JPH0247256B2 - - Google Patents

Info

Publication number
JPH0247256B2
JPH0247256B2 JP58041889A JP4188983A JPH0247256B2 JP H0247256 B2 JPH0247256 B2 JP H0247256B2 JP 58041889 A JP58041889 A JP 58041889A JP 4188983 A JP4188983 A JP 4188983A JP H0247256 B2 JPH0247256 B2 JP H0247256B2
Authority
JP
Japan
Prior art keywords
membrane
fluorine
ultrafiltration
polymer
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58041889A
Other languages
Japanese (ja)
Other versions
JPS59169512A (en
Inventor
Takehiro Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP58041889A priority Critical patent/JPS59169512A/en
Publication of JPS59169512A publication Critical patent/JPS59169512A/en
Publication of JPH0247256B2 publication Critical patent/JPH0247256B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking

Description

【発明の詳細な説明】 本発明は、限外ロ過膜の製造法に関する。更に
詳しくは、耐容剤性を向上させた限外ロ過膜の製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an ultrafiltration membrane. More specifically, the present invention relates to a method for producing an ultrafiltration membrane with improved tolerability.

重合体膜を用いた限外ロ過膜は、主として次の
2種類に分けられる。
Ultrafiltration membranes using polymer membranes are mainly divided into the following two types.

(1) 重合体を溶剤に溶かし、キヤストすることに
よつて得られたもの。
(1) Obtained by dissolving a polymer in a solvent and casting it.

(2) このようにして得られた膜に何らかの後処理
を施し、改質させたもの。
(2) Films obtained in this way are subjected to some kind of post-treatment to modify them.

一般には、前者が殆んどであるが、この膜の耐
溶剤性は、その膜を形成する重合体のそれによつ
て決定付けられてしまう。つまり、製膜するため
には、溶剤に可溶でなければならないが、製膜後
には逆に溶けて欲しくないという矛盾がみられ、
しかるにこのタイプの膜は少くともキヤスト溶剤
に可溶であることは事実である。そこで、耐溶剤
性を向上させるために、後者のタイプの膜が提案
されるのである。
Generally, the former is the most common, but the solvent resistance of this membrane is determined by that of the polymer forming the membrane. In other words, in order to form a film, it must be soluble in a solvent, but after film formation, we do not want it to dissolve.
However, it is true that this type of membrane is soluble at least in the casting solvent. Therefore, the latter type of membrane is proposed to improve solvent resistance.

本発明者は、一般に耐溶剤性のよいフツ素系重
合体を膜形成材料として選択し、これをアミン類
で架橋せしめることにより、耐溶剤性の限外ロ過
膜を得ることができた。
The present inventor was able to obtain a solvent-resistant ultrafiltration membrane by selecting a fluorine-based polymer, which generally has good solvent resistance, as a membrane-forming material and crosslinking it with amines.

従つて、本発明は限外ロ過膜の製造法に係り、
限外ロ過膜の製造は、含フツ素重合体膜にアミン
類を反応させ、架橋構造を形成せしめることによ
り行われる。
Therefore, the present invention relates to a method for producing an ultrafiltration membrane,
The ultrafiltration membrane is produced by reacting a fluorine-containing polymer membrane with amines to form a crosslinked structure.

膜形成材料としての含フツ素重合体としては、
例えばポリフツ化ビニリデン、ポリフツ化ビニ
ル、ポリ(トリフルオロエチレン)などが用いら
れる。これらの含フツ素重合体を用いての製膜
は、従来の限外ロ過膜の場合と同様に、乾湿式法
によつて行われる。即ち、含フツ素重合体を溶
媒、一般にはジメチルホルムアミドなどの水溶性
溶媒に溶かし、その溶液をガラス板などの基質上
にキヤストした後水中に浸漬し、そこで水と溶媒
との置換が起り、重合体が固まつて、そこに非対
称構造を有する膜が形成される。
As a fluorine-containing polymer as a film-forming material,
For example, polyvinylidene fluoride, polyvinyl fluoride, poly(trifluoroethylene), etc. are used. Film formation using these fluorine-containing polymers is carried out by a dry-wet method, as in the case of conventional ultrafiltration membranes. That is, a fluorine-containing polymer is dissolved in a solvent, generally a water-soluble solvent such as dimethylformamide, and the solution is cast on a substrate such as a glass plate and then immersed in water, where water and solvent are replaced. The polymer solidifies, forming a membrane with an asymmetric structure.

このようにして得られる含フツ素重合体膜は、
アミン類と反応させ、そこに架橋構造を形成せし
せる。アミン類としては、ポリアミンまたはポリ
アミンとモノアミンとの混合物が用いられる。ポ
リアミンとしては、エチレンジアミン、トリメチ
レンジアミン、ヘキサメチレンジアミン、p−フ
エニレンジアミン、N,N,N,N′−テトラメ
チル−1,6−ジアミノヘキサンなどのジアミ
ン、1,2,3−トリアミノプロパンなどのトリ
アミンなどが用いられる。これらのポリアミンに
対し、メチルアミン、エチルアミン、アニリン、
ベンジルアミンなどのモノアミンを加えた混合物
も同様に用いることができ、この場合にはポリア
ミンは混合物の少くとも数%以上、好ましくは約
20〜90%の割合で用いられる。モノアミンの併用
は、親水性を付与することにあり、これによつて
架橋してもなお純水透過係数が増加するという効
果が期待される。
The fluorine-containing polymer film obtained in this way is
Reacts with amines to form a crosslinked structure. As the amines, polyamines or mixtures of polyamines and monoamines are used. Examples of polyamines include diamines such as ethylenediamine, trimethylenediamine, hexamethylenediamine, p-phenylenediamine, N,N,N,N'-tetramethyl-1,6-diaminohexane, 1,2,3-triamino Triamines such as propane are used. For these polyamines, methylamine, ethylamine, aniline,
Mixtures containing monoamines such as benzylamine can also be used, in which case the polyamine accounts for at least a few percent of the mixture, preferably about
Used at a rate of 20-90%. The purpose of using a monoamine in combination is to impart hydrophilicity, which is expected to have the effect of increasing the pure water permeability coefficient even after crosslinking.

含フツ素重合体膜のアミン類との反応は、含フ
ツ素重合体膜を等モル量以上、一般には大過剰の
アミン類またはその水溶液中に浸漬し、室温もし
くは加熱下(約40〜60℃)で約3〜15時間程度反
応させることにより行われ、反応させた膜は液中
から取り出して水洗する。
The reaction of a fluorine-containing polymer membrane with an amine is carried out by immersing the fluorine-containing polymer membrane in an equimolar amount or more, generally a large excess, of the amine or its aqueous solution, and then immersing it at room temperature or under heating (approximately 40 to 60 mL). ℃) for about 3 to 15 hours, and the reacted membrane is taken out of the solution and washed with water.

このような反応の結果、例えばポリフツ化ビニ
リデンはジアミン類によつて次のように架橋され
る。
As a result of such a reaction, for example, polyvinylidene fluoride is crosslinked with diamines as follows.

架橋されたフツ素系重合体膜は、もはやジメチ
ルホルムアミド、ジメチルアセトアミド、ジメチ
ルスルホキシド、ジオキサン、アセトン、メチル
エチルケトン、テトラヒドロフランなどの各種溶
剤にも不溶性となり、しかもこの膜の限外ロ過性
能は、アミン類による架橋反応前と殆んど変らな
い。従つて、耐溶剤性にすぐれているこの限限外
ロ過膜は、液体分離膜、有機溶剤中のコロイドお
よび高分子物質の分離および回収膜などとして、
それぞれ有効に使用することができる。
The crosslinked fluoropolymer membrane is no longer soluble in various solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane, acetone, methyl ethyl ketone, and tetrahydrofuran, and the ultrafiltration performance of this membrane is lower than that of amines. There is almost no difference from before the crosslinking reaction. Therefore, this ultrafiltration membrane, which has excellent solvent resistance, can be used as a liquid separation membrane, a separation and recovery membrane for colloids and polymer substances in organic solvents, etc.
Each can be used effectively.

次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例 1 ポリフツ化ビニリデン(ペンウオルト社製品
kynar)の25重量%ジメチルアセトアミド溶液
を、スペーサー厚み0.2mmでガラス板上にキヤス
トし、水を凝固剤として、乾湿式法により多孔質
膜を製造した。この多孔質膜は、純水透過係数
(Lp)1.0および分画分子量(C.M.W)6000の値
を有している。
Example 1 Polyvinylidene fluoride (Pennwalt product)
A porous membrane was produced by casting a 25% by weight solution of kynar in dimethylacetamide onto a glass plate with a spacer thickness of 0.2 mm, and using water as a coagulant by a wet-dry method. This porous membrane has a pure water permeability coefficient (Lp) of 1.0 and a molecular weight cutoff (CMW) of 6000.

次に、この膜をエチレンジアミン中に、室温で
3時間浸漬することによつて、アミノ化反応によ
る架橋を行ない、目的とする膜を得た。この膜の
限外ロ過性能(純水透過係数、分画分子量)は、
アミノ化反応前と殆んど変化はなく、しかもポリ
フツ化ビニリデンが可溶性であつたジメチルホル
ムアミドやジメチルアセトアミドに不溶性であ
る。
Next, this membrane was immersed in ethylenediamine for 3 hours at room temperature to carry out crosslinking by an amination reaction to obtain the desired membrane. The ultrafiltration performance (pure water permeability coefficient, molecular weight cutoff) of this membrane is
There is almost no change from before the amination reaction, and moreover, it is insoluble in dimethylformamide and dimethylacetamide, in which polyvinylidene fluoride is soluble.

実施例 2 実施例1で使用したポリフツ化ビニリデンのジ
メチルホルムアミド溶液を環状ノズルより紡糸
し、その際芯液および凝固液に共に水を用いた。
外径1.5mm、内径1.0mmの多孔質中空糸が得られ、
この多孔質中空糸は、純水透過係数(Lp)1.0お
よび分画分子量(C.M.W.)6000の値を有してい
る。
Example 2 The dimethylformamide solution of polyvinylidene fluoride used in Example 1 was spun through an annular nozzle, using water as both the core liquid and coagulation liquid.
A porous hollow fiber with an outer diameter of 1.5 mm and an inner diameter of 1.0 mm was obtained.
This porous hollow fiber has a pure water permeability coefficient (Lp) of 1.0 and a molecular weight cut off (CMW) of 6000.

次に、この多孔質中空糸を、実施例1と同様に
アミノ化反応により架橋させたところ、同様の限
外ロ過性能および耐溶剤性を有する多孔質中空糸
が得られた。
Next, this porous hollow fiber was crosslinked by an amination reaction in the same manner as in Example 1, and a porous hollow fiber having the same ultrafiltration performance and solvent resistance was obtained.

以上の各実施例では、平膜および中空糸につい
て説明したが、他の形状のもの、例えばチユーブ
ラー、プリーツ(蛇腹)などについても、本発明
方法の適用によつて、同等性能の製品が得られ
る。
In each of the above examples, flat membranes and hollow fibers were explained, but products with equivalent performance can be obtained with other shapes such as tubulars and pleated fibers by applying the method of the present invention. .

Claims (1)

【特許請求の範囲】 1 含フツ素重合体膜にポリアミン類を反応さ
せ、重合体のF−F原子間に架橋構造を形成せし
めることを特徴とする限外ロ過膜の製造法。 2 含フツ素重合体膜がフツ化ビニリデン重合体
膜である特許請求の範囲第1項記載の限外ロ過膜
の製造法。 3 ポリアミン類がポリアミン単独またはモノア
ミンとの混合物として用いられる特許請求の範囲
第1項記載の限外ロ過膜の製造法。
[Scope of Claims] 1. A method for producing an ultrafiltration membrane, which comprises reacting a fluorine-containing polymer membrane with a polyamine to form a crosslinked structure between F and F atoms of the polymer. 2. The method for producing an ultrafiltration membrane according to claim 1, wherein the fluorine-containing polymer membrane is a vinylidene fluoride polymer membrane. 3. The method for producing an ultrafiltration membrane according to claim 1, wherein the polyamine is used alone or as a mixture with a monoamine.
JP58041889A 1983-03-14 1983-03-14 Preparation of ultrafiltration membrane Granted JPS59169512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58041889A JPS59169512A (en) 1983-03-14 1983-03-14 Preparation of ultrafiltration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58041889A JPS59169512A (en) 1983-03-14 1983-03-14 Preparation of ultrafiltration membrane

Publications (2)

Publication Number Publication Date
JPS59169512A JPS59169512A (en) 1984-09-25
JPH0247256B2 true JPH0247256B2 (en) 1990-10-19

Family

ID=12620844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58041889A Granted JPS59169512A (en) 1983-03-14 1983-03-14 Preparation of ultrafiltration membrane

Country Status (1)

Country Link
JP (1) JPS59169512A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829235B2 (en) * 1988-03-01 1996-03-27 株式会社ユアサコーポレーション Hydrophilic microporous membrane
EP0574957B1 (en) * 1989-04-14 2002-01-02 Membrane Products Kiryat Weizmann Ltd. Acrylonitrile- and polyvinylidene fluoride-derived membranes
CA2100643A1 (en) * 1992-08-14 1994-02-15 Guido Sartori Fluorinated polyolefin membranes for aromatics/saturates separation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132905A (en) * 1982-12-27 1984-07-31 アリゲナ・ア−ゲ− Encapsulated semi-permeable membrane and production and use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132905A (en) * 1982-12-27 1984-07-31 アリゲナ・ア−ゲ− Encapsulated semi-permeable membrane and production and use thereof

Also Published As

Publication number Publication date
JPS59169512A (en) 1984-09-25

Similar Documents

Publication Publication Date Title
AU611474B2 (en) Polyamide reverse osmosis membranes
US4859384A (en) Novel polyamide reverse osmosis membranes
US6887380B2 (en) Silicone-coated organic solvent resistant polyamide composite nanofiltration membrane, and method for preparing the same
JPS59209609A (en) Permselective membrane
KR20070017740A (en) Method of manufacturing for aromatic polyamide composite membrane
JP2000325765A (en) Solvent-resistant microporous polybenzoimidazole thin film
JPH0247256B2 (en)
JP2017513701A (en) Polyaniline chlorine-resistant hydrophilic filtration membrane
KR102058631B1 (en) Method for preparing thin film nanocomposite membrane for the reverse osmosis deposited 1D nano material and thin film nanocomposite membrane prepared thereby
US4853122A (en) P-xylylenediamide/diimide composite RO membranes
KR19980068279A (en) Manufacturing method of crosslinked polyamide reverse osmosis membrane
JP2984716B2 (en) Aromatic separation membrane
KR101017896B1 (en) High chemical resistant RO membrane and method of preparing the same
CN114534515A (en) Novel polyamide reverse osmosis membrane and preparation method and application thereof
KR100817450B1 (en) Molecualr imprinted separation membrane for preparing optically pure compounds and method of preparing the same
AU616096B2 (en) P-xylylenediamide/diimide composite ro membranes
JP2900184B2 (en) Aromatic copolymer separation membrane
JPS6028803A (en) Selective permeable membrane and its manufacture
KR20100118791A (en) High chlorine resistant reverse osmosis membrane and method of preparing the same
JPH0331492B2 (en)
KR102294542B1 (en) Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR19990070134A (en) Manufacturing Method of Polyamide Composite Membrane
JP2895133B2 (en) Method for producing permselective membrane
JPH0527448B2 (en)
KR100833062B1 (en) Method of manufacturing for aromatic polyamide composite membrane