JPH0247425B2 - - Google Patents

Info

Publication number
JPH0247425B2
JPH0247425B2 JP58020859A JP2085983A JPH0247425B2 JP H0247425 B2 JPH0247425 B2 JP H0247425B2 JP 58020859 A JP58020859 A JP 58020859A JP 2085983 A JP2085983 A JP 2085983A JP H0247425 B2 JPH0247425 B2 JP H0247425B2
Authority
JP
Japan
Prior art keywords
sintered body
phase
silicon nitride
cutting
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58020859A
Other languages
Japanese (ja)
Other versions
JPS59146983A (en
Inventor
Mikio Fukuhara
Akira Fukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP58020859A priority Critical patent/JPS59146983A/en
Publication of JPS59146983A publication Critical patent/JPS59146983A/en
Publication of JPH0247425B2 publication Critical patent/JPH0247425B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、機械工作用セラミツクス特に切削工
具、耐摩耗材料及び耐食性材料用セラミツクスに
適する高靭性窒化硅素焼結体に関する。 窒化硅素は、共有結合性の強い化合物であり、
イオン結晶や金属結晶に比べ粒界エネルギーと表
面エネルギーの比が大きく、自己拡散が非常に遅
く、高温では分解及び蒸発するために焼結し難い
材料である。このために窒化硅素を無加圧普通焼
結法で焼結しても緻密な焼結体が得られず一般に
はMgO、Y2O3、Al2O3、AlN等の焼結助剤を添
加して反応焼結もしくは液相焼結を利用したホツ
トプレス法又は熱間静水圧加圧法(HIP)等によ
つて緻密な焼結体を得ている。このようにMgO、
Y2O3、Al2O3、AlN等の焼結助剤を添加した
Si3N4焼結体は、Si3N4の硬質相を結合している
結合相中にエンスタタイト(MgSiO3)組成に近
いマグネシウムシリケートのガラス相又はイツト
リウムシリケートのガラス相もしくはAl元素を
含有した低級硅酸塩からなるガラス相を生じる。
これらのガラス相は、低温で液相となつてSi3N4
の焼結性を促進させるが焼結後も粒界に残存する
ために高温強度を低下させるという欠点がある。
このようなガラス相からなる結合相の欠点を改良
するものとして結合相の結晶化の方向が検討され
て、ジエツトエンジン、ロケツトノズル及びター
ビン翼等の高温構造用材料を主体にして提案され
てきた窒化硅素系焼結体にサイアロン系焼結体が
ある。サイアロン系焼結体は、Si3N4に焼結助剤
としてAl2O3又はAlNを添加固溶した焼結体及び
Si3N4に焼結助剤としてAl2O3又はAlNとY2O3
の他添加物を固溶したAl含有のSi3N4系焼結体と
して総称されている。しかしながらこのサイアロ
ン系焼結体は、Si3N4格子中にイオン結合性の強
いAl2O3又はAlNが固溶しているために共有結合
性は低下し、Si3N4本来の特性を劣化するのみな
らずAl元素が関与した低級酸窒化物が焼結性を
促進する反面、脆弱なガラス相として焼結後サイ
アロン(SiAlON)粒子の粒界に残存し、結晶化
熱処理を行わない限り焼結体の高温特性を激減さ
せるという問題がある。 本発明は、上記のような欠点及び問題点を解決
し、結合相の結晶化を画ることによつて従来の切
削領域から高速切削領域迄使用可能な耐摩耗性及
び高靭性の窒化硅素焼結体を提供することを目的
にしたものである。 本発明の高靭性窒化硅素焼結体は、重量比で65
〜99%の窒化硅素と1〜35%のオキシナイトロジ
エンシリケートの結合相と不可避不純物とからな
る焼結体で、この1〜35%のオキシナイトロジエ
ンシリケートの結合相を {Sia()b()c()d}(NxOy)zと
表示すると()は周期律表の第族金属を、
()は周期律表の第族金属を、()は周期律
表の第族金属を示し、a、b、c、dはそれぞ
れSi、()、()、()の金属元素のモル比率
を示し、x、yはそれぞれN(窒素)、O(酸素)
の非金属元素のモル比率を示し、zは金属元素に
対する非金属元素のモル比率を示し、a、b、
c、d、x、y及びzはそれぞれ正の数で1≦a
≦3、0<b≦2、0<c≦2、0<d≦1、a
+b+c+d=5、0<x<7、0<y<7、x
+y=7、0.9≦x≦1なる関係があり、第族
金属はLiおよび/またはNaを示し、第族金属
はBe、Mg、Ca、Sr、Baの中から選ばれた1種
以上を示し、第族金属はB、Al、Ga及び希土
類元素の中から選ばれた1種以上を示し、しかも
希土類元素の1種以上が必ず含有している結合相
からなる窒化硅素焼結体である。ここで使用した
希土類元素とはSc、Y、La、Ce、Pr、Nd、
Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、
Yb及びLuの17元素を総称する。 本発明の高靭性窒化硅素焼結体は、Si3N4を主
体とする硬質相を結合する結合相がゲーレナイト
鉱物相Ca2Al(AiSi)O7又はアカマナイト鉱物相
Ca2MgSi2O7のようなメリライト結晶構造と同形
の固溶体化合物にすることによつて結合相を結晶
化したものである。このように{Sia()b()
c()d}(NxOy)zで表わすメリライト組成
に近い結晶化した結合相と窒化硅素との焼結体
は、実際のメリライト結晶構造と異なり希土類元
素と窒素元素を含有した組成の結合相であるため
に共有結合性の強いSi3N4を主体にした硬質相本
来の特性を劣化させずにしかもこの結合相と硬質
相との結晶異方性から生じる内部応力も少さく、
結合相と硬質相との結合強度も高めている高靭性
窒化硅素焼結体である。 本発明の高靭性窒化硅素焼結体は、結合相が希
土類元素の酸化物又は窒化物中のカチオンと
Si3N4中のカチオンが相互置換して二次元状に連
結したネツトワークの酸窒化硅酸塩を形成する可
能性があるがカチオンの不足構造からガラス相に
なる傾向があるのに対して周期律表の第族及び
第族元素の添加量をコントロールすることによ
つてメリライト相に近いオキシナイトロジエンシ
リケートの形成を容易にし、しかも安定化を画つ
た結晶質の結合相とSi3N4硬質相との焼結体であ
る。このメリライト相に近い{Sia()b()
c()d}(NxOy)zで表わす結合相は、周期
律表の第族元素であるLiおよび/またはNaが
強力なガラス相を形成する元素で焼結過程に低融
点の共晶液相を生じて焼結を促進し、凝固後は結
合相中に希土類元素とともに微量範囲で固溶され
ることによつて硬質相のSi3N4と窒素を介在して
化学的親和性が付与され、しかも結合相が結晶質
となり焼結体の強度上昇と緻密化に寄与し、周期
律表の第族元素であるBe、Mg、Ca、Sr、Ba
の中の1種以上が焼結過程で第族元素とともに
焼結を促進し、硬質相であるSi3N4と反応して第
族とともにメリライト相に近いオキシナイトロ
ジエンシリケートの形成を容易にし、凝固後は窒
素を介在してSi3N4粒子の結合強度の向上と熱伝
導性を良好にし、周期律表の第族元素である
B、Al、Ga及び希土類元素が硬質相である
Si3N4と固溶および化合して共有結合性の高い結
晶質の結合相であるメリライト相に近いオキシナ
イトロジエンシリケートを形成し、Si3N4焼結体
の粒界相を結晶学的に強化し、耐熱衝撃性及び靭
性の向上に著しく寄与している。この{Sia()
b()c()d}(NxOy)zからなるオキシ
ナイトロジエンシリケートの結合相中にSi3N4
固溶し易いB、Al、Gaが希土類とともに固溶し
た場合は、硬質相であるSi3N4と結合相との結合
強度の増大に寄与し、特にAl元素の固溶したオ
キシナイトロジエンシリケートの結合性とSi3N4
硬質相との焼結体は耐酸化性、耐溶着性が改善さ
れ、B元素の固溶したオキシナイトロジエンシリ
ケートの結合相とSi3N4硬質相との焼結体は熱膨
張率を下げ、電気絶縁性をあげるために一層耐熱
衝撃性を増大する。 本発明の高靭性窒化硅素焼結体は、メリライト
相に近い{Sia()b()c()d}(NxOy)
zで表わす結晶質の結合相とSi3N4を主体とする
硬質相から成る緻密な焼結体であるために切削工
具のように切刃から刃先と局部的に高温になり、
極端に苛酷な熱応力と荷重の混在した負荷が作用
するような材料として用いても充分に耐える効果
がある。 本発明の高靭性窒化硅素焼結体は、{Sia()
b()c()d}(NxOy)zで表わすオキシ
ナイトロジエンシリケートの結合相であるために
こゝで使用した以外の周期律表第族、第族、
第族及びSiと同族の第族元素が微量混在して
も良く、特にSiと同族の第b族のGeは結合相
中のSiに対して30モル%以下混入させると焼結体
の耐熱衝撃性及び靭性の向上に効果がある。 本発明の高靭性窒化硅素焼結体の出発原料は、
周期律表第族元素のLi、Na第族元素のBe、
Ca、Sr、Ba及び第族元素のB、Al、Ga、希
土類元素のそれぞれの酸化物、窒化物、硅化物及
びこれら各種組合せから成る多元化合物を使用し
て焼結過程でオキシナイトロジエンシリケートの
結晶構造の結合相にしても良く、又は、結晶質形
成上から上記族、族、族元素を含んだアカ
マナイト鉱物相に近い{()()()}3
〔Si2O7〕、メリライト鉱物相に近い{()()
()}Si〔Si2O3N4〕、エンスタタイト鉱物相に近
い{()()()}SiO3及びフオルステライ
ト鉱物相に近い{()()()}2SiO4等の各種
の複合硅酸塩と上記族、族、族元素の単一
化合物との組合せにするのも良く、特に上記複合
硅酸塩又は正方晶の複合酸窒化硅酸塩を出発原料
として用いると焼結体組織のSi3N4粒子が球状化
し、一般の焼結体組織に見られるアスペクト比の
大きい棒状化もしくは粗大化した粒子の形成を防
止することができる。このようにSi3N4粒子を球
状化及び微細化した焼結体を切削工具用材料とし
て使用すると工具の耐欠損性及び耐摩耗性が著し
く向上する。 出発原料としてのSi3N4は、結合相をSi含有の
メリライト相に近いオキシナイトロジエンシリケ
ート構造にするためにSiO2を少々含有したり、
Si3N4粉末の表面にSiO2が少量吸着してもよく、
又Si3N4出発原料の結晶構造は、α型Si3N4でも、
α型Si3N4と高温で安定なβ型Si3N4との混在し
た場合でも、α型Si3N4と非晶質Si3N4との混在、
及びα型Si3N4とβ型Si3N4と非晶質Si3N4との混
在したものを使用しても本発明の高靭性窒化硅素
焼結体を得るのに支障とならない。 焼結方法は、真空又はN2、Ar等の非酸化性雰
囲気下における普通焼結(無加圧焼結)、通電加
圧焼結、ホツトプレス焼結の方法があり、これら
の焼結方法と静水圧加圧焼結(HIP)を組合せて
焼結体の緻密化を促進することもできる。 こゝで数値限定した理由について説明する。 硬質相量と結合相量との関係 硬質相量が99重量%を越えて多くなると相対的
に結合相量が1重量%未満となるため焼結助剤と
しての効果が弱く、難焼結性材料であるSi3N4
緻密に焼結することが困難であり、硬質相量が65
重量%未満になると相対的に結合相量が35重量%
を越えて多くなるために焼結体の硬度が低く、
Si3N4本来の特性も低下する。このために硬質相
であるSi3N4は65〜99重量%結合相量は1〜35重
量%と定めた。 結合相について {Sia()b()c()d}(NxOy)zで
表わせる結合相の内Siの含有量は、1モル未満に
なると焼結性が悪くなりメリライト相に近いオキ
シナイトロジエンシリケートを形成するのに高温
又は長時間焼結等の製造条件が必要になり、3モ
ルを越えて多くなると低融点の硅酸塩が生じやす
くこの低級硅酸塩からなるガラス質相が焼結体の
粒界に残存して焼結体の高温特性を低下させるた
めに1≦a≦3と定め、族元素の含有量はメリ
ライト相に近いオキシナイトロジエンシリケート
を形成して焼結体の高温特性の向上に必要な成分
であるが2モルを越えて多くなると相対的に他の
金属元素が少なくなつてメリライト相に近いオキ
シナイトロジエンシリケートの形成を困難にする
ために0<b≦2と定め、族元素の含有量は焼
結性の促進とともにメリライト相に近いオキシナ
イトロジエンシリケートのカチオンの補正に必要
な成分であるが2モルを越えて多くなるとエンス
タタイト等の族元素を主体にした低融点の硅酸
塩が生じやすくなり焼結体の高温特性を低下させ
るために0<c≦2と定め、族元素の含有量は
族元素とともに一層焼結性の促進に役立つのと
メリライト相に近いオキシナイトロジエンシリケ
ートのカチオンの補正を族よりも容易にし焼結
体の緻密化のために必要な成分であるが1モルを
越えて多くなると焼結体の粒界相にガラス相が残
存して高温特性を低下させるために0<d≦1と
定めた。非金属元素のNの量はSi3N4を主体にし
た硬質相との結合強度の向上のために必要な成分
であり、Oの量は焼結性の促進のために必要な成
分でありNとOの非金属元素でメリライト相に近
いオキシナイトロジエンシリケートの結晶化にす
るために0<x<7、0<y<7と定め、{Sia
()b()c()d}(NxOy)zのオキシナ
イトロジエンシリケートが定比化合物又は不安比
化合物でもよく、不定比化合物の場合に金属元素
のa+b+c+d=5モルに対して非金属元素が
0.9モル未満になるとメリライト相構造を構成し
難くなるために0.9≦z≦1と定めた。 次に、実施例に従つて本発明の高靭性窒化硅素
焼結体を詳細に説明する。 実施例 1 Si3N4と各種焼結助剤とを第1表に示す成分組
成に配合し、ヘキサン溶媒中、超硬合金製ボール
を用いて48時間混合粉砕した。得られた混合粉末
から溶媒を蒸発除去後、BN粉末で被覆したカー
ボンモールド中に充填せしめ、N2ガスで炉内を
置換後、150〜400Kg/mm2の成形圧力で1650℃〜
1850℃の温度範囲に30分〜2時間加圧焼結した。
得られた焼結体の硬質相及び結合相をX線回折に
よつて解折した所、Si3N4を主体とする硬質相と
メリライト結晶構造と1部の試料に微少の硅化タ
ングステンと考えられる回折線が現われ、この内
メリライト結晶構造の結合相を配合相成から算定
して第2表に示し、焼結体の硬度及び耐熱衝撃試
験も行なつて第2表に示した。ここで行つた熱衝
撃試験は、試料を各温度で3分保持後、約20℃
(常温)の水中に試料を浸漬したとき各試料にク
ラツクが発生しないで耐え得る最高の温度を示し
た。
The present invention relates to a high-toughness silicon nitride sintered body suitable for ceramics for machining, particularly cutting tools, wear-resistant materials, and corrosion-resistant materials. Silicon nitride is a compound with strong covalent bonding,
Compared to ionic crystals and metal crystals, it has a large ratio of grain boundary energy to surface energy, self-diffusion is very slow, and it is a material that is difficult to sinter because it decomposes and evaporates at high temperatures. For this reason, even if silicon nitride is sintered using a pressureless ordinary sintering method, a dense sintered body cannot be obtained, and sintering aids such as MgO, Y 2 O 3 , Al 2 O 3 , and AlN are generally used. A dense sintered body is obtained by a hot pressing method or a hot isostatic pressing method (HIP) using reactive sintering or liquid phase sintering. In this way, MgO,
Added sintering aids such as Y 2 O 3 , Al 2 O 3 , AlN, etc.
Si 3 N 4 sintered bodies contain a glass phase of magnesium silicate, a glass phase of yttrium silicate, or an Al element close to enstatite (MgSiO 3 ) composition in the binder phase that binds the hard phase of Si 3 N 4 . A glass phase consisting of lower silicates is produced.
These glass phases become liquid phases at low temperatures and form Si 3 N 4
Although it promotes sinterability, it remains at the grain boundaries even after sintering, resulting in a decrease in high-temperature strength.
The direction of crystallization of the binder phase has been studied to improve the drawbacks of the binder phase consisting of a glass phase, and proposals have been made mainly for high-temperature structural materials such as jet engines, rocket nozzles, and turbine blades. Sialon-based sintered bodies are examples of silicon nitride-based sintered bodies. Sialon-based sintered bodies are sintered bodies made by adding Al 2 O 3 or AlN as a sintering aid to Si 3 N 4 as a solid solution.
It is collectively known as an Al-containing Si 3 N 4 -based sintered body in which other additives such as Al 2 O 3 or AlN and Y 2 O 3 are dissolved as a sintering aid in Si 3 N 4 . However, this sialon-based sintered body has Al 2 O 3 or AlN, which has strong ionic bonding properties, dissolved in solid solution in the Si 3 N 4 lattice, so the covalent bonding property is reduced and the original characteristics of Si 3 N 4 are lost. In addition to deterioration, lower oxynitrides involving the Al element promote sinterability, but remain as a brittle glass phase at the grain boundaries of SiAlON (SiAlON) particles after sintering, unless heat treatment for crystallization is performed. There is a problem in that the high temperature properties of the sintered body are drastically reduced. The present invention solves the above-mentioned drawbacks and problems, and creates a wear-resistant and high-toughness silicon nitride sinter that can be used from conventional cutting areas to high-speed cutting areas by defining the crystallization of the binder phase. Its purpose is to provide unity. The high toughness silicon nitride sintered body of the present invention has a weight ratio of 65
A sintered body consisting of a binder phase of ~99% silicon nitride, a binder phase of 1~35% oxynitrodiene silicate, and unavoidable impurities. )c()d}(NxOy)z, () represents the group metal of the periodic table,
() indicates a group metal of the periodic table; () indicates a group metal of the periodic table; a, b, c, d are Si, (), (), and molar ratio of the metal elements in (), respectively. , x and y are N (nitrogen) and O (oxygen), respectively.
represents the molar ratio of the nonmetallic element, z represents the molar ratio of the nonmetallic element to the metal element, and a, b,
c, d, x, y and z are each positive numbers and 1≦a
≦3, 0<b≦2, 0<c≦2, 0<d≦1, a
+b+c+d=5, 0<x<7, 0<y<7, x
+y=7, 0.9≦x≦1, the group metal represents Li and/or Na, and the group metal represents one or more selected from Be, Mg, Ca, Sr, and Ba. The group metal represents one or more selected from B, Al, Ga, and rare earth elements, and is a silicon nitride sintered body comprising a binder phase that always contains one or more of the rare earth elements. The rare earth elements used here are Sc, Y, La, Ce, Pr, Nd,
Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm,
Collectively refers to the 17 elements Yb and Lu. In the high-toughness silicon nitride sintered body of the present invention, the binder phase that binds the hard phase mainly composed of Si 3 N 4 is a gehlenite mineral phase Ca 2 Al (AiSi) O 7 or an acamanite mineral phase.
The bonded phase is crystallized by forming a solid solution compound with the same shape as the melilite crystal structure, such as Ca 2 MgSi 2 O 7 . Like this {Sia()b()
The sintered body of silicon nitride and a crystallized binder phase close to the melilite composition represented by c()d}(NxOy)z is a binder phase with a composition containing rare earth elements and nitrogen elements, unlike the actual melilite crystal structure. Because of this, the inherent properties of the hard phase, which is mainly composed of Si 3 N 4 with strong covalent bonding, are not degraded, and the internal stress caused by the crystal anisotropy between this bonded phase and the hard phase is small.
It is a high-toughness silicon nitride sintered body that also increases the bonding strength between the binder phase and the hard phase. In the high toughness silicon nitride sintered body of the present invention, the binder phase is a cation in a rare earth element oxide or nitride.
The cations in Si 3 N 4 may mutually substitute to form a two-dimensionally connected network of oxynitride silicates, but the cation-deficient structure tends to result in a glass phase. By controlling the addition amounts of Group and Group elements of the periodic table, it is possible to easily form oxynitrodiene silicate close to the melilite phase, and to form a crystalline binder phase and Si 3 N 4 that are stable. It is a sintered body with a hard phase. Close to this melilite phase {Sia()b()
The bonding phase represented by c()d}(NxOy)z is an element in which Li and/or Na, which are group elements of the periodic table, form a strong glass phase. After solidification, it is dissolved in trace amounts in the binder phase together with rare earth elements, giving it a chemical affinity with the hard phase of Si 3 N 4 through nitrogen. Moreover, the binder phase becomes crystalline and contributes to the increase in strength and densification of the sintered body.
One or more of these promotes sintering together with group group elements during the sintering process, reacts with Si 3 N 4 which is a hard phase, and facilitates the formation of oxynitrodiene silicate close to the melilite phase together with group group elements. After solidification, nitrogen is interposed to improve the bonding strength of Si 3 N 4 particles and improve thermal conductivity, and B, Al, Ga, and rare earth elements, which are group elements of the periodic table, form the hard phase.
It forms a solid solution and combines with Si 3 N 4 to form oxynitrodiene silicate, which is close to the melilite phase, which is a crystalline binder phase with high covalent bonding properties, and the grain boundary phase of the Si 3 N 4 sintered body is crystallographically determined. This significantly contributes to improved thermal shock resistance and toughness. This {Sia()
b()c()d}(NxOy)z When B, Al, and Ga, which are easily dissolved in solid solution in Si 3 N 4 , are dissolved together with rare earth elements in the bonded phase of oxynitrodiene silicate, it is a hard phase. It contributes to increasing the bonding strength between Si 3 N 4 and the bonding phase, especially the bonding strength of oxynitrodiene silicate with solid solution of Al element and Si 3 N 4
A sintered body with a hard phase has improved oxidation resistance and welding resistance, and a sintered body with a Si 3 N 4 hard phase and a binder phase of oxynitrogiensilicate in which element B is dissolved has a lower coefficient of thermal expansion. , to further increase thermal shock resistance in order to improve electrical insulation. The high toughness silicon nitride sintered body of the present invention has a phase close to the melilite phase {Sia()b()c()d}(NxOy)
Because it is a dense sintered body consisting of a crystalline binder phase represented by z and a hard phase mainly composed of Si 3 N 4 , it becomes hot locally from the cutting edge to the cutting edge like a cutting tool.
It is effective enough to withstand even when used as a material that is subjected to a mixture of extremely severe thermal stress and load. The high toughness silicon nitride sintered body of the present invention has {Sia()
b () c () d} (N
A small amount of Group B elements, which are the same group as Si, may be mixed. In particular, if Ge, which is the same group as Si, is mixed in 30 mol% or less based on the Si in the binder phase, the thermal shock resistance of the sintered body will be reduced. It is effective in improving toughness and toughness. The starting materials for the high toughness silicon nitride sintered body of the present invention are:
Li, a group element of the periodic table, Be, a group Na element,
Oxynitrodiene silicate is produced in the sintering process using a multi-component compound consisting of oxides, nitrides, silicides of Ca, Sr, Ba, group elements B, Al, Ga, rare earth elements, and various combinations thereof. It may be a binder phase with a crystalline structure, or it may be close to the acamanite mineral phase containing the above-mentioned group, group, or group elements from the viewpoint of crystalline formation {()()()} 3
[Si 2 O 7 ], close to melilite mineral phase {()()
()} Si [Si 2 O 3 N 4 ], various types such as {() () ()} SiO 3 close to the enstatite mineral phase and {() () ()} 2 SiO 4 close to the forsterite mineral phase It is also good to combine a composite silicate with a single compound of the above-mentioned groups, groups, or group elements. In particular, when the above-mentioned composite silicates or tetragonal composite oxynitride silicates are used as a starting material, sintering The Si 3 N 4 particles in the body structure become spheroidal, and the formation of rod-shaped or coarse particles with a large aspect ratio, which are found in general sintered body structures, can be prevented. When a sintered body in which Si 3 N 4 particles are spheroidized and refined in this way is used as a cutting tool material, the chipping resistance and wear resistance of the tool are significantly improved. Si 3 N 4 as a starting material contains a small amount of SiO 2 to make the bonding phase an oxynitrodiene silicate structure similar to the Si-containing melilite phase.
A small amount of SiO 2 may be adsorbed on the surface of Si 3 N 4 powder,
Also, the crystal structure of the Si 3 N 4 starting material is α-type Si 3 N 4 ,
Even when α-type Si 3 N 4 and β-type Si 3 N 4 , which is stable at high temperatures, coexist, α-type Si 3 N 4 and amorphous Si 3 N 4 coexist,
Even if a mixture of α-type Si 3 N 4 , β-type Si 3 N 4 and amorphous Si 3 N 4 is used, there is no problem in obtaining the high toughness silicon nitride sintered body of the present invention. Sintering methods include normal sintering (pressureless sintering) in vacuum or a non-oxidizing atmosphere such as N 2 or Ar, electrification pressure sintering, and hot press sintering. Hydrostatic pressing sintering (HIP) can also be combined to promote densification of the sintered body. The reason for limiting the numerical values will be explained here. Relationship between hard phase amount and binder phase amount When the hard phase amount exceeds 99% by weight, the binder phase amount becomes relatively less than 1% by weight, which makes it less effective as a sintering aid and makes sintering difficult. It is difficult to sinter the material Si 3 N 4 densely, and the amount of hard phase is 65
If it is less than 35% by weight, the relative amount of binder phase is 35% by weight.
The hardness of the sintered body is low because the amount exceeds
The inherent properties of Si 3 N 4 also deteriorate. For this purpose, the hard phase Si 3 N 4 was determined to be 65 to 99% by weight, and the binder phase amount was determined to be 1 to 35% by weight. Regarding the binder phase: If the Si content in the binder phase, which is expressed as {Sia()b()c()d}(NxOy)z, is less than 1 mol, the sinterability will deteriorate and the oxynitrodiene phase will be close to the melilite phase. Manufacturing conditions such as high temperature or long-time sintering are required to form silicates, and when the amount exceeds 3 moles, silicates with a low melting point are likely to be formed. The content of group elements is determined to be 1≦a≦3 in order to remain in the grain boundaries of the sintered body and reduce the high-temperature properties of the sintered body. This is a necessary component for improving properties, but if the amount exceeds 2 moles, the amount of other metal elements becomes relatively small, making it difficult to form an oxynitrodiene silicate close to the melilite phase. The content of group elements is a necessary component to promote sinterability and correct the cations of oxynitrodiene silicate, which is close to the melilite phase, but if it exceeds 2 moles, the content of group elements such as enstatite becomes the main component. Since silicates with a low melting point are likely to be formed and the high-temperature properties of the sintered body are deteriorated, 0<c≦2 is set. It is a component that makes it easier to correct the cations of oxynitrodiene silicate, which is close to the group, and is necessary for densification of the sintered body, but when the amount exceeds 1 mol, a glass phase remains in the grain boundary phase of the sintered body. 0<d≦1 in order to reduce the high-temperature properties. The amount of nonmetallic element N is a necessary component to improve the bonding strength with the hard phase mainly composed of Si 3 N 4 , and the amount of O is a necessary component to promote sinterability. In order to crystallize oxynitrodiene silicate, which is close to the melilite phase with the nonmetallic elements N and O, 0<x<7, 0<y<7 are set, and {Sia
The oxynitrodiene silicate of ()b()c()d}(NxOy)z may be a stoichiometric compound or an unstable compound, and in the case of a non-stoichiometric compound, the nonmetallic element is
If the amount is less than 0.9 mol, it becomes difficult to form a melilite phase structure, so it was set as 0.9≦z≦1. Next, the high toughness silicon nitride sintered body of the present invention will be explained in detail according to Examples. Example 1 Si 3 N 4 and various sintering aids were blended in the composition shown in Table 1, and mixed and ground for 48 hours using cemented carbide balls in a hexane solvent. After removing the solvent from the obtained mixed powder by evaporation, it was filled into a carbon mold coated with BN powder, and after purging the inside of the furnace with N 2 gas, it was heated at 1650℃ at a molding pressure of 150 to 400 Kg/mm 2
Pressure sintering was carried out at a temperature range of 1850°C for 30 minutes to 2 hours.
When the hard phase and bonded phase of the obtained sintered body were analyzed by X-ray diffraction, it was found that the hard phase was mainly composed of Si 3 N 4 , had a melilite crystal structure, and in some samples was thought to contain a small amount of tungsten silicide. Among these, the binder phase of the melilite crystal structure was calculated from the blended phase composition and shown in Table 2, and the hardness and thermal shock resistance tests of the sintered body were also conducted and shown in Table 2. The thermal shock test conducted here was conducted at approximately 20°C after holding the sample at each temperature for 3 minutes.
When the samples were immersed in water at room temperature, each sample showed the highest temperature it could withstand without cracking.

【表】【table】

【表】【table】

【表】 第2表結果から明らかなように()()
()族元素の酸窒化物からなる希土類元素を含
有したオキシナイトロジエンシリケートの結合相
とSi3N4との焼結体は、高硬度で耐熱衝撃性に優
れていることが確認できた。 実施例 2 実施例1で得た試料の内第2表中のNo.3の焼結
体と市販のAl2O3−TiC系セラミツクス焼結体と
サイアロン系焼結体を比較に加えてそれぞれの焼
結体をCIS基準のSNP432形状に成形して下記の
条件によつて切削試験を行つた。 フライスによる切削試験条件 被削材 FCD60(50mm×200mmの角材面) 切削速度 150m/min 切込み 1.5mm 送り 0.176mm/rev テーブル送り 0.52mm/min 試験の結果Al2O3−TiC系セラミツクス焼結体
は、1回目140mm、2回目150mm切削したときに欠
損し、サイアロン系焼結体は、1回目200mm、2
回目400mm切削したときにチツピングを生じたの
に対し本発明の高靭性窒化硅素焼結体の試料No.3
は1回目、2回目共に1000mm切削した時点におい
ても正常摩耗で更に使用可能な状態であつた。 実施例 3 実施例1で得た試料の内第2表中のNo.5の焼結
体と市販のAl2O3−TiC系セラミツクス焼結体と
サイアロン系焼結体を比較に加えてそれぞれの焼
結体をCIS基準のSNP432形状に成形して下記の
条件によつて切削試験を行つた。 旋削による切削試験条件 被削材 S48C(400φmm×1500mm) 切削速度 250m/min 切込み 1.5mm 切削時間 0.5min 送り 0.3mm/rev 試験後各試料の平均逃げ面摩耗量を比較した
所、Al2O3−TiC系セラミツクス焼結体は0.11mm
の摩耗量、サイアロン系焼結体は0.72mmの摩耗量
に対して本発明の高靭性窒化硅素焼結体の試料No.
5は0.09mmの摩耗量であつた。 実施例 4 実施例1で得た試料の内第2表中のNo.11の焼結
体と市販のAl2O3−TiC系セラミツクス焼結体と
サイアロン系焼結体とを比較に加えて実施例2、
3と同様にSNP432の試料によつて下記の切削試
験を行つた。 旋削による切削試験条件 被削材 FC35(350φmm×1500mm) 切削速度 600m/min 切込み 1.5mm 送り 0.7mm/rev 試験の結果Al2O3−TiC系セラミツクス焼結体
は約1分間切削したときに欠損し、サイアロン系
焼結体は約7分間切削したときにチツピングが生
じチツプの摩耗量も0.3mmを越えていたのに対し
本発明の高靭性窒化硅素焼結体は60分切削後も正
常摩耗で更に使用可能な状態であつた。 実施例 5 実施例1で得た試料の内第2表中のNo.15の焼結
体と市販のAl2O3−TiC系セラミツクス焼結体と
サイアロン系焼結体をそれぞれ12.7φmmの高さ8
mmの丸駒チツプに成形して下記の条件で切削試験
を行つた。 旋削による切削試験条件 被削材 ワスパロイ(Ni基スーパーアロイ) 切削速度 170m/min 切込み 2.0mm 送り 0.4mm/rev 試験の結果Al2O3−TiC系セラミツクス焼結体
は約45秒間切削後に欠損し、サイアロン系焼結体
は約30秒間切削後に欠損したのに対して本発明の
高靭性窒化硅素焼結体は約2分45秒切削後も正常
摩耗で更に使用可能な状態であつた。 実施例 6 実施例1で得た試料の内第2表中のNo.17の焼結
体と市販のAl2O3−TiC系セラミツクス焼結体を
それぞれCIS基準のSNCN54ZTNに成形し下記
の条件で切削試験を行つた。 フライスによる切削試験条件 被削材 肌焼鋼(HRc55)黒皮切削 切削速度 270m/min 切込み 4.5mm 送り 0.20mm/rev(一刃当り) テーブル送り 600mm/min 試験の結果Al2O3−TiC系セラミツクス焼結体
は約2分10秒間切削したときにチツピングにより
寿命となつたのに対して本発明の高靭性窒化硅素
焼結体は約24分切削後も正常摩耗で更に使用可能
な状態であつた。 以上の実施例から明らかなように本発明の高靭
性窒化硅素焼結体は、切削工具として使用した場
合に従来のセラミツクスに比較して切削条件によ
つて5倍から30倍の寿命を有し、特にフライス切
削条件や黒皮切削のような耐欠損性を要求される
ような用途から高速高送りの切削条件で使用され
る用途更にはスーパーアロイのような難削材の切
削にも著しい高寿命を発揮する高靭性窒化硅素焼
結体である。 又、本発明の高靭性窒化硅素焼結体は、高硬
度、耐熱衝撃性材料であることから耐摩耗撃材料
及び高温構造用材料にも充分に使用可能性が有
り、窒化硅素本来のもつ耐食性から種々の耐食性
材料、更には耐摩耗性、耐食性及び耐熱衝撃性を
組合せた用途にも充分に使用できる工業的価値が
非常に高い材料である。
[Table] As is clear from the results in Table 2 () ()
It was confirmed that the sintered body of Si 3 N 4 and the binder phase of oxynitrodiene silicate containing rare earth elements consisting of oxynitrides of group () group elements has high hardness and excellent thermal shock resistance. Example 2 Among the samples obtained in Example 1, the sintered body No. 3 in Table 2 was compared with a commercially available Al 2 O 3 -TiC ceramic sintered body and a sialon-based sintered body. The sintered body was molded into the CIS standard SNP432 shape and a cutting test was conducted under the following conditions. Cutting test conditions with milling cutter Work material FCD60 (50 mm x 200 mm square material surface) Cutting speed 150 m/min Depth of cut 1.5 mm Feed 0.176 mm/rev Table feed 0.52 mm/min Test results Al 2 O 3 −TiC ceramic sintered body The sialon-based sintered body broke when cutting 140mm the first time and 150mm the second time, and the sialon sintered material broke 200mm the first time and 150mm the second time.
Sample No. 3 of the high toughness silicon nitride sintered body of the present invention, whereas chipping occurred when cutting 400 mm for the second time.
Even after cutting 1000 mm for both the first and second cutting, it was still usable due to normal wear. Example 3 Among the samples obtained in Example 1, the sintered body No. 5 in Table 2 was compared with a commercially available Al 2 O 3 -TiC ceramic sintered body and a sialon-based sintered body. The sintered body was molded into the CIS standard SNP432 shape and a cutting test was conducted under the following conditions. Cutting test conditions by turning Work material S48C (400φmm x 1500mm) Cutting speed 250m/min Depth of cut 1.5mm Cutting time 0.5min Feed 0.3mm/rev After the test, when comparing the average flank wear amount of each sample, it was found that Al 2 O 3 −TiC ceramic sintered body is 0.11mm
Sample No. of the high-toughness silicon nitride sintered body of the present invention has a wear amount of 0.72 mm for the sialon-based sintered body.
No. 5 had a wear amount of 0.09 mm. Example 4 Among the samples obtained in Example 1, the sintered body No. 11 in Table 2 was compared with a commercially available Al 2 O 3 -TiC ceramic sintered body and a sialon-based sintered body. Example 2,
Similarly to 3, the following cutting test was conducted using a sample of SNP432. Cutting test conditions by turning Work material FC35 (350φmm x 1500mm) Cutting speed 600m/min Depth of cut 1.5mm Feed 0.7mm/rev Test results The Al 2 O 3 -TiC ceramic sintered body broke after cutting for about 1 minute. However, while the sialon-based sintered body exhibited chipping after approximately 7 minutes of cutting, and chip wear exceeded 0.3 mm, the high-toughness silicon nitride sintered body of the present invention showed normal wear even after 60 minutes of cutting. It was still in usable condition. Example 5 Among the samples obtained in Example 1, the sintered body No. 15 in Table 2, a commercially available Al 2 O 3 -TiC ceramic sintered body, and a sialon sintered body were each heated to a height of 12.7φmm. Sa8
It was formed into a round chip with a diameter of mm, and a cutting test was conducted under the following conditions. Cutting test conditions by turning Work material Waspaloy (Ni-based super alloy) Cutting speed 170 m/min Depth of cut 2.0 mm Feed 0.4 mm/rev Test results The Al 2 O 3 -TiC ceramic sintered body broke after cutting for about 45 seconds. Although the sialon-based sintered body broke after cutting for about 30 seconds, the high-toughness silicon nitride sintered body of the present invention showed normal wear even after cutting for about 2 minutes and 45 seconds and remained usable. Example 6 Among the samples obtained in Example 1, the sintered body No. 17 in Table 2 and the commercially available Al 2 O 3 -TiC ceramic sintered body were each molded into SNCN54ZTN of the CIS standard and subjected to the following conditions. A cutting test was conducted. Cutting test conditions with milling cutter Work material Case-hardened steel (HRc55) Black skin cutting Cutting speed 270 m/min Depth of cut 4.5 mm Feed 0.20 mm/rev (per tooth) Table feed 600 mm/min Test results Al 2 O 3 −TiC system While the ceramic sintered body reached the end of its life due to chipping after cutting for about 2 minutes and 10 seconds, the high-toughness silicon nitride sintered body of the present invention showed normal wear even after cutting for about 24 minutes and remained usable. It was hot. As is clear from the above examples, when used as a cutting tool, the high toughness silicon nitride sintered body of the present invention has a service life that is 5 to 30 times longer than conventional ceramics, depending on the cutting conditions. , especially for applications that require chipping resistance such as milling cutting conditions and black scale cutting, applications that are used under high-speed, high-feed cutting conditions, and even for cutting difficult-to-cut materials such as super alloys. It is a high toughness silicon nitride sintered body that exhibits a long life. In addition, since the high toughness silicon nitride sintered body of the present invention is a material with high hardness and thermal shock resistance, it can be fully used as an abrasion impact resistant material and a high temperature structural material, and has the inherent corrosion resistance of silicon nitride. It is a material of extremely high industrial value that can be used in various corrosion-resistant materials, and even in applications that combine wear resistance, corrosion resistance, and thermal shock resistance.

Claims (1)

【特許請求の範囲】 1 重量比で65〜99%の窒化硅素と1〜35%のオ
キシナイトロジエンシリケートの結合相と不可避
不純物とからなり、前記結合相が {Sia()b()c()d}(NxOy)z と表示したとき、()は周期律表の第族金属
を()は周期律表の第族金属を()は周期
律表の第族金属を示し、a、b、c、dはそれ
ぞれSi、()、()、()の金属元素のモル比
率を示し、x、yはそれぞれN(窒素)とO(酸
素)の非金属元素のモル比率を示し、zは金属元
素に対する非金属元素のモル比率を示し、a、
b、c、d、x、y及びzはそれぞれ正の数で1
≦a≦3、0<b≦2、0<c≦2、0<d≦
1、a+b+c+d=5、0<x<7、0<y<
7、x+y=7、0.9≦x≦1なる関係があり、
第族金属はLiおよび/またはNaを示し、第
族金属はBe、Mg、Ca、Sr、Baの中から選ばれ
た1種以上を示し、第族金属はB、Al、Ga及
び希土類元素の中から選ばれた1種以上を示し、
しかも希土類元素の1種以上が必ず含有している
ことを特徴とする高靭性窒化硅素焼結体。 2 上記オキシナイトロジエンシリケートの結合
相中に含有しているSiに対して30モル%以下を
Geで置換したことを特徴とする特許請求の範囲
第1項記載の高靭性窒化硅素焼結体。
[Scope of Claims] 1. Consists of a binder phase of 65 to 99% silicon nitride and 1 to 35% oxynitrodiene silicate by weight, and unavoidable impurities, and the binder phase is {Sia()b()c( )d}(NxOy)z When expressed as, () represents a group metal of the periodic table, () represents a group metal of the periodic table, () represents a group metal of the periodic table, and a, b , c, d represent the molar ratio of the metal elements Si, (), (), (), respectively, x, y represent the molar ratio of the nonmetallic elements N (nitrogen) and O (oxygen), respectively, and z represents the molar ratio of non-metallic elements to metallic elements, a,
b, c, d, x, y and z are each positive numbers 1
≦a≦3, 0<b≦2, 0<c≦2, 0<d≦
1, a+b+c+d=5, 0<x<7, 0<y<
7. There is a relationship: x+y=7, 0.9≦x≦1,
Group metals represent Li and/or Na; Group metals represent one or more selected from Be, Mg, Ca, Sr, and Ba; Group metals include B, Al, Ga, and rare earth elements. Indicates one or more types selected from among
Moreover, the high toughness silicon nitride sintered body is characterized in that it always contains one or more rare earth elements. 2 30 mol% or less of the Si contained in the binder phase of the oxynitrodiene silicate
The high-toughness silicon nitride sintered body according to claim 1, wherein the silicon nitride sintered body is substituted with Ge.
JP58020859A 1983-02-10 1983-02-10 High tenacity silicon nitride sintered body Granted JPS59146983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58020859A JPS59146983A (en) 1983-02-10 1983-02-10 High tenacity silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58020859A JPS59146983A (en) 1983-02-10 1983-02-10 High tenacity silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS59146983A JPS59146983A (en) 1984-08-23
JPH0247425B2 true JPH0247425B2 (en) 1990-10-19

Family

ID=12038841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58020859A Granted JPS59146983A (en) 1983-02-10 1983-02-10 High tenacity silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS59146983A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025062A1 (en) * 2012-08-10 2014-02-13 京セラ株式会社 Silicon nitride sintered compact and heat conduction member
CN105408289B (en) * 2013-07-31 2017-08-04 京瓷株式会社 Silicon nitride based sintered material and the corrosion resistance part, sliding component and paper-making machine part using it

Also Published As

Publication number Publication date
JPS59146983A (en) 1984-08-23

Similar Documents

Publication Publication Date Title
JP4869070B2 (en) High thermal conductivity silicon nitride sintered body and silicon nitride structural member
JPS6227033B2 (en)
JPS6348836B2 (en)
EP0174153A1 (en) A silicon nitride sintered body and method of producing the same
EP1939154A2 (en) Ceramic material and cutting tools made thereof for applications demanding good notch wear resistance
US7064095B2 (en) Doped alpha-beta sialon ceramics
JPS638075B2 (en)
JPH11314969A (en) High heat conductivity trisilicon tetranitride sintered compact and its production
KR100759178B1 (en) Ceramics sintered body, method for producing ceramics sintered body and exothermic body for metal vapor deposition
JPH0247425B2 (en)
JPS6256110B2 (en)
JPH05155662A (en) Silicon nitride sintered body excellent in wear resistance
CA2116964A1 (en) Highly corrosion resistant .alpha.-sialon-like sintered body and process for preparation thereof
WO1995033701A1 (en) Stress-rupture resistant sintered silicon nitride
EP0123292B1 (en) Silicon nitride sintered body and method for preparing the same
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JPH0686331B2 (en) High-strength sialon-based sintered body
JPS6257597B2 (en)
JPS598670A (en) High tenacity silicon nitride base sintered body
JP2712737B2 (en) Silicon nitride based sintered material with high toughness and high strength
JPH06298568A (en) Whisker-reinforced sialon-based sintered compact and sintered and coated material
JPS6257596B2 (en)
JPH0535697B2 (en)
JPH10212167A (en) Silicon nitride-base composite sintered compact and its production
JPH0523921A (en) Silicone nitride basis sintered body for cutting tool