JPH0247413B2 - GARASUBOZAISEIZOYOBAANANOICHIGIMEHOHO - Google Patents
GARASUBOZAISEIZOYOBAANANOICHIGIMEHOHOInfo
- Publication number
- JPH0247413B2 JPH0247413B2 JP26521684A JP26521684A JPH0247413B2 JP H0247413 B2 JPH0247413 B2 JP H0247413B2 JP 26521684 A JP26521684 A JP 26521684A JP 26521684 A JP26521684 A JP 26521684A JP H0247413 B2 JPH0247413 B2 JP H0247413B2
- Authority
- JP
- Japan
- Prior art keywords
- burner
- base material
- porous base
- setting position
- face
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 67
- 238000000034 method Methods 0.000 claims description 14
- 239000011521 glass Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000004071 soot Substances 0.000 claims description 5
- 238000005507 spraying Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 9
- 239000013307 optical fiber Substances 0.000 description 9
- 238000009826 distribution Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 241000234282 Allium Species 0.000 description 2
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 2
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/0142—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/60—Relationship between burner and deposit, e.g. position
- C03B2207/62—Distance
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/60—Relationship between burner and deposit, e.g. position
- C03B2207/64—Angle
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/70—Control measures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は気相軸付法(VAD法)に使用される
ガラス母材製造用バーナの位置決め方法に係り、
特に多孔質母材の端面形状及び端面温度を監視し
つつ最終設定位置にバーナを再現性よく移動し得
るようにしたものに関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for positioning a burner for manufacturing a glass base material used in the vapor phase arranging method (VAD method).
In particular, the present invention relates to a burner that can be moved to a final setting position with good reproducibility while monitoring the end face shape and end face temperature of a porous base material.
[従来の技術]
光フアイバ母材の製造方法の1つとしてVAD
法が知られているが、これを簡単に説明すると鉛
直に支持すると共に、一定の速度で軸回転させな
がら上方に引き上げられる石英棒などの出発部材
の先端に、その鉛直軸線に対して一定の傾斜角を
有するように配置されたバーナよりガラス原料ガ
スを導いて酸化物微粒子(スート)を成長させ、
出発部材の軸方向に多孔質母材を生成するもので
ある。[Conventional technology] VAD is one of the manufacturing methods for optical fiber base material.
A method is known, but to explain it simply, a starting member such as a quartz rod that is supported vertically and pulled upward while rotating the shaft at a constant speed is placed at the tip of a starting member such as a quartz rod. A frit gas is guided through a burner arranged at an inclined angle to grow oxide fine particles (soot),
A porous matrix is produced in the axial direction of the starting member.
ところで、この出発部材の先端に成長するスー
ト形状は、良質な光フアイバ母材を製造するため
に均一性及び対称性を必要とするが、そのために
は多孔質母材端面に対するバーナの位置設定が重
要になる。これは、バーナの位置によつて多孔質
母材の端面形状が決まり、この端面形状が光フア
イバ母材の均一性及び対称性に大きく影響するか
らである。 By the way, the soot shape that grows at the tip of this starting material requires uniformity and symmetry in order to manufacture a high-quality optical fiber base material, and for this purpose, it is necessary to set the position of the burner with respect to the end face of the porous base material. becomes important. This is because the end face shape of the porous preform is determined by the position of the burner, and this end face shape greatly influences the uniformity and symmetry of the optical fiber preform.
そこで、従来では、多孔質母材の初期成長によ
るその端面形状の変化を目視しながら初期設定位
置から所定の端面形状が得られる最終設定位置ま
で作業者が任意に動かしていた。 Therefore, in the past, an operator arbitrarily moved the porous base material from an initial setting position to a final setting position where a predetermined end face shape was obtained while visually observing changes in the end face shape due to the initial growth of the porous base material.
[発明が解決しようとする問題点]
ところが、上述した従来のバーナ位置決め方法
では、作業者が、初期設定位置から最終設定位置
まで任意にバーナを可変移動していたので、人為
的な誤差が生じることとなつて、繰に返し光フア
イバ母材を製造する場合に多孔質母材の端面形状
の再現性が難しく、またバーナの位置決めをする
に当つて屈折率分布に大きな影響を及ぼす多孔質
母材の端面温度を測定していなかつたので、精度
の高い屈折率分布制御を行なうことが困難であつ
た。[Problems to be Solved by the Invention] However, in the conventional burner positioning method described above, the operator arbitrarily moves the burner variably from the initial setting position to the final setting position, resulting in human error. In particular, it is difficult to reproduce the end face shape of the porous base material when repeatedly manufacturing the optical fiber base material, and when positioning the burner, the porous base material has a large effect on the refractive index distribution. Since the end surface temperature of the material was not measured, it was difficult to control the refractive index distribution with high precision.
[発明の目的]
本発明の目的は、上述した従来技術の問題点を
解消して、極めて精度の高い屈折率分布制御を行
なうことが可能なガラス母材製造用バーナの位置
決め方法を得ることである。[Object of the Invention] An object of the present invention is to solve the problems of the prior art described above and to obtain a method for positioning a burner for manufacturing a glass base material, which allows extremely accurate refractive index distribution control. be.
[発明の概要]
上記目的を達成するために、本発明は均一性及
び対称性を有する多孔質母材の最終的な端面形状
は、それまでの成長履歴に影響されること、及び
光フアイバ母材の均一性及び対称性が多孔質母材
の端面温度にも影響されること等の知見のもと
に、出発部材の先端に成長する多孔質母材の端面
形状及び端面温度を定量的に検出し、これら形状
及び温度が最終的に望む所定形状及び所定温度に
なるように、出発部材の鉛直軸線と交わる多孔質
母材端面上の点をバーナの中心軸線が通るバーナ
の初期設定位置から、これより水平方向に離れた
最終設定位置にバーナを水平移動させたもので、
これにより均一性及び対称性を有する多孔質母材
を形成するようにしたものである。[Summary of the Invention] In order to achieve the above object, the present invention discloses that the final end face shape of a porous preform having uniformity and symmetry is influenced by the growth history up to that point, and that the final end shape of the porous preform having uniformity and symmetry is Based on the knowledge that the uniformity and symmetry of the material are also affected by the end face temperature of the porous base material, we quantitatively determined the end face shape and end face temperature of the porous base material that grows at the tip of the starting member. From the initial setting position of the burner, the central axis of the burner passes through a point on the end face of the porous base material that intersects with the vertical axis of the starting member, so that the shape and temperature finally reach the desired predetermined shape and temperature. , the burner is moved horizontally to the final setting position horizontally further away from this,
As a result, a porous base material having uniformity and symmetry is formed.
[実施例]
本発明の実施例を第1図〜第6図に基づいて説
明すれば以下の通りである。[Example] An example of the present invention will be described below based on FIGS. 1 to 6.
第4図は光フアイバ母材製造装置の一例を示す
概略構成図であり、同図において1はその開口を
上方に向けて立てた同心円状多層バーナ、2はバ
ーナ1を水平移動自在に支持するバーナ支持微動
台、3はバーナ1により成長する多孔質母材、4
は多孔質母材3及びバーナ1を収納するガラス容
器である。また5はガラス容器4の上方に位置す
る石英棒などの出発部材、6は出発部材5の軸回
転しつつ上方に引き上げる回転引上装置、7はガ
ラス容器4の側方に設けた排気口、8及び9は出
発部材5の先端に成長する多孔質母材3を観測す
るテレビジヨンカメラ及びテレビジヨンデイスプ
レイ、10は多孔質母材3の端面温度を検出する
赤外線温度計である。 FIG. 4 is a schematic configuration diagram showing an example of an optical fiber base material manufacturing apparatus. In the figure, 1 is a concentric multilayer burner with its opening facing upward, and 2 is a support for horizontally movable burner 1. A burner supporting fine movement table, 3 is a porous base material grown by the burner 1, 4
is a glass container that houses the porous base material 3 and the burner 1. Further, 5 is a starting member such as a quartz rod located above the glass container 4, 6 is a rotating pulling device that pulls up the starting member 5 while rotating its axis, and 7 is an exhaust port provided on the side of the glass container 4. Reference numerals 8 and 9 are a television camera and a television display for observing the porous base material 3 growing on the tip of the starting member 5, and 10 is an infrared thermometer for detecting the end surface temperature of the porous base material 3.
このような構成において、上向きに固定された
バーナ1にガラス原料及び燃料ガスを供給する
と、ガラス原料が加水分解反応によつてスートが
生成され、このスートが上方にある出発部材5の
先端に堆積して多孔質母材3が成長する。この場
合において、成長する多孔質母材3の端面と、バ
ーナ1との距離は常に一定になるように出発部材
5の引上げ速度が制御される。 In such a configuration, when frit and fuel gas are supplied to the burner 1 fixed upward, soot is generated by a hydrolysis reaction of the frit, and this soot is deposited on the tip of the starting member 5 located above. As a result, the porous base material 3 grows. In this case, the pulling speed of the starting member 5 is controlled so that the distance between the end face of the growing porous base material 3 and the burner 1 is always constant.
ところで、上記光フアイバ母材製造装置を構成
するテレビジヨンカメラ8、テレビジヨンデイス
プレイ9及び赤外線温度計10から成る2つの検
出系は、第3図に示す如く、共にレコーダ11,
12を有している。すなわち、任意のバーナ設定
位置における多孔質母材3の端面温度は赤外線温
度計10で検出され、その検出結果がレコーダ1
2に記録される。また、多孔質母材3の端面形状
がテレビジヨンカメラ8で検出されてテレビジヨ
ンデイスプレイ9に出力されると共に、ここに出
力された多孔質母材3の底面形状が任意に設定し
た基準線Lから特定した多孔質母材底面までの距
離Dとして算出され、この算出値がレコーダ11
に記録されるように構成されている。 By the way, as shown in FIG. 3, the two detection systems comprising the television camera 8, television display 9, and infrared thermometer 10 constituting the optical fiber base material manufacturing apparatus are equipped with a recorder 11,
It has 12. That is, the end face temperature of the porous base material 3 at an arbitrary burner setting position is detected by the infrared thermometer 10, and the detection result is sent to the recorder 1.
Recorded in 2. In addition, the end face shape of the porous base material 3 is detected by the television camera 8 and outputted to the television display 9, and the bottom face shape of the porous base material 3 output here is set at an arbitrarily set reference line L. The distance D is calculated from the bottom of the porous base material specified from
is configured to be recorded.
次に、上記のような本実施例の構成における作
用について説明するが、本実施例ではバーナ1の
初期設定位置及び最終設定位置をそれぞれ示す第
1A図及び第1B図において、バーナ1の中心軸
線と出発部材5の鉛直軸線とのなす角をθ、出発
部材5の鉛直軸線とバーナ1の中心軸線及び多孔
質母材3の端面との三者の交点をX0とし、この
交点X0とバーナ1の先端との距離をl0とした場合
のこれらθとl0の条件及びバーナ条件は次の通り
である。なお、図中のaは交点X0を通る水平線
である。 Next, the operation of the configuration of the present embodiment as described above will be explained. In this embodiment, the central axis of the burner 1 is θ is the angle formed between When the distance from the tip of the burner 1 is l 0 , the conditions for these θ and l 0 and the burner conditions are as follows. Note that a in the figure is a horizontal line passing through the intersection X0 .
θ=30゜,l0=50mmとし、バーナ1は4層構造と
して、中央の第1層にはSiCl4を100c.c./min,
GeCl4を10c.c./min、Arガスを500c.c./minの流量
で供給し、第2層にはArガスを500c.c./minの流
量で供給すると共に、第3層にはH2ガスを2900
c.c./min、第4層にはO2ガスを7000c.c./minの流
量でそれぞれ供給した。さて、上記条件のもとで
出発部材5の先端に多孔質母材3を成長させるに
は、いきなり最終設定位置Xoにバーナ1を持つ
て来るのではなしに、第1A図に示す初期設定位
置X0にセツトしてからバーナ1をステツプ状に
水平移動させて第1B図に示す最終設定位置Xo
にもつていくようにする。すなわち、バーナ1の
水平移動距離に相当する水平線a上の初期設定位
置X0から最終設定位置Xoまでの間を任意に分割
して複数の中間設定位置X2,X3,X4……を設
け、第5図及び第6図に示す如く、多孔質母材3
の端面温度T及び端面形状D1が未だ不安定な状
態にある過度時にではなく、各中間設定位置によ
り決まる値に充分落ち付いた安定時に、次の中間
設定位置にバーナ1をステツプ状に移動する。同
図における曲線上のXo(n=0〜n)点が、その
位置において充分安定した端面温度及び端面形状
を得られる時間であり、安定な端面温度及び端面
形状が同時に得られたとき始めて所定速度でバー
ナ1を移動させ、このステツプ移動を繰り返し最
終設定位置Xoにもつてくる。ここでは、このス
テツプ移動は、第5図及び第6図に表われたレコ
ーダ記録結果を観察している作業者が行なうが、
コンピユータ処理により自動化することもでき
る。かくして、最終設定位置Xoでは、第1B図
に示す如く多孔質母材3の端面は出発部材5の鉛
直軸線に対して対称性を有する滑らかな円弧を形
成し、この形状が最終的な所定形状であり、また
最終設定位置Xoにおいて安定した端面温度が母
材の屈折率分布を望む値に制御する所定温度とな
る。このようにして、バーナ1はその都度安定な
温度及び形状を作りながら、ステツプ状に移動さ
せられて位置決めされ、この位置決め完了後ガラ
ス母材の連続的製造がなされる。 θ = 30°, l 0 = 50 mm, burner 1 has a 4-layer structure, and the first layer in the center is filled with SiCl 4 at 100 c.c./min.
GeCl 4 was supplied at a flow rate of 10 c.c./min and Ar gas was supplied at a flow rate of 500 c.c./min. Ar gas was supplied to the second layer at a flow rate of 500 c.c./min, and the third layer was H2 gas 2900
cc/min, and O 2 gas was supplied to the fourth layer at a flow rate of 7000 c.c./min. Now, in order to grow the porous base material 3 on the tip of the starting member 5 under the above conditions, instead of suddenly bringing the burner 1 to the final setting position After setting the burner 1 to X 0 , move the burner 1 horizontally in steps until it reaches the final setting position X o shown in Figure 1B.
I also try to keep up with it. That is, the area from the initial setting position X 0 on the horizontal line a corresponding to the horizontal movement distance of the burner 1 to the final setting position X o is arbitrarily divided into a plurality of intermediate setting positions X 2 , X 3 , X 4 . . . As shown in FIGS. 5 and 6, the porous base material 3
The burner 1 is moved in steps to the next intermediate setting position when the end face temperature T and end face shape D 1 are stable and have sufficiently settled down to the values determined by each intermediate setting position, rather than during transient times when the end face temperature T and end face shape D 1 are still unstable. do. The point X o (n = 0 to n) on the curve in the same figure is the time at which a sufficiently stable end face temperature and end face shape can be obtained, and only when stable end face temperature and end face shape are obtained at the same time. The burner 1 is moved at a predetermined speed and this step movement is repeated until it reaches the final setting position Xo . Here, this step movement is performed by an operator who is observing the recorder recording results shown in FIGS. 5 and 6.
It can also be automated by computer processing. Thus, at the final set position Xo , the end surface of the porous base material 3 forms a smooth circular arc symmetrical with respect to the vertical axis of the starting member 5, as shown in FIG. 1B, and this shape forms a final predetermined shape. In addition, a stable end face temperature at the final setting position X o becomes a predetermined temperature that controls the refractive index distribution of the base material to a desired value. In this way, the burner 1 is moved stepwise and positioned while creating a stable temperature and shape each time, and after this positioning is completed, continuous production of the glass base material is carried out.
ところで、このバーナ位置決めが完了するまで
のバーナ移動は、最終設定位置Xoで多孔質母材
3について所定の端面温度及び端面形状を得るた
めの中間工程にあるので、最終的な所定温度及び
所定形状を得るためには、成長する中間段階の多
孔質母材3の端面形状及び端面温度も最終値に影
響を与えるため、それらの均一性や対称性を保た
ねばならず、中間段階の厳格な管理を必要とす
る。このことは、第2図に示すように、バーナ1
の初期設定位置X0で形成される当初の球形の多
孔質母材3を核にして、あたかも玉葱の皮のよう
に各設定位置X1,X2……Xoにおける決められた
量のスカートが付着していくため、初期形状(温
度)は勿論のこと中間形状が非対称(不均一)に
なれば、いびつな玉葱ができるように最終設定位
置Xoにおける多孔質母材3の形状が非対称とな
つてしまうことから理解できる。 By the way, the burner movement until this burner positioning is completed is an intermediate process for obtaining a predetermined end surface temperature and end surface shape for the porous base material 3 at the final setting position X o , so the final predetermined temperature and predetermined In order to obtain the desired shape, the end face shape and end face temperature of the porous base material 3 at the intermediate stage of growth also affect the final value, so it is necessary to maintain their uniformity and symmetry. requires careful management. This means that the burner 1
With the initial spherical porous base material 3 formed at the initial setting position X 0 as the core, a predetermined amount of skirt is formed at each setting position X 1 , X 2 ...X o , just like the skin of an onion. As the particles adhere, not only the initial shape (temperature) but also the intermediate shape become asymmetrical (non-uniform), and the shape of the porous base material 3 at the final setting position X o becomes asymmetrical, like a distorted onion. This can be understood from the fact that it becomes
しかしながら、位置決めが完了するまでのバー
ナ1は、多孔質母材3の端面形状及び温度が各中
間設定位置により決まる値に充分落ち着いてから
次の中間設定位置にステツプ状に移動するので、
多孔質母材3の端面形状及び端面温度は成長途中
においても均一性と対称性とが確保され、人為的
に誤差のない常に同一の所定形状及び所定温度が
最終的に得られる。 However, until the positioning is completed, the burner 1 moves stepwise to the next intermediate setting position after the end face shape and temperature of the porous base material 3 have sufficiently settled to the values determined by each intermediate setting position.
Uniformity and symmetry of the end face shape and end face temperature of the porous base material 3 are ensured even during the growth process, and the same predetermined shape and predetermined temperature without any artificial errors are ultimately obtained.
このようなバーナ位置決め方法によつて光フア
イバ母材を20本製造したが、測定誤差内で全て同
一の屈折率分布が再現できた。 We manufactured 20 optical fiber base materials using this burner positioning method, and were able to reproduce the same refractive index distribution within all measurement errors.
なお、上記実施例では、バーナ1をステツプ状
に移動するようにしたが、バーナ1の移動スピー
ドに緩急を持たせて連続移動するようにしてもよ
く、この場合においても同様な作用効果を得るこ
とができる。 In the above embodiment, the burner 1 is moved in steps, but it is also possible to move the burner 1 continuously by adjusting the speed of its movement, and in this case, the same effect can be obtained. be able to.
また、多孔質母材3の端面形状を知るために、
最も簡易な基準線Lから多孔質母材3の端面の一
点までの直線距離を検出するようにしたが、複数
点間の距離あるいは面として検出するようにして
もよい。 Also, in order to know the end face shape of the porous base material 3,
Although the straight line distance from the simplest reference line L to one point on the end face of the porous base material 3 is detected, the distance or plane between multiple points may be detected.
[発明の効果]
以上要するに本発明によれば次のような優れた
効果を発揮する。[Effects of the Invention] In summary, the present invention exhibits the following excellent effects.
(1) 多孔質母材の端面形状及び端面温度を検出
し、これらの形状及び温度が最終的に所定形状
及び所定温度になるようにバーナを再現性よく
水平移動させるので、単に端面形状を目視する
だけで、しかも屈折率分布に重大な影響を与え
る端面温度を検出していない従来の方法に比し
て、均一性及び対称性に優れた多孔質母材を再
現よく製造でき、高精度の屈折率分布制御を行
なうことができる。(1) The end face shape and end face temperature of the porous base material are detected, and the burner is moved horizontally with good reproducibility so that these shapes and temperatures finally reach the predetermined shape and temperature, so the end face shape can be simply visually observed. Compared to conventional methods that do not detect the end face temperature, which has a significant effect on the refractive index distribution, porous base materials with excellent uniformity and symmetry can be manufactured with good reproducibility, and high precision Refractive index distribution control can be performed.
(2) したがつて、広帯域光フアイバの歩留りを格
段に向上させることができる。(2) Therefore, the yield of broadband optical fibers can be significantly improved.
図は本発明方法に係る実施例を示すもので、第
1A図はバーナ初期設定の説明図、第1B図は同
じくバーナ最終設定の説明図、第2図はバーナ設
定位置毎の多孔質母材端面形状の説明図、第3図
は多孔質母材の端面形状及び温度検出装置の構成
図、第4図は光フアイバ母材の製造装置の構成
図、第5図はバーナをX0からXoまでステツプ状
に移動させたときの多孔質母材端面温度Tと時間
tとの特性曲線図、第6図はバーナをX0からXo
までステツプ状に移動させたときの多孔質母材端
面形状を表わす距離Dと時間tとの特性曲線図で
ある。
図中、1はバーナ、3は多孔質母材、5は出発
部材、8及び9は多孔質母材の端面形状を検出す
るテレビジヨンカメラ及びテレビジヨンデイスプ
レイ、10は多孔質母材の端面温度を検出する赤
外線温度計、l0は多孔質母材の端面とバーナ先端
との距離、X0はバーナの初期設定位置、Xoはバ
ーナの最終設定位置である。
The figures show an embodiment according to the method of the present invention, in which Fig. 1A is an explanatory diagram of initial burner settings, Fig. 1B is an explanatory diagram of final burner settings, and Fig. 2 is a porous base material for each burner setting position. An explanatory diagram of the end face shape, Figure 3 is a configuration diagram of the end face shape of the porous base material and the temperature detection device, Figure 4 is a configuration diagram of the optical fiber base material manufacturing equipment, and Figure 5 is a diagram of the burner from X 0 to X. Figure 6 is a characteristic curve diagram of the porous base material end surface temperature T and time t when the burner is moved in steps from X 0 to X o .
FIG. 4 is a characteristic curve diagram of distance D and time t representing the shape of the end face of the porous base material when the porous base material is moved in a stepwise manner until the end of the porous base material. In the figure, 1 is a burner, 3 is a porous base material, 5 is a starting member, 8 and 9 are a television camera and a television display that detect the end face shape of the porous base material, and 10 is the end face temperature of the porous base material. An infrared thermometer that detects , l 0 is the distance between the end face of the porous base material and the burner tip, X 0 is the initial setting position of the burner, and X o is the final setting position of the burner.
Claims (1)
に斜め下方に配したバーナから酸水素焔により生
じるスートを吹き付けて多孔質母材を形成させ、
その多孔質母材の端面とバーナの先端との距離を
一定に保持しつつ上記出発部材を上方に引き上げ
て上記多孔質母材を軸方向に成長させるに際し
て、上記多孔質母材の端面形状及び端面温度を定
量的に検出し、これらの形状及び温度が最終的に
所定形状及び所定温度になるように、上記出発部
材の鉛直軸線と交わる多孔質母材端面上の点をバ
ーナの中心軸線が通るバーナの初期設定位置か
ら、これより水平方向に離れた最終設定位置にバ
ーナを水平移動させることを特徴とするガラス母
材製造用バーナの位置決め方法。 2 上記多孔質母材の端面形状の検出が、端面下
方の任意位置に水平に引いた基準線から端面まで
の距離を検出することによつてなされることを特
徴とする特許請求の範囲第1項記載のガラス母材
製造用バーナの位置決め方法。 3 上記バーナの水平移動がステツプ状に行なわ
れることを特徴とする特許請求の範囲第1項記載
又は第2項記載のガラス母材製造用バーナの位置
決め方法。 4 上記ステツプ状のバーナの水平移動が、バー
ナの初期設定位置から最終設定位置までの間を任
意に分割して設けた複数の中間設定位置で、各中
間設定位置により決まる多孔質母材の説面形状及
び端面温度に落ち着く度にバーナを次の中間設定
位置に移動させることを特徴とする特許請求の範
囲第1項、第2項又は第3項記載のガラス母材製
造用バーナの位置決め方法。[Claims] 1. A porous base material is formed by spraying soot generated by an oxyhydrogen flame from a burner arranged diagonally downward at the tip of a starting member arranged vertically and rotating on its axis,
When growing the porous base material in the axial direction by pulling the starting member upward while maintaining a constant distance between the end face of the porous base material and the tip of the burner, the shape of the end face of the porous base material and In order to quantitatively detect the end surface temperature and make the shape and temperature finally reach a predetermined shape and temperature, the center axis of the burner is set at a point on the end surface of the porous base material that intersects with the vertical axis of the starting member. A method for positioning a burner for manufacturing a glass base material, characterized by horizontally moving the burner from an initial setting position of the burner passing through to a final setting position horizontally distant from the initial setting position. 2. The first aspect of the present invention is characterized in that the end face shape of the porous base material is detected by detecting the distance from a reference line drawn horizontally at an arbitrary position below the end face to the end face. Method for positioning a burner for producing glass base material as described in Section 1. 3. The method for positioning a burner for producing a glass base material according to claim 1 or 2, wherein the horizontal movement of the burner is performed in steps. 4 A theory of the porous base material in which the step-like horizontal movement of the burner is determined by each intermediate setting position at a plurality of intermediate setting positions arbitrarily divided between the initial setting position and the final setting position of the burner. A method for positioning a burner for manufacturing a glass base material according to claim 1, 2, or 3, characterized in that the burner is moved to the next intermediate setting position each time the surface shape and end surface temperature are settled. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26521684A JPH0247413B2 (en) | 1984-12-18 | 1984-12-18 | GARASUBOZAISEIZOYOBAANANOICHIGIMEHOHO |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26521684A JPH0247413B2 (en) | 1984-12-18 | 1984-12-18 | GARASUBOZAISEIZOYOBAANANOICHIGIMEHOHO |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61146726A JPS61146726A (en) | 1986-07-04 |
JPH0247413B2 true JPH0247413B2 (en) | 1990-10-19 |
Family
ID=17414135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26521684A Expired - Lifetime JPH0247413B2 (en) | 1984-12-18 | 1984-12-18 | GARASUBOZAISEIZOYOBAANANOICHIGIMEHOHO |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0247413B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0776108B2 (en) * | 1986-05-12 | 1995-08-16 | 住友電気工業株式会社 | Method for manufacturing base material for optical fiber |
JP5830968B2 (en) * | 2011-06-29 | 2015-12-09 | 住友電気工業株式会社 | Manufacturing method of glass base material |
-
1984
- 1984-12-18 JP JP26521684A patent/JPH0247413B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61146726A (en) | 1986-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03279234A (en) | Production of parent material of preform of optical fiber | |
JPH0247413B2 (en) | GARASUBOZAISEIZOYOBAANANOICHIGIMEHOHO | |
US20070151298A1 (en) | Vapor axial deposition apparatus and method for fabricating soot preform using the same | |
EP1440949B1 (en) | Method for producing optical fiber base material | |
JPH04292434A (en) | Production of optical fiber preform | |
JPH0583500B2 (en) | ||
JPS63285130A (en) | Device for producing optical fiber preform | |
JPH0354129A (en) | Preparation of optical fiber preform | |
JP3687625B2 (en) | Manufacturing method of glass base material | |
JP4776099B2 (en) | Optical fiber preform manufacturing method | |
JPS60264336A (en) | Manufacture of optical glass preform | |
JP2013040070A (en) | Method for producing glass fine particle deposit | |
JPH054825A (en) | Production of glass article | |
JP3826839B2 (en) | Manufacturing method of glass base material | |
JPS63310745A (en) | Producing equipment for glass base material | |
JP2005139042A (en) | Method of manufacturing porous glass preform | |
JPS62162638A (en) | Production of preform for optical fiber | |
JPH0834632A (en) | Device for producing optical fiber preform | |
JP2001206729A (en) | Method for manufacturing optical fiber preform | |
JPS58135147A (en) | Preparation of base material for optical fiber | |
JPH05306137A (en) | Apparatus for production of optical fiber base material | |
JPS59137331A (en) | Manufacture of base material for optical fiber | |
JPS61201638A (en) | Production of high-purity glass body | |
JPS6159252B2 (en) | ||
JPS61111931A (en) | Production of optical fiber preform |