換樹脂膜が提供される。また
本発明の陽イオン交換樹脂膜をアルカリ金属塩水
溶液の電解に用いることにより、生成苛性アルカ
リ中の塩の混入率を極めて低くすることも可能と
なるのである。 更に本発明の陽イオン交換樹脂膜の一方又は両
方の表面に短繊維を含有しないパーフルオロカー
ボン系陽イオン交換樹脂を膜状にラミネートした
ものも種々の用途、例えばアルカリ金属塩水溶液
の電解用融膜として、しばしば有用なものとな
る。 本発明において、パーフルオロカーボン系陽イ
オン交換樹脂は、公知のものが特に制限なく使用
される。代表的なものを例示すれば、下記の式(1)
及び(2)のモノマーの共重合体が一般に使用され
る。 CF2=CF2 (1) 但し、nは1又は2、YはCF2・Z又はZ、Z
はSO2M,COM,PM2,POM2(MはOH又はハ
ロゲン) 上記(1)と(2)とのモノマーの重合割合は得られる
パーフルオロカーボン系陽イオン交換樹脂のイオ
ン交換容量の希望する値によつて決定されるが、
一般に(1)/(2)が3〜15程度が好ましい。また、該
陽イオン交換樹脂のイオン交換容量としては、
0.5〜2.5ミリ当量/グラム乾燥樹脂の範囲が電解
において好適である。 本発明に使用される短繊維は、イオン交換基を
有するか又はイオン交換基に変換し得る官能基を
有するパーフルオロカーボン系樹脂よりなる短繊
維か或いはイオン交換基を有する炭素繊維であ
る。これらの短繊維は前記パーフルオロカーボン
系陽イオン交換樹脂と親和性が良いため、得られ
る陽イオン交換膜の寸法安定性及び強度の発現が
特に顕著である。前者の好適な材質を例示すれ
ば、陽イオン交換基又は陽イオン交換基に変換し
得る官能基を有するパーフルオロカーボン系樹
脂、例えば、テトラフルオロエチレン、ヘキサフ
ルオロプロピレン、パーフルオロアルキルビニル
エーテル、三弗化−塩化エチレン等のモノマーの
少なくとも一種と下記の式(3)又は(4)との共重合
体、等が一般に使用される。 但し、Rfは(OCF2)nA,O(CF2)nA、又は
〔OCF2(CF3)CF〕m、O(CF2)nA(mは0〜
10、nは0〜10から選ばれた正の整数)、Aは、−
COOM,−BO3M,−P(OM)2,−PO(OM)2(Mは
水素、アルカリ金属、又はアンモニウム塩基)、
The present invention relates to a novel perfluorocarbon cation exchange resin membrane. Conventionally, when electrolyzing a saline solution or the like using a cation-exchange membrane electrolytic cell, the cation-exchange resin membrane has been selected from a network or cloth-like body of perfluorocarbon resin in terms of durability and strength. A perfluorocarbon cation exchange resin membrane having a reinforcing material is generally used. However, the cation exchange resin membrane has the following problems in terms of performance during electrolysis due to the presence of the reinforcing material. That is, the reinforcing material reduces the effective current-carrying area of the cation exchange resin membrane and increases the electrical resistance. Furthermore, the cation exchange resin layer is necessarily thin in the area where the reinforcing material net or cloth is present, and this causes various problems. For example, if the cation exchange resin membrane is deformed by external force or heat due to power fluctuations or heat during electrolysis, and the reinforcing material and the cation exchange resin layer separate and a gap is created, the gap is Although ions begin to move through the resin layer, the thickness of the resin layer in this portion is thin, so that the ion selective permeability is extremely low. Therefore, in the reduction of current efficiency during electrolysis and the electrolysis of the saline solution,
Problems such as salt being mixed into the produced caustic soda aqueous solution arise. Also, depending on the manufacturing conditions, the reinforcing material may be exposed on the membrane surface, and in such cases, the electrolyte may flow through the reinforcing material and enter the interior, where the cation exchange resin layer is thin. Since ion permeation occurs, problems such as a decrease in current efficiency occur as described above. From this point of view, in order to bond the reinforcing material and the cation exchange resin component, there is a method of using a fluorine-based resin with a low melting point as the material of the reinforcing material, and a method of using a resin that has good affinity with the cation exchange resin component. There are several possible methods, but none of them are satisfactory. That is, even if a fluorine-based resin with a low melting point is used, or even if a resin that has good affinity with the ion exchange resin component is used, the thickness of the reinforcing material is still in the range of several tens of microns to several hundred microns. However, the increase in electrical resistance due to the use of the reinforcing material cannot be eliminated because the thickness is approximately the same as that of the film. Furthermore, there is a limit to the adhesion between the ion exchange resin component and the reinforcing material, and the problem of reduced ion selectivity cannot be said to have been completely resolved. Furthermore, it has been proposed to mix perfluorocarbon polymer fibrils with perfluorocarbon cation exchange resin and form a film, but in this case as well, due to the difference in polarity between the fibrils and the ion exchange resin, sufficient It is difficult to say that adhesive properties are obtained, and there is a risk that the ion exchange resin component and reinforcing material may peel off, especially when tension or the like is applied to the ion exchange resin membrane. Furthermore, in order to avoid the problems caused by using a perfluorocarbon cation exchange resin membrane having a reinforcing material as described above, it is also conceivable to use a perfluorocarbon cation exchange resin membrane having no reinforcing material. However, although the cation exchange resin membrane has the advantages of low electrical resistance and high current efficiency when used for electrolysis, it has poor dimensional stability, unstable strength, and product stability. However, it has disadvantages such as high permeation of other ions, so it has not been able to be used industrially.
Therefore, it is an industrially important issue to develop a perfluorocarbon-based cation exchange resin membrane that overcomes the drawbacks of the cation exchange membranes having reinforcing materials and has excellent dimensional stability and strength. As a result of intensive research to achieve the above object, the present inventors have discovered that short fibers are dispersed in the resin layer of a perfluorocarbon-based cation exchange resin membrane without using the reinforcing material made of the network or cloth material. The inventors have discovered that the intended purpose can be achieved by doing so, and have completed the present invention. That is, the present invention is characterized in that short fibers made of a perfluorocarbon resin having a cation exchange group or a functional group that can be converted into a cation exchange group or carbon fibers having ion exchange ability are dispersed in the resin layer. This is a perfluorocarbon-based cation exchange resin membrane. According to the present invention, a perfluorocarbon-based cation exchange resin membrane is provided which has low electrical resistance, no reduction in ion selective permeability due to deformation, and has practically sufficient dimensional stability and strength. Further, by using the cation exchange resin membrane of the present invention for electrolysis of aqueous alkali metal salt solutions, it is also possible to extremely reduce the rate of salt contamination in the produced caustic alkali. Furthermore, the cation exchange resin membrane of the present invention, in which a perfluorocarbon cation exchange resin containing no short fibers is laminated on one or both surfaces, can be used for various purposes, such as a melted membrane for electrolysis of aqueous solutions of alkali metal salts. As such, it is often useful. In the present invention, known perfluorocarbon cation exchange resins can be used without particular limitation. A typical example is the following formula (1)
Copolymers of monomers (2) and (2) are commonly used. CF 2 = CF 2 (1) However, n is 1 or 2, Y is CF2・Z or Z, Z
is SO 2 M, COM, PM 2 , POM 2 (M is OH or halogen) The polymerization ratio of monomers (1) and (2) above is determined by the desired ion exchange capacity of the perfluorocarbon cation exchange resin obtained. determined by the value,
Generally, (1)/(2) is preferably about 3 to 15. In addition, the ion exchange capacity of the cation exchange resin is as follows:
A range of 0.5 to 2.5 meq/gram dry resin is suitable in electrolysis. The short fibers used in the present invention are short fibers made of a perfluorocarbon resin having an ion exchange group or a functional group that can be converted into an ion exchange group, or carbon fibers having an ion exchange group. Since these short fibers have good affinity with the perfluorocarbon cation exchange resin, the dimensional stability and strength of the resulting cation exchange membrane are particularly remarkable. Examples of suitable materials of the former include perfluorocarbon resins having a cation exchange group or a functional group convertible to a cation exchange group, such as tetrafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, and trifluoride. - A copolymer of at least one monomer such as ethylene chloride and the following formula (3) or (4) is generally used. However, Rf is ( OCF2 )nA, O( CF2 )nA, or [ OCF2 ( CF3 )CF]m, O( CF2 )nA (m is 0 to
10, n is a positive integer selected from 0 to 10), A is -
COOM, −BO 3 M, −P(OM) 2 , −PO(OM) 2 (M is hydrogen, alkali metal, or ammonium base),

【式】(R1,R2はアルキル基)、−CN,− COX,SO2X(Xはハロゲン又はアルキル基)、−
P(OX)2、−PO(OX)2よりなる群から選ばれた少
なくとも1種の官能基である。また後者、即ちイ
オン交換基を有する炭素繊維よりなる短繊維の例
は、レイヨンやポリアクリロニトリルなどの有機
繊維や精製した石油ピツチを紡糸して作つた繊維
を不活性気体中で熱処理し炭化して得たものなど
であり、特に表面活性化のため酸化処理を行つた
ものがイオン交換基として、カルボキシル基又は
水酸基を多く含有しており好ましい。 また、本発明において、使用する短繊維は、前
記パーフルオロカーボン系陽イオン交換樹脂に分
散が可能な大きさのものが特に制限なく使用され
る。特に、直径が0.001〜15ミクロン、好ましく
は0.005〜10ミクロンの短繊維は、該陽イオン交
換樹脂への分散性が良好で、しかも得られる陽イ
オン交換樹脂膜の表面状態を平滑に保つことが好
適である。また、短繊維の長さは一般に0.5〜10
mm程度が該陽イオン交換樹脂への分散性の面で好
ましい。また本発明に用いる短繊維が有するイオ
ン交換基(又はイオン交換基に変換し得る官能
基)の交換容量が0.01〜0.5ミリ当量/グラム−
乾燥樹脂の範囲のものが、前記陽イオン交換樹脂
との親和性が特に良好であり好適である。更に、
前記短繊維の断面形状は丸型、角形、星形等特に
制限されないが、星形のように表面に凹凸を有す
る形状のものを用いることが、短繊維と前記陽イ
オン交換樹脂との接合力を強め、陽イオン交換樹
脂膜の寸法安定性、及び強度を更に向上させるこ
とができるため好ましい。 本発明のパーフルオロカーボン系陽イオン交換
樹脂膜において、樹脂層へ分散させる短繊維の量
は、あまり少ないと該陽イオン交換樹脂膜の寸法
安定性及び強度が充分でなく、多過ぎると該陽イ
オン交換樹脂膜の電気抵抗の増加、表面荒れ等を
招く。一般に、短繊磯は、膜を構成する樹脂重量
に対して1〜40重量部、好ましくは3〜20重量部
の割合で分散させることが好ましい。 本発明のパーフルオロカーボン系陽イオン交換
樹脂膜の製造方法は特に制限されない。代表的な
製造方法を例示すれば、溶融させたパーフルオロ
カーボン系陽イオン交換樹脂中に所定量の短繊維
を均一に分散させ、これを膜状に成形する方法、
パーフルオロカーボン系陽イオン交換樹脂を溶剤
溶解させ、これに所定量の短繊維を均一に分散さ
せた後、湿式成形を行なう方法等がある。また、
本発明のパーフルオロカーボン系陽イオン交換樹
脂膜は短繊維を陽イオン交換膜に均一に存在させ
る態様に限らず、膜断面に関して不均一に存在さ
せてもよい。即ち、膜表面に平行に一方の表面か
ら他方の表面に向けて短繊維の存在割合を変化さ
せてもよい。具体的な態様を例示すれば、短繊維
を多く、一般には短繊維が5〜40重量%存在する
パーフルオロカーボン系陽イオン交換樹脂層(A)と
該(A)層よりも短繊維が5重量%以上少なく、且つ
0〜30重量%存在しているパーフルオロカーボン
系陽イオン交換樹脂層(B)とをラミネート法により
貼り合せた態様、或いは短繊維を多く存在させた
薄膜の間に、短繊維を存在させないが、少量の短
繊維を存在させた薄膜をはさんで三層構造とする
態様等がある。しかし、望ましくは短繊維が多く
存在する薄膜に短繊維が全くないか或いは少ない
量で存在し、該短繊維が多く存在する薄層より厚
みの厚い薄膜をラミネートして構成された二層膜
があり、且つ短繊維が多く存在する薄層にはその
一部或いは全体に少なくともカルボン酸基が存在
する態様が最も望ましい。上述した態様におい
て、薄膜中の短繊維は最高40重量%にとどめるこ
とが電気抵抗の増大を防止するために好ましい。
前記溶融成形方法において、パーフルオロカーボ
ン系陽イオン交換樹脂は陽イオン交換基に変換す
る前のスルホニルハライド、カルボン酸ハライ
ド、リン酸ハライド等の酸ハライド基、或いは陽
イオン交換基のエステル等を有するイオン交換体
の前駆体、陽イオン交換基に長鎖アミン等をイオ
ン交換して融点を低下させたものを用いることが
好ましい。尚、上記方法において、短繊維は該パ
ーフルオロカーボン系陽イオン交換樹脂の溶融又
は溶解条件下で実質的に溶融又は溶解しないもの
を選択して使用すればよい。 本発明のパーフルオロカーボン系陽イオン交換
樹脂膜は樹脂層に短繊維が分散して存在している
ため、短繊維による膜性能の低下はほとんどな
く、しかも実用上充分な寸法安定性、及び強度を
有する。従つて公知の陽イオン交換膜法電解槽に
何等支障なく使用でき、且つ低電圧、高電流効率
で食塩水溶液等の電解を行なうことができる。 以下、本発明を具体的に説明するため、実施例
を示すが、本発明はこれらの実施例に限定される
ものではない。 実施例 1 テトラフルオロエチレンとパーフルオロ(3,
6−ジオキサ−4−メチル−7−オクテンスルホ
ニルフルオライド)の共重合体で加水分解したと
きのイオン交換容量が0.91ミリ当量/グラム乾燥
樹脂(H+型)の高分子粉体をパーフルオロカー
ボン系陽イオン交換樹脂成分として用いた。 短繊維としては次のものを用いた。 短繊維A;テトラフルオロエチレンとバーフル
オロ(3,6−ジオキサ−4−メチル
−7−オクテンスルホニルフルオライ
ドの共重合体で加水分解して陽イオン
交換体としたときの交換容量が0.5ミ
リ当量に相当するスルホニルフルオラ
イド基を有する高分子で出来た直径約
10ミクロンで長さが1〜2mmの短繊
維。 短繊維B;市販の炭素繊維(東レ(株)製商品名
「トレカチヨツプフアイバー」T−010
−012)で直径が約10ミクロンのもの
を約8〜10mmの長さに切断した短繊
維。これの陽イオン交換容量は0.01ミ
リ当量/グラム乾燥繊維(H+型)で
あつた。 短繊維C;CF2
[Formula] (R 1 and R 2 are alkyl groups), -CN, - COX, SO 2 X (X is halogen or alkyl group), -
It is at least one functional group selected from the group consisting of P(OX) 2 and -PO(OX) 2 . The latter, short fibers made of carbon fibers with ion exchange groups, are produced by carbonizing fibers made by spinning organic fibers such as rayon or polyacrylonitrile or refined petroleum pitch in an inert gas. Among these, those that have been subjected to oxidation treatment for surface activation are preferred because they contain a large amount of carboxyl groups or hydroxyl groups as ion exchange groups. Further, in the present invention, the short fibers to be used may be of a size that can be dispersed in the perfluorocarbon cation exchange resin without any particular restriction. In particular, short fibers with a diameter of 0.001 to 15 microns, preferably 0.005 to 10 microns, have good dispersibility in the cation exchange resin and can maintain a smooth surface condition of the resulting cation exchange resin membrane. suitable. In addition, the short fiber length is generally 0.5 to 10
mm is preferable in terms of dispersibility in the cation exchange resin. In addition, the exchange capacity of the ion exchange groups (or functional groups that can be converted into ion exchange groups) possessed by the short fibers used in the present invention is 0.01 to 0.5 meq/g.
Those within the range of dry resins have particularly good affinity with the cation exchange resin and are therefore suitable. Furthermore,
The cross-sectional shape of the short fibers is not particularly limited, such as round, square, star-shaped, etc., but it is preferable to use a star-shaped cross-sectional shape with irregularities on the surface to improve the bonding force between the short fibers and the cation exchange resin. This is preferable because it can further improve the dimensional stability and strength of the cation exchange resin membrane. In the perfluorocarbon-based cation exchange resin membrane of the present invention, if the amount of short fibers dispersed in the resin layer is too small, the dimensional stability and strength of the cation exchange resin membrane will not be sufficient, and if it is too large, the cation This causes an increase in the electrical resistance of the exchanged resin membrane and surface roughening. Generally, it is preferable to disperse the short fibers in an amount of 1 to 40 parts by weight, preferably 3 to 20 parts by weight, based on the weight of the resin constituting the membrane. The method for producing the perfluorocarbon cation exchange resin membrane of the present invention is not particularly limited. Typical manufacturing methods include a method in which a predetermined amount of short fibers is uniformly dispersed in a molten perfluorocarbon cation exchange resin, and then formed into a membrane;
There is a method in which a perfluorocarbon cation exchange resin is dissolved in a solvent, a predetermined amount of short fibers are uniformly dispersed therein, and then wet molding is performed. Also,
The perfluorocarbon-based cation exchange resin membrane of the present invention is not limited to the embodiment in which short fibers are uniformly present in the cation exchange membrane, but may be present nonuniformly in the cross section of the membrane. That is, the proportion of short fibers may be changed parallel to the membrane surface from one surface to the other surface. To give a specific example, a perfluorocarbon cation exchange resin layer (A) containing a large number of short fibers, generally 5 to 40% by weight of short fibers, and a layer (A) containing 5 weight of short fibers compared to the layer (A). % or more and 0 to 30% by weight of the perfluorocarbon-based cation exchange resin layer (B) is laminated by a lamination method, or between a thin film in which a large amount of short fibers is present, short fibers are There is an embodiment in which a three-layer structure is formed by sandwiching a thin film in which short fibers are not present, but a small amount of short fibers are present. However, desirably, a two-layer film is constructed by laminating a thin film containing many short fibers with no short fibers or a small amount of short fibers, and a thin film that is thicker than the thin film containing many short fibers. The most desirable embodiment is that the thin layer in which there are many short fibers has at least a carboxylic acid group in part or in its entirety. In the embodiment described above, it is preferable that the short fibers in the thin film be kept at a maximum of 40% by weight in order to prevent an increase in electrical resistance.
In the melt molding method, the perfluorocarbon cation exchange resin is an ion having an acid halide group such as a sulfonyl halide, a carboxylic acid halide, a phosphoric acid halide, or an ester of a cation exchange group before being converted into a cation exchange group. It is preferable to use a precursor of the exchanger, which is obtained by ion-exchanging the cation exchange group with a long-chain amine or the like to lower the melting point. In the above method, the short fibers may be selected from those that do not substantially melt or dissolve under the melting or dissolving conditions of the perfluorocarbon cation exchange resin. Since the perfluorocarbon-based cation exchange resin membrane of the present invention has short fibers dispersed in the resin layer, there is almost no deterioration in membrane performance due to short fibers, and it has sufficient dimensional stability and strength for practical use. have Therefore, it can be used in known cation exchange membrane electrolyzers without any problems, and can electrolyze saline solutions and the like with low voltage and high current efficiency. EXAMPLES Hereinafter, examples will be shown to specifically explain the present invention, but the present invention is not limited to these examples. Example 1 Tetrafluoroethylene and perfluoro(3,
A perfluorocarbon-based polymer powder with an ion exchange capacity of 0.91 meq/g dry resin (H + type) when hydrolyzed with a copolymer of 6-dioxa-4-methyl-7-octensulfonyl fluoride) It was used as a cation exchange resin component. The following short fibers were used. Short fiber A; exchange capacity when hydrolyzed with a copolymer of tetrafluoroethylene and barfluoro(3,6-dioxa-4-methyl-7-octensulfonyl fluoride to form a cation exchanger) is 0.5 milliequivalent Made of a polymer with sulfonyl fluoride groups corresponding to a diameter of approx.
Short fibers of 10 microns and 1 to 2 mm in length. Short fiber B: Commercially available carbon fiber (Toray Industries, Inc. product name: "Torekatyopf Iver" T-010)
-012) with a diameter of about 10 microns and cut into lengths of about 8 to 10 mm. Its cation exchange capacity was 0.01 meq/g dry fiber (H + form). Short fiber C; CF 2 and

【式】 の共重合体からなる短繊維で直径が約
1ミクロンで長さが2〜4mmのもの。
尚この短繊維を加水分解してカルボン
酸基として陽イオン交換容量を測定し
たところ0.2ミリ当量/乾燥樹脂(H+
型)であつた。 以上、A,B,Cの短繊維を夫々用い、前記の
スルホニルフルオライド基を有するパーフルオロ
カーボン系陽イオン樹脂と均一に混合して、0.15
mmの厚みのフイルムに溶融成形した。これをジメ
チルスルホキシド400部、水600部、水酸化カリウ
ム15部からなる加水分解浴に浸漬して、スルホニ
ルフルオライド基をスルホン酸基に変えた。次い
でその膜を60%硝酸に浸漬して酸型としたのち、
膜の一方の面だけスルホン酸基を五塩化リンの蒸
気によつてスルホニルクロライドとしたのち、n
−ブチルアルコール中で空気酸化してスルホニル
クロライド基をカルボン酸基に変換した。次いで
メタノール−水−カ性ソーダからなる加水分解浴
に浸漬して未反応のスルホニルクロライド基をス
ルホン酸基にしたのち食塩水溶液電解に供した。
食塩水溶液電解は有効通電面積0.5dm2の締付型電
解槽で、陰極室から10規定のカ性ソーダを取得す
るように純水を供給した。陽極室には3.5規定の
食塩水を供給し、電流密度は30A/dm2で、電解
温度は80℃であつた。前記で得られた陽イオン交
換樹脂膜の性能、及び電解結果を表1に示す。 尚全く短繊維を添加しないで0.15mmのフイルム
としたのち加水分解して陽イオン交換樹脂膜とし
たもの、及びポリテトラフルオロエチレン製の
400デニールの糸を用いて織つた平織布をスルホ
ニルフルオライドのフイルムに加熱圧入した後、
加水分解して得た陽イオン交換膜も用いて同様の
実験を行なつた。 尚伸び率は室温で純水に浸漬し、平衡にした膜
で巾2cm、長さ100cmのものを、80℃の
9.0NNaOH中に24時間浸漬後、収縮した長さを、
純水浸漬時の膜の長さで除したものに100を掛け
たものである。 引張強度は室温で相対湿度50%のとき、引張試
験機によつて測定したものである。
Short fibers made of a copolymer with the formula: approximately 1 micron in diameter and 2 to 4 mm in length.
When this short fiber was hydrolyzed and the cation exchange capacity was measured as a carboxylic acid group, it was found to be 0.2 milliequivalent/dry resin (H +
type). As described above, short fibers A, B, and C were used, and mixed uniformly with the above-mentioned perfluorocarbon-based cationic resin having a sulfonyl fluoride group.
It was melt-molded into a film with a thickness of mm. This was immersed in a hydrolysis bath consisting of 400 parts of dimethyl sulfoxide, 600 parts of water, and 15 parts of potassium hydroxide to convert the sulfonyl fluoride groups into sulfonic acid groups. Next, the film was immersed in 60% nitric acid to form an acid form.
After converting the sulfonic acid groups on one side of the membrane to sulfonyl chloride using phosphorus pentachloride vapor,
- The sulfonyl chloride groups were converted to carboxylic acid groups by air oxidation in butyl alcohol. Next, the product was immersed in a hydrolysis bath consisting of methanol, water, and caustic soda to convert unreacted sulfonyl chloride groups into sulfonic acid groups, and then subjected to saline solution electrolysis.
The saline solution electrolysis was performed using a clamp-type electrolytic cell with an effective current carrying area of 0.5 dm 2 , and pure water was supplied to obtain 10N caustic soda from the cathode chamber. A 3.5N saline solution was supplied to the anode chamber, the current density was 30A/dm 2 , and the electrolysis temperature was 80°C. Table 1 shows the performance of the cation exchange resin membrane obtained above and the electrolysis results. In addition, a film made of 0.15 mm without adding any short fibers and then hydrolyzed to form a cation exchange resin membrane, and a film made of polytetrafluoroethylene.
After heating and press-fitting a plain woven fabric woven with 400 denier thread into a sulfonyl fluoride film,
Similar experiments were conducted using a cation exchange membrane obtained by hydrolysis. The elongation rate is determined by measuring a membrane 2cm wide and 100cm long that has been immersed in pure water at room temperature and equilibrated at 80℃.
After soaking in 9.0NNaOH for 24 hours, the shrunk length is
It is divided by the length of the membrane when immersed in pure water and multiplied by 100. Tensile strength was measured using a tensile tester at room temperature and 50% relative humidity.

【表】 *は比較例である。
実施例 2 実施例1と同一のスルホニルフルオライド基を
有する樹脂粉体に、テトラフルオロエチレンとパ
ーフルオロ(3,6−ジオキサ−4−メチル−7
−オクテンスルホニルフルオライド)の共重合物
で、加水分解したときの交換容量が0.6ミリ当量
に相当するスルホニルフルオライド基を有する樹
脂よりなる直径約0.1ミクロン、長さが0.5〜10mm
の短繊維を、上記樹脂粉体80重量部に対して20重
量部添加した。これを充分に溶融混合後、25ミク
ロンのフイルムに成形した。他方、実施例1と同
一のスルホニルフルオライド基を有する樹脂粉体
を加熱溶融して150ミクロンのフイルムに成形し
た。得られた25ミクロンと150ミクロンの二枚の
フイルムを加熱圧着して一枚の約170ミクロンの
フイルムとした。次いでこのフイルムをジメチル
スルホキシド400部、水600部、水酸化カリウム15
部からなる加水分解浴に浸漬してスルホニルフル
オライド基をスルホン酸カリウムに変換した。こ
の膜を用いて実施例1と同様にして25ミクロンの
フイルムを加熱融着した膜面のスルホン酸基を約
厚み10ミクロンに亘つてカルボン酸基に変換して
パーフルオロカーボン系陽イオン交換樹脂膜を得
た。 得られた陽イオン交換樹脂膜を用いて実施例1
と同様にカルボン酸基が存在する膜面を陰極室側
に向けて食塩電解を実施した。その結果と、陽イ
オン交換膜の性能を表−2に示す。 尚、比較のためにスルホニルフルオライド基を
有する樹脂粉体に短繊維を加えることなく約170
ミクロンのフイルムとし、加水分解処理、カルボ
ン酸への変換反応を同様に行つて同様に食塩電解
を実施した。その結果と陽イオン交換膜の性能を
表−2に併せて示す。
[Table] * is a comparative example.
Example 2 Tetrafluoroethylene and perfluoro(3,6-dioxa-4-methyl-7
A copolymer of octensulfonyl fluoride) with a diameter of approximately 0.1 micron and a length of 0.5 to 10 mm.
20 parts by weight of short fibers were added to 80 parts by weight of the resin powder. This was thoroughly melted and mixed and then molded into a 25 micron film. On the other hand, a resin powder having the same sulfonyl fluoride group as in Example 1 was heated and melted to form a 150 micron film. The obtained two films of 25 microns and 150 microns were bonded under heat to form a single film of approximately 170 microns. Next, this film was mixed with 400 parts of dimethyl sulfoxide, 600 parts of water, and 15 parts of potassium hydroxide.
The sulfonyl fluoride groups were converted to potassium sulfonate by immersion in a hydrolysis bath consisting of Using this membrane, a 25 micron film was heat-fused in the same manner as in Example 1, and the sulfonic acid groups on the membrane surface were converted to carboxylic acid groups over a thickness of about 10 microns to form a perfluorocarbon cation exchange resin membrane. I got it. Example 1 using the obtained cation exchange resin membrane
Similarly, salt electrolysis was carried out with the membrane surface containing carboxylic acid groups facing the cathode chamber. Table 2 shows the results and the performance of the cation exchange membrane. For comparison, approximately 170% of the resin powder containing sulfonyl fluoride groups was prepared without adding short fibers.
A micron film was prepared, hydrolysis treatment and conversion reaction to carboxylic acid were performed in the same manner, and salt electrolysis was performed in the same manner. The results and the performance of the cation exchange membrane are also shown in Table 2.

【表】 実施例 3 CF2=CF2とCF2=CFO(−CF23COOC2H5の共
重合体で加水分解したときの交換容量が1.2ミリ
当量/グラム乾燥膜(H+型)の樹脂粉体をイオ
ン交換樹脂成分として用いた。短繊維成分として
は上記の樹脂と同一の共重合体で加水分解したと
きの交換容量が0.4ミリ当量/グラム乾燥膜(H+
型)である樹脂からなる長さ2〜5mmで直径約1
ミクロンの短繊維を、イオン交換樹脂成分80重量
部に対して20重量部添加したのち、充分に溶融混
合して0.15mmのフイルムに成型した。次いでこれ
をメタノール−苛性ソーダの加水分解浴で加水分
解してカルボン酸とした。次いで一方の膜面のみ
カルボン酸基の一部を脱炭酸反応して交換容量を
若干下げてパーフルオロカーボン系陽イオン交換
樹脂膜を得た。該陽イオン交換樹脂膜を用いて飽
和食塩水の電気分解を実施例1と同様の条件で行
つた。電解結果及び該陽イオン交換樹脂膜の性能
を表−3に示す。 尚比較のために加水分解したときの交換容量が
1.2ミリ当量/グラム乾燥膜(H+型)の陽イオン
交換樹脂のみからなる厚みが0.15mmのフイルムを
作りこれを加水分解して、次いで膜の一方の面の
み同様にイオン交換容量を低減させるための脱炭
酸反応をしてパーフルオロカーボン系陽イオン交
換樹脂膜を得た。得られた陽イオン交換樹脂膜を
用いて同様にして電解を行なつた。その電解結
果、及び該陽イオン交換樹脂膜の性能を表−3に
併せて示す。
[Table] Example 3 CF 2 = CF 2 and CF 2 = CFO (-CF 2 ) 3 The exchange capacity when hydrolyzed with a COOC 2 H 5 copolymer was 1.2 meq/g dry membrane (H + type ) was used as the ion exchange resin component. As a short fiber component, the exchange capacity when hydrolyzed with the same copolymer as the above resin is 0.4 meq/g dry membrane (H +
The mold is made of resin with a length of 2 to 5 mm and a diameter of approximately 1 mm.
After adding 20 parts by weight of micron short fibers to 80 parts by weight of the ion exchange resin component, the mixture was thoroughly melted and mixed and formed into a 0.15 mm film. This was then hydrolyzed into a carboxylic acid in a methanol-caustic soda hydrolysis bath. Next, a portion of the carboxylic acid groups on one membrane surface was decarboxylated to slightly lower the exchange capacity to obtain a perfluorocarbon cation exchange resin membrane. Electrolysis of saturated saline solution was carried out under the same conditions as in Example 1 using the cation exchange resin membrane. Table 3 shows the electrolysis results and the performance of the cation exchange resin membrane. For comparison, the exchange capacity when hydrolyzed is
A 0.15 mm thick film made of only 1.2 meq/g dry membrane (H + type) cation exchange resin is hydrolyzed, and then the ion exchange capacity is similarly reduced on one side of the membrane. A perfluorocarbon cation exchange resin membrane was obtained by decarboxylation reaction. Electrolysis was performed in the same manner using the obtained cation exchange resin membrane. The electrolytic results and the performance of the cation exchange resin membrane are also shown in Table 3.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 陽イオン交換基又は陽イオン交換基に変換し
得る官能基を有するパーフルオロカーボン系樹脂
よりなる短繊維又はイオン交換能を有する炭素繊
維よりなる短繊維が樹脂層に分散していることを
特徴とするパーフルオロカーボン系陽イオン交換
樹脂膜。 2 短繊維の直径が15ミクロン以下である特許請
求の範囲第1項記載のパーフルオロカーボン系陽
イオン交換樹脂膜。 3 短繊維が膜を構成する樹脂重量に対して1〜
40重量%の割合で分散させた特許請求の範囲第1
項記載のパーフルオロカーボン系陽イオン交換樹
脂膜。
[Scope of Claims] 1 Short fibers made of a perfluorocarbon resin having a cation exchange group or a functional group convertible to a cation exchange group or short fibers made of carbon fiber having ion exchange ability are dispersed in a resin layer. A perfluorocarbon cation exchange resin membrane characterized by: 2. The perfluorocarbon cation exchange resin membrane according to claim 1, wherein the short fibers have a diameter of 15 microns or less. 3 Short fibers are 1 to 1% of the weight of the resin constituting the membrane.
Claim 1 dispersed in a proportion of 40% by weight
Perfluorocarbon-based cation exchange resin membrane as described in .
JP56134830A 1981-08-29 1981-08-29 Perfluorocarbon cation exchange resin membrane Granted JPS5837030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56134830A JPS5837030A (en) 1981-08-29 1981-08-29 Perfluorocarbon cation exchange resin membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56134830A JPS5837030A (en) 1981-08-29 1981-08-29 Perfluorocarbon cation exchange resin membrane

Publications (2)

Publication Number Publication Date
JPS5837030A JPS5837030A (en) 1983-03-04
JPH0247491B2 true JPH0247491B2 (en) 1990-10-19

Family

ID=15137457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56134830A Granted JPS5837030A (en) 1981-08-29 1981-08-29 Perfluorocarbon cation exchange resin membrane

Country Status (1)

Country Link
JP (1) JPS5837030A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990228A (en) * 1989-02-28 1991-02-05 E. I. Du Pont De Nemours And Company Cation exchange membrane and use
US4988364A (en) * 1989-02-28 1991-01-29 E. I. Du Pont De Nemours And Company Coated cation exchange yarn and process
US4964960A (en) * 1989-02-28 1990-10-23 E. I. Du Pont De Nemours And Company Cation exchange reinforced membrane and process for using
US4996098A (en) * 1989-02-28 1991-02-26 E. I. Du Pont De Nemours And Company Coated cation exchange fabric and process
CN1308381C (en) * 2002-07-26 2007-04-04 旭硝子株式会社 Polymer membrane, process for its production and membrane-electrode assembly for solid polymer electrolyte fuel cells
CA2802973C (en) * 2010-06-18 2017-09-12 Shandong Huaxia Shenzhou New Material Co., Ltd Fluorine containing ionomer composite with ion exchange function, preparation method and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541283A (en) * 1977-11-01 1979-01-08 Asahi Glass Co Ltd Fluorine-contained cation exchange resin membrane for electrolysis and method of producing same
JPS54157777A (en) * 1978-06-02 1979-12-12 Asahi Glass Co Ltd Sulfonic based, fluorine-containing cation exchanging resin membrane for electrolysis and preparing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541283A (en) * 1977-11-01 1979-01-08 Asahi Glass Co Ltd Fluorine-contained cation exchange resin membrane for electrolysis and method of producing same
JPS54157777A (en) * 1978-06-02 1979-12-12 Asahi Glass Co Ltd Sulfonic based, fluorine-containing cation exchanging resin membrane for electrolysis and preparing same

Also Published As

Publication number Publication date
JPS5837030A (en) 1983-03-04

Similar Documents

Publication Publication Date Title
US4298697A (en) Method of making sheet or shaped cation exchange membrane
US3692569A (en) Surface-activated fluorocarbon objects
US4683040A (en) Process for electrolysis of sodium chloride
US6156451A (en) Process for making composite ion exchange membranes
EP2183308B1 (en) Cation conductive membranes comprising polysulfonic acid polymers and metal salts having an f-containing anion
JPH0212495B2 (en)
EP2656425B1 (en) Ionomers and ionically conductive compositions for use as one or more electrode of a fuel cell
DE60206573T2 (en) Process for impregnating carriers
WO2012088166A1 (en) Ionomers and ionically conductive compositions
KR20070008544A (en) Polymer electrolyte membranes crosslinked by direct fluorination
US20040099527A1 (en) Dispersion composition containing perfluorocarbon-based copolymer
EP0345964A1 (en) Organic polymeric material and ion-exchange membrane produced therefrom
JPH0247491B2 (en)
JPS62500243A (en) Novel ionic fluorinated polymer and its manufacturing method
JPH036240A (en) Method for hydrolyzing ion exchange fluororesin film
EP0094587B2 (en) Improved electrolytic cation exchange membrane
WO1998051733A1 (en) Process for making composite ion exchange membranes
US11923584B2 (en) Membrane for redox flow battery, method for producing membrane for redox flow battery, membrane electrode assembly for redox flow battery, cell for redox flow battery, and redox flow battery
JP4454217B2 (en) Manufacturing method of membrane electrode assembly
JP4141032B2 (en) Reinforced solid electrolyte membrane
JPH02133448A (en) Production of hydrophilic porous film
EP0077687A1 (en) Membrane assembly, electrochemical cell, and electrolysis process
WO1982003868A1 (en) Method of making sheet or shaped cation exchange membrane
EP4133542A1 (en) Composite including fluorinated polymer and salt nanoparticles and articles including the same
JPS62131038A (en) Production of fluorine-containing ion exchange membrane