JPH0247409B2 - - Google Patents

Info

Publication number
JPH0247409B2
JPH0247409B2 JP58064871A JP6487183A JPH0247409B2 JP H0247409 B2 JPH0247409 B2 JP H0247409B2 JP 58064871 A JP58064871 A JP 58064871A JP 6487183 A JP6487183 A JP 6487183A JP H0247409 B2 JPH0247409 B2 JP H0247409B2
Authority
JP
Japan
Prior art keywords
titanium
disulfide
sulfur
molar ratio
stoichiometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58064871A
Other languages
Japanese (ja)
Other versions
JPS59190221A (en
Inventor
Mitsue Koizumi
Shinichi Yoshikawa
Takanori Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Cement Co Ltd filed Critical Osaka Cement Co Ltd
Priority to JP58064871A priority Critical patent/JPS59190221A/en
Publication of JPS59190221A publication Critical patent/JPS59190221A/en
Publication of JPH0247409B2 publication Critical patent/JPH0247409B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高圧力下における二硫化チタンの高圧
合成方法に関するものである。 二硫化チタンは結合様式が二次元的な層状構造
を持つ無機化合物であり、ホスト層間相互はフア
ンデアワールス力によつて比較的弱く結び付けら
れているが、この弱い結合を破つて異種の分子、
原子、イオンをゲストとして取り込むことがで
き、また逆に抜き出すことも可能である。 これらの反応は可逆的であり、ホストの構造変
化も小さいので、繰り返し何回も反応を行わせる
ことができ、この点に注目して二次電池への応用
が考えられている。 特にリチウムを負極とし、二硫化チタンを正極
として組み合わせたTi/TiS2電池は高電位、高
電力密度等の優れた性質を有している。 しかしこの場合リチウムイオンの、二硫化チタ
ン層間での拡散が電池正極材料としての性能に大
きく影響を与えるため、二硫化チタンの定比性が
問題となる。つまり二硫化チタンはTi1+xS2(x≧
0)で示される不定比組成をとりやすく、過剰の
チタンがホスト層間に位置するので、リチウムイ
オンを拡散が妨げられたり、リチウムイオンの這
入る量が少なくなるなど、電池としての能力を低
下させる原因となる。 このため出来るだけ定比の二硫化チタンを合成
する必要があるが、従来の方法としては、第1に
チタンハロゲン化物と硫化水素とを400〜800℃、
約1時間で反応させる方法、第2に反応管中に金
属チタンとイオウとを入れ、ヨウ素またはシユウ
素を輸送材として少量加え真空に引いた後密封
し、反応温度500〜800℃で数日間かけて反応させ
る方法、第3に反応管中に金属チタンとイオウと
を入れ、真空に引いた後密封し、500〜800℃で1
昼夜以上加熱保持して合成する方法が知られてい
る。 しかし第1の方法は反応後ハロゲンが生成した
二硫化チタンの層間に残留し、不定比二硫化チタ
ンの過剰チタンの場合と同じく、電池としての性
能を低下させる原因となるので好ましくない。 また第2の方法は第1の方法と同じくハロゲン
が残留するほか、合成に要する時間が非常に長
く、さらに第3の方法では高温にするとチタン過
剰不定比二硫化チタンを生成し、逆に低温では低
温側で安定な三硫化チタンが同時に生成するとい
う欠点がある。 このような第3の方法の改良として、試料を入
れて真空に引き密封した反応管の一方を500〜600
℃に保ち、もう一方をこれより50〜300℃低くし
て、不定比二硫化チタンと三硫化チタンとの生成
を妨げ、高温側に定比の二硫化チタン、低温側に
イオウを析出させる方法があるが、この方法では
低温部、高温部のそれぞれを独立に温度制御する
必要があり、かつ約1日の反応時間が必要であ
る。 これらの方法に対し本発明は、イオウの蒸気圧
を上げることにより比較的高温においても定比の
二硫化チタンが得られることに着目し、従来のよ
うに真空に引く方法とは逆に、チタン原料とイオ
ウ原料との混合物を0.1GPa(ギガパスカル)(約
1000気圧)以上の圧力で加圧することにより、
600〜1800℃の反応温度において、数十分〜数時
間の短時間で定比の二硫化チタンを合成すること
が可能となり、しかも原料にハロゲン等の異種イ
オウを含むことがないので生成した定比二硫化チ
タンが汚染されることもなく、また反応容器に温
度勾配をつける必要がないという特長をもつた方
法である。 本発明では0.1GPa以上の高圧で原料を加圧し
ながら反応させることが重要であり、これ以下の
圧力では定比二硫化チタンの生成に充分なイオウ
蒸気圧が得られず不定比二硫化チタンが生成す
る。 使用する原料としては、主として金属チタンと
イオウとをTi/S=1/2〜0.7/2のモル比で
混合したものを使用するのが適当であるが、その
ほかに金属チタンと三硫化チタンとをTi/TiS3
=1/2〜0.7/2のモル比で配合したもの、不
定比二硫化チタンとイオウとをTi1+xS2/S=
1/2x〜0.7/2xのモル比で配合したもの、不定
比二硫化チタンと三硫化チタンとをTi1+xS2
TiS3=1/2x〜0.7/2xのモル比で配合したもの
を原料としても良い。 これらの場合、原料中のチタン成分とイオウ成
分とのモル比がTi/S=1/2以下になるよう
にすることが重要であり、これを超えると不定比
二硫化チタンが生成する。またTi/S=0.7/2
未満では三硫化チタンが生成しやすくなる。 反応温度は定比二硫化チタンの生成速度に大き
く影響し、高温にするほど反応時間が速くなるが
600〜1800℃が適当である。温度が1800℃を超え
ると不定比二硫化チタンの生成を妨げることがむ
づかしくなり、また温度が600℃未満では三硫化
チタンが二硫化チタンになるまでに長時間を要
し、本方法の意味を失うこととなる。また600〜
1800℃において二硫化チタンが生成した後も反応
を続けると二硫化チタンの結晶成長が進み粒径の
大きい定比二硫化チタンを得ることができる。 つぎに本発明の実施例を記載する。 実施例 1 金属チタン粉末とイオウとをTi/S=1/2,
0.9/2のモル比で混合し高圧発生装置にて3GPa
で加圧し、800〜1200℃で、15分〜4時間加熱し
て合成した。生成物の同定を粉末X線回折により
行つた結果を表−1に示す。温度800℃、1000℃
では三硫化チタンのピークが消失するのに4時間
の反応時間が必要であるのに対し、1200℃では15
分で消失した。 実施例 2 金属チタン粉末とイオウとをTi/S=1/2
のモル比で混合し、高圧発生装置にて圧力3GPa、
反応温度1000℃で合成した場合の反応時間による
三硫化チタンと二硫化チタンとの生成比の推移お
よび二硫化チタンの定比性の変化を追跡した結果
を表−2に示す。 生成比の推移は粉末X線回折により両者の
(001)面からの回折ピークの高さ比TiS3/TiS2
で示し、定比性については粉末X線回折によりC
軸格子定数を求めることによつて調べた。これは
不定比二硫化チタンでは過剰チタンが層間に位置
することにより層間隔が広がるため、不定比性が
増すに従つて層面に垂直なC軸格子定数が定比の
5.695から徐々に大きくなることに基づくもので
ある。 実施例 3 金属チタン粉末とイオウとをTi/S=1/2
のモル比で混合し、高圧発生装置にて3GPaで加
圧、1000℃に昇温し、6時間保持して合成した。
生成物の粉末X線回折と熱重量分析とによる同定
の結果、C軸格子定数5.696を持つTi1.00S2であつ
た。 実施例 4 金属チタン粉末とイオウとをTi/S=0.9/2
のモル比で混合し、高圧発生装置にて3GPaで加
圧、1200℃に昇温し、30分間保持して合成した。
生成物の粉末X線回折と熱重量分析とによる同定
の結果、C軸格子定数5.697を持つTi1.01S2であつ
た。 実施例 5 金属チタン粉末と三硫化チタンとをTi/TiS3
=1/2のモル比で混合し、高圧発生装置にて
3GPaで加圧、1000℃に昇温し、4時間保持して
合成した。生成物の粉末X線回折と熱重量分析と
による同定の結果、C軸格子定数5.697を持つ
Ti1.01S2であつた。
The present invention relates to a method for high-pressure synthesis of titanium disulfide under high pressure. Titanium disulfide is an inorganic compound with a two-dimensional layered structure, and the host layers are relatively weakly bound by the Van der Waals force.
Atoms and ions can be taken in as guests, and conversely, they can also be extracted. These reactions are reversible and structural changes in the host are small, so the reactions can be repeated many times, and with this in mind, applications to secondary batteries are being considered. In particular, Ti/TiS 2 batteries, which combine lithium as a negative electrode and titanium disulfide as a positive electrode, have excellent properties such as high potential and high power density. However, in this case, the stoichiometry of titanium disulfide becomes a problem because the diffusion of lithium ions between the titanium disulfide layers greatly affects the performance as a battery positive electrode material. In other words, titanium disulfide is Ti 1+x S 2 (x≧
0), and excessive titanium is located between the host layers, which impedes the diffusion of lithium ions and reduces the amount of lithium ions that enter, which reduces the performance of the battery. becomes. For this reason, it is necessary to synthesize titanium disulfide in a stoichiometric ratio as much as possible, but as a conventional method, first, titanium halide and hydrogen sulfide are heated at 400 to 800°C.
The second method is to put titanium metal and sulfur into a reaction tube, add a small amount of iodine or sulfur as a transport material, evacuate it, seal it, and keep it at a reaction temperature of 500 to 800°C for several days. The third method is to put titanium metal and sulfur into a reaction tube, evacuate it, seal it, and heat it at 500 to 800℃ for 1 hour.
A method of synthesizing by heating and holding for more than day and night is known. However, the first method is not preferable because halogen remains between the layers of the produced titanium disulfide after the reaction, and as in the case of excess titanium in non-stoichiometric titanium disulfide, this causes a decrease in the performance of the battery. In addition, in the second method, halogen remains as in the first method, and the time required for synthesis is extremely long.Furthermore, in the third method, when the temperature is raised, excessive titanium and non-stoichiometric titanium disulfide are produced; However, the drawback is that titanium trisulfide, which is stable at low temperatures, is simultaneously produced. As an improvement to the third method, one side of the reaction tube containing the sample, evacuated, and sealed was heated to 500 to 600
℃, and lower the other temperature by 50 to 300℃ to prevent the formation of non-stoichiometric titanium disulfide and titanium trisulfide, and precipitate stoichiometric titanium disulfide on the high temperature side and sulfur on the low temperature side. However, this method requires independent temperature control of the low-temperature section and high-temperature section, and requires about one day of reaction time. In contrast to these methods, the present invention focuses on the fact that titanium disulfide can be obtained at a constant ratio even at relatively high temperatures by increasing the vapor pressure of sulfur. The mixture of raw material and sulfur raw material is heated to 0.1GPa (gigapascal) (approx.
By pressurizing at a pressure of 1000 atmospheres or more,
At a reaction temperature of 600 to 1800°C, it is possible to synthesize stoichiometric titanium disulfide in a short period of several minutes to several hours, and since the raw materials do not contain foreign sulfur such as halogens, the produced sulfur can be easily synthesized. This method has the advantage that titanium disulfide is not contaminated and there is no need to create a temperature gradient in the reaction vessel. In the present invention, it is important to react while pressurizing the raw materials at a high pressure of 0.1 GPa or higher; if the pressure is lower than this, sufficient sulfur vapor pressure cannot be obtained to produce stoichiometric titanium disulfide, and non-stoichiometric titanium disulfide is produced. generate. As raw materials to be used, it is appropriate to mainly use a mixture of metallic titanium and sulfur at a molar ratio of Ti/S = 1/2 to 0.7/2, but in addition, metallic titanium and titanium trisulfide may be used. Ti/TiS 3
= non-stoichiometric titanium disulfide and sulfur mixed at a molar ratio of 1/2 to 0.7/2, Ti 1+x S 2 /S =
Ti 1+ x S 2 / non-stoichiometric titanium disulfide and titanium trisulfide blended at a molar ratio of 1/2x to 0.7/2x .
TiS 3 mixed at a molar ratio of 1/2x to 0.7/2x may be used as the raw material. In these cases, it is important to keep the molar ratio of the titanium component to the sulfur component in the raw material to Ti/S=1/2 or less; if this is exceeded, non-stoichiometric titanium disulfide will be produced. Also, Ti/S=0.7/2
If it is less than that, titanium trisulfide is likely to be produced. The reaction temperature greatly affects the rate of stoichiometric titanium disulfide production, and the higher the temperature, the faster the reaction time.
A temperature of 600 to 1800°C is suitable. When the temperature exceeds 1800°C, it becomes difficult to prevent the formation of non-stoichiometric titanium disulfide, and when the temperature is below 600°C, it takes a long time for titanium trisulfide to become titanium disulfide, making this method difficult. It will lose its meaning. 600~
If the reaction continues even after titanium disulfide is produced at 1800°C, the crystal growth of titanium disulfide will progress and stoichiometric titanium disulfide with a large particle size can be obtained. Next, examples of the present invention will be described. Example 1 Metallic titanium powder and sulfur were mixed at Ti/S=1/2,
Mix at a molar ratio of 0.9/2 and generate 3 GPa using a high pressure generator.
The mixture was synthesized by heating at 800 to 1200°C for 15 minutes to 4 hours. Table 1 shows the results of product identification by powder X-ray diffraction. Temperature 800℃, 1000℃
At 1200℃, a reaction time of 4 hours is required for the peak of titanium trisulfide to disappear;
Disappeared in minutes. Example 2 Metallic titanium powder and sulfur at Ti/S=1/2
Mix at a molar ratio of
Table 2 shows the results of tracking changes in the production ratio of titanium trisulfide and titanium disulfide and changes in the stoichiometry of titanium disulfide depending on the reaction time when synthesized at a reaction temperature of 1000°C. The transition in the production ratio is determined by the height ratio of the diffraction peaks from the (001) plane of both TiS 3 /TiS 2 by powder X-ray diffraction.
The stoichiometry is determined by powder X-ray diffraction.
This was investigated by determining the axial lattice constant. This is because in non-stoichiometric titanium disulfide, the layer spacing increases due to excess titanium being located between the layers, so as the non-stoichiometric property increases, the C-axis lattice constant perpendicular to the layer plane becomes less stoichiometric.
This is based on the fact that it gradually increases from 5.695. Example 3 Metallic titanium powder and sulfur at Ti/S=1/2
The mixture was mixed at a molar ratio of 1,000,000, and then pressurized at 3GPa using a high-pressure generator, heated to 1000°C, and held for 6 hours to synthesize.
Identification of the product by powder X-ray diffraction and thermogravimetric analysis revealed that it was Ti 1.00 S 2 with a C-axis lattice constant of 5.696. Example 4 Metallic titanium powder and sulfur at Ti/S=0.9/2
The mixture was mixed at a molar ratio of , and was then pressurized at 3 GPa using a high pressure generator, heated to 1200°C, and held for 30 minutes to synthesize.
Identification of the product by powder X-ray diffraction and thermogravimetric analysis revealed that it was Ti 1.01 S 2 with a C-axis lattice constant of 5.697. Example 5 Metallic titanium powder and titanium trisulfide were combined into Ti/TiS 3
= Mix at a molar ratio of 1/2 and use a high pressure generator
The mixture was synthesized by applying pressure to 3 GPa, raising the temperature to 1000°C, and holding it for 4 hours. Identification of the product by powder X-ray diffraction and thermogravimetric analysis revealed that it has a C-axis lattice constant of 5.697.
It was Ti 1.01 S 2 .

【表】【table】

【表】【table】

【表】 原料組成 Ti/S=1/2(モル比) 圧 力 3GPa 温 度 1000℃【table】 Raw material composition Ti/S=1/2 (molar ratio) Pressure 3GPa Temperature 1000℃

Claims (1)

【特許請求の範囲】[Claims] 1 金属チタンとイオウとをTi/S=1/2〜
0.7/2のモル比で配合したもの、金属チタンと
三硫化チタンとをTi/TiS3=1/2〜0.7/2の
モル比で配合したもの、チタン過剰不定比二硫化
チタン(Ti1+xS2)とイオウとをTi1+xS2/S=
1/2〜0.7/2xのモル比で配合したもの、三硫
化チタンとチタン過剰不定比二硫化チタン
(Ti1+xS2)とをTi1+xS2/TiS3=1/2x〜0.7/2x
のモル比で配合したもののいずれか1組あるいは
複数の組を組合せたものを原料とし、この原料を
0.1GPa(約1000気圧)以上の高圧力を用いて加圧
しながら反応温度600〜1800℃で合成することを
特徴とする二硫化チタンの高圧合成方法。
1 Metallic titanium and sulfur at Ti/S=1/2~
A mixture of titanium metal and titanium trisulfide at a molar ratio of 0.7/2, a mixture of titanium metal and titanium trisulfide at a molar ratio of Ti/TiS 3 = 1/2 to 0.7/2, and an excess of titanium, non-stoichiometric titanium disulfide (Ti 1+ x S 2 ) and sulfur as Ti 1+x S 2 /S=
Titanium trisulfide and titanium-excess non-stoichiometric titanium disulfide (Ti 1+x S 2 ) are blended at a molar ratio of 1/2 to 0.7/2x, with Ti 1+x S 2 /TiS 3 = 1/2x to 0.7/2x
The raw material is any one set or a combination of multiple sets blended at a molar ratio of
A method for high-pressure synthesis of titanium disulfide, which is characterized by synthesizing at a reaction temperature of 600 to 1800°C while applying high pressure of 0.1 GPa (approximately 1000 atm) or higher.
JP58064871A 1983-04-13 1983-04-13 Process for high-pressure synthesis of titanium disulfide Granted JPS59190221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58064871A JPS59190221A (en) 1983-04-13 1983-04-13 Process for high-pressure synthesis of titanium disulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58064871A JPS59190221A (en) 1983-04-13 1983-04-13 Process for high-pressure synthesis of titanium disulfide

Publications (2)

Publication Number Publication Date
JPS59190221A JPS59190221A (en) 1984-10-29
JPH0247409B2 true JPH0247409B2 (en) 1990-10-19

Family

ID=13270630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58064871A Granted JPS59190221A (en) 1983-04-13 1983-04-13 Process for high-pressure synthesis of titanium disulfide

Country Status (1)

Country Link
JP (1) JPS59190221A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809574A (en) * 1996-08-15 1998-09-22 Cabot Safety Intermediate Corporation Hearing protection device

Also Published As

Publication number Publication date
JPS59190221A (en) 1984-10-29

Similar Documents

Publication Publication Date Title
Deretzis et al. Atomistic origins of CH3NH3PbI3 degradation to PbI2 in vacuum
Revolinsky et al. The selenide and telluride systems of niobium and tantalum
Martinez-Juarez et al. Reversible monoclinic-rhombohedral transformation in LiSn2 (PO4) 3 with NASICON-type structure
WO2017132815A1 (en) Infrared nonlinear optical crystals, preparation method therefor, and applications thereof
Odahara et al. Self-combustion synthesis of novel metastable ternary molybdenum nitrides
Jouanneau et al. Influence of LiF Additions on Li [Ni x Co1− 2x Mn x] O 2 Materials: Sintering, Structure, and Lithium Insertion Properties
Mori et al. Synthesis, structure and ionic conductivity of garnet like lithium ion conductor Li6. 25+ xGa0. 25La3-xSrxZr2O12
Hernan et al. Diffraction and XPS studies of misfit layer chalcogenides intercalated with cobaltocene
Aitken et al. Metamagnetic transition in EuSe2: a new, metastable binary rare-earth polychalcogenide
Krzton-Maziopa Intercalated iron chalcogenides: phase separation phenomena and superconducting properties
Mujica et al. Synthesis and crystal structure of layered chalcogenides [KCuFeS2 and KCuFeSe2]
Yang et al. The Population of Oxygen Vacancies in Li1+ y Mn2− y O 4− δ Type Cathode Materials: The Primary Factor of Temperature Dependent Structural Changes
Roy et al. Facile strategy to synthesize cesium gold-based bromide perovskites: an integrated experimental and theoretical approach to study temperature-dependent structural and optical properties
JP7034486B2 (en) Sulfide solid electrolyte
Jouanneau et al. Effect of the Sintering Agent, B 2 O 3, on Li [Ni x Co1− 2x Mn x] O 2 Materials: Density, Structure, and Electrochemical Properties
JPH0247409B2 (en)
US4545967A (en) Stabilized lanthanum sulphur compounds
Le Roy et al. Rare-earth (and yttrium)–iridium and–platinum compounds with the Fe3C structure type
US3940472A (en) Quaternary sulfides and selenides containing Ba or Sr and selected transition metals
Pathinettam Padiyan et al. X‐ray Determination of Lattice Constants of CdXSn1‐XSe Mixed Crystal Systems
Piskach et al. Phase equilibria in the Tl2S–HgS–SnS2 system at 520 K and crystal structure of Tl2HgSnS4
Kang et al. A facile synthesis and characterization of sodium bismuth sulfide (NaBiS 2) under hydrothermal condition
Orlova et al. Structure and physical properties of Mg-containing oxymolybdates La 2 MoO 6
Serrano-Sánchez et al. Structural evolution of a Ge-substituted SnSe thermoelectric material with low thermal conductivity
Kokubu et al. Biomimetic Synthesis of Metal Ion‐Doped Hierarchical Crystals Using a Gel Matrix: Formation of Cobalt‐Doped LiMn2O4 with Improved Electrochemical Properties through a Cobalt‐Doped MnCO3 Precursor