JPH0247235Y2 - - Google Patents

Info

Publication number
JPH0247235Y2
JPH0247235Y2 JP1984120221U JP12022184U JPH0247235Y2 JP H0247235 Y2 JPH0247235 Y2 JP H0247235Y2 JP 1984120221 U JP1984120221 U JP 1984120221U JP 12022184 U JP12022184 U JP 12022184U JP H0247235 Y2 JPH0247235 Y2 JP H0247235Y2
Authority
JP
Japan
Prior art keywords
intake
passage
control valve
opening
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984120221U
Other languages
Japanese (ja)
Other versions
JPS6136126U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12022184U priority Critical patent/JPS6136126U/en
Publication of JPS6136126U publication Critical patent/JPS6136126U/en
Application granted granted Critical
Publication of JPH0247235Y2 publication Critical patent/JPH0247235Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、多気筒内燃機関の吸気装置、特に機
関運転条件に応じて吸気通路の長さや形状を実質
的に可変とし、吸気系の動的慣性効果を利用して
機関の体積効率を向上する多気筒内燃機関の吸気
装置に関する。
[Detailed description of the invention] Industrial application field The present invention is an intake system for a multi-cylinder internal combustion engine, in particular, the length and shape of the intake passage are substantially variable depending on the engine operating conditions, and the dynamic inertia of the intake system is reduced. The present invention relates to an intake system for a multi-cylinder internal combustion engine that improves the volumetric efficiency of the engine by utilizing the effects.

従来の技術 多気筒内燃機関の慣性過給装置として、第1ダ
ンピングボリユーム下流側の吸気管に仕切り弁を
内蔵した第2ダンピングボリユームを接続し、こ
の仕切り弁を機関速度に応じて開閉制御し、閉弁
される低速時及び開弁される高速時の双方におい
て大きな慣性過給効果を得ようとするものがある
(実開昭58−116726号公報)。
BACKGROUND ART As an inertial supercharging device for a multi-cylinder internal combustion engine, a second damping volume with a built-in gate valve is connected to an intake pipe downstream of a first damping volume, and the gate valve is controlled to open and close according to the engine speed. There is a system that attempts to obtain a large inertial supercharging effect both at low speed when the valve is closed and at high speed when the valve is opened (Japanese Utility Model Publication No. 116726/1982).

しかし上記の装置によつても機関の全運転域に
わたつて良好な慣性過給を得るには不十分であ
り、本出願人はこれを改善するため、さきに、サ
ージタンク下流の複数の吸気管を相互に近接して
配置し、この近接配置した部分の吸気管を相互に
連通し、この連通部に制御弁を設け、低回転時に
は制御弁を閉じて前記連通を遮断し、高回転時に
は制御弁を開いて前記連通部を連通させるように
した多気筒内燃機関の吸気装置を提案した(特願
昭59−18458号)。
However, even with the above-mentioned device, it is insufficient to obtain good inertial supercharging over the entire operating range of the engine, and in order to improve this, the applicant first set up multiple intake air intakes downstream of the surge tank. The pipes are arranged close to each other, the intake pipes of the closely arranged portions are connected to each other, and a control valve is provided in this communication part, and when the rotation speed is low, the control valve is closed to cut off the communication, and when the rotation speed is high, the control valve is closed. We have proposed an intake system for a multi-cylinder internal combustion engine in which the communication portion is communicated with the control valve by opening it (Japanese Patent Application No. 18458/1982).

考案が解決すべき問題点 一般に内燃機関においては、吸気抵抗の大小に
より特に高速域での機関性能が大きく左右され
る。このため吸気系を設計する際は様々な配慮を
必要とし、吸気管の流れ抵抗をできるだけ少なく
するためには、吸気管は直管でかつその管壁部に
凹凸のないことが望ましい。しかしながら、吸気
管は車輌搭載上の制約から曲管にしなければなら
ない場合が多い。この場合吸気の流れの状態から
みて吸気管のわん曲部の外周側の流れ低抗が増大
しないよう特に考慮しなければならない。
Problems to be Solved by the Invention In general, in internal combustion engines, engine performance, especially in high-speed ranges, is greatly influenced by the magnitude of intake resistance. For this reason, various considerations must be taken when designing the intake system, and in order to minimize the flow resistance of the intake pipe, it is desirable that the intake pipe be straight and have no irregularities on its wall. However, in many cases, the intake pipe has to be a curved pipe due to vehicle mounting restrictions. In this case, in view of the state of the intake air flow, special consideration must be given so that the flow resistance on the outer peripheral side of the curved portion of the intake pipe does not increase.

一方、上記のような、各吸気管の途中に連通部
を設けてこれを開閉制御して慣性過給効果を上げ
ようとする型式の吸気装置においては、各吸気管
の前述連通部には段差が生じるのは避け難く、こ
の段差が吸気抵抗を増大するものとなる。そして
この吸気管が曲管である場合には、この通路がわ
ん曲していることと前記段差の存在とが相俟つて
吸気の流れ抵抗がさらに増大するものとなる。
On the other hand, in the above-mentioned type of intake system in which a communication part is provided in the middle of each intake pipe and the opening/closing control is controlled to increase the inertial supercharging effect, there is a step in the communication part of each intake pipe. It is unavoidable that this occurs, and this step increases the intake resistance. If the intake pipe is a curved pipe, the curved passage and the presence of the step further increase the flow resistance of the intake air.

本考案は多気筒機関の各吸気通路を連通路にて
連通した型式の吸気装置において、この吸気通路
がわん曲している場合でも吸気抵抗を低減し、そ
れにより機関性能を高めようとするものである。
This invention aims to reduce intake resistance even when the intake passages are curved in an intake system in which each intake passage of a multi-cylinder engine is connected by a communication passage, thereby improving engine performance. It is.

問題点を解決するための手段 本考案によれば、上記の問題点を解決するため
に、サージタンク下流側に、同一方向にわん曲し
た複数の吸気通路を並列配置し、この各吸気通路
を相互に連通するよう各吸気通路に開口する連通
路を設け、この連通路は、前記開口部から見て各
吸気通路の上流側及び下流側が共にこの連通路側
へわん曲するような位置に配し、前記開口部は各
吸気通路の前記わん曲部の内周側に位置せしめ、
前記連通路には前記各吸気通路を開閉制御する制
御弁を設け、この制御弁は機関の高負荷・低中速
回転域で閉じ、その他の運転域では開くよう制御
される多気筒内燃機関の吸気装置が提供される。
Means for Solving the Problems According to the present invention, in order to solve the above problems, a plurality of intake passages curved in the same direction are arranged in parallel on the downstream side of the surge tank, and each intake passage is A communication passage opening in each intake passage is provided so as to communicate with each other, and this communication passage is arranged at a position such that both an upstream side and a downstream side of each intake passage are curved toward the communication passage when viewed from the opening. and the opening portion is located on the inner peripheral side of the curved portion of each intake passage,
The communication passage is provided with a control valve that controls the opening and closing of each intake passage, and this control valve is controlled to be closed in the high load/low and medium speed rotation range of the engine and open in other operating ranges of the multi-cylinder internal combustion engine. An intake device is provided.

実施例 以下添付図面を参照して本考案の実施例につい
て説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図及び第2図において、1は多気筒内燃機
関の本体、2は吸気マニホルド、3はサージタン
ク、4は吸気ダクト、5は吸気ダクト4内に設け
られたスロツトル弁である。
1 and 2, 1 is a main body of a multi-cylinder internal combustion engine, 2 is an intake manifold, 3 is a surge tank, 4 is an intake duct, and 5 is a throttle valve provided in the intake duct 4.

図示しないエアクリーナから流入する吸入空気
は同じく図示しないエアフローメータで計量さ
れ、吸気ダクト4を通じてサージタンク3へ入
る。サージタンク3は吸気脈動を適度に減衰させ
る容積を有する。サージタンク3の下流側は、機
関本体1のそれぞれの気筒に通じる吸気通路2
a,2b,2c,2dを有する吸気マニホルド2
が接続される。各吸気通路2a,2b,2c,2
dはサージタンク3の側において相互にできるだ
け接近して配置される。また各吸気通路2a,2
b,2c,2dは共に第2図に示すように機関本
体1の外側に向けてわん曲して配置されている。
さらに各吸気通路2a,2b,2c,2dはその
中間部分において一本の横方向の連通管6に連通
し、この各連通部に、各吸気通路2a,2b,2
c,2dと連通管6との間を開閉するための吸気
制御弁7a,7b,7c,7dが設けられてい
る。また連通管6は第2図に示すように各吸気通
路2a,2b,2c,2dのわん曲部の特に内周
側に開口するように位置している。
Intake air flowing in from an air cleaner (not shown) is metered by an air flow meter (also not shown), and enters the surge tank 3 through the intake duct 4. The surge tank 3 has a volume that appropriately damps intake pulsation. The downstream side of the surge tank 3 is an intake passage 2 that leads to each cylinder of the engine body 1.
Intake manifold 2 with a, 2b, 2c, 2d
is connected. Each intake passage 2a, 2b, 2c, 2
d are arranged as close as possible to each other on the side of the surge tank 3. In addition, each intake passage 2a, 2
b, 2c, and 2d are all curved toward the outside of the engine body 1, as shown in FIG.
Further, each intake passage 2a, 2b, 2c, 2d communicates with one horizontal communication pipe 6 at its intermediate portion, and each intake passage 2a, 2b, 2
Intake control valves 7a, 7b, 7c, and 7d are provided for opening and closing between the communication pipe 6 and the communication pipe 6. Further, as shown in FIG. 2, the communication pipe 6 is located so as to open particularly toward the inner circumferential side of the curved portion of each intake passage 2a, 2b, 2c, and 2d.

上記の構成よりなる本実施例においては、吸気
制御弁7a,7b,7c,7dが閉じた時は、連
通管6がないのと同様に作用効果を有し、またこ
れらの吸気制御弁7a,7b,7c,7dを開い
た時は、連通路6を介して各吸気通路2a,2
b,2c2dが連通し、各気筒の吸気脈動が相互
に干渉して圧力変動を低下させる作用をする。
In this embodiment having the above configuration, when the intake control valves 7a, 7b, 7c, and 7d are closed, they have the same effect as if there were no communication pipe 6, and these intake control valves 7a, When 7b, 7c, and 7d are opened, each intake passage 2a, 2 is opened via the communication passage 6.
b, 2c2d communicate with each other, and the intake pulsations of each cylinder interfere with each other to reduce pressure fluctuations.

各吸気制御弁7a,7b,7c,7dの開閉制
御は、機関の高負荷・低中速回転域でこれを閉
じ、その他の運転域では開くようにする。第3図
はこの吸気制御弁の開閉と機関の負荷及び速度と
の関係をグラフで示している。なお吸気制御弁の
開閉時の機関の負荷及び回転数の設定は種々の設
計要因、例えば吸気通路の長さ、断面積、形状等
によつても異なるものである。
The opening/closing control of each intake control valve 7a, 7b, 7c, and 7d is such that it is closed in a high-load, low-to-medium-speed rotation range of the engine, and opened in other operating ranges. FIG. 3 graphically shows the relationship between the opening and closing of this intake control valve and the engine load and speed. Note that the settings of the engine load and rotational speed when the intake control valve is opened and closed vary depending on various design factors, such as the length, cross-sectional area, shape, etc. of the intake passage.

第4図は吸気制御弁を開閉制御した場合の体積
効率の変化を示したものである。同図において吸
気制御弁を閉じた時の体積効率の変化を1点鎖線
で示し、開いた時の体積効率の変化を破線で示し
ている。機関の低中速域では吸気制御弁を閉じた
方が吸気脈動の干渉による減衰作用が生ぜず、従
つて吸気脈動を利用した体積効率が上昇する(ピ
ークA)。また高速域では逆に、吸気制御弁を開
いた方が、吸気脈動の干渉効果を積極的に利用で
きるので、閉じた場合よりも体積効率を高くする
ことができる(ピークB)。従つて本実施例によ
れば、機関速度の変化に応じて吸気制御弁を開閉
制御することにより実線で示したような体積効率
が得られることになる。
FIG. 4 shows changes in volumetric efficiency when the intake control valve is controlled to open and close. In the figure, the change in volumetric efficiency when the intake control valve is closed is shown by a dashed-dotted line, and the change in volumetric efficiency when it is opened is shown by a broken line. In the low and medium speed range of the engine, when the intake control valve is closed, the damping effect due to the interference of the intake pulsation does not occur, and therefore the volumetric efficiency using the intake pulsation increases (peak A). Conversely, in a high-speed range, opening the intake control valve allows more active use of the interference effect of intake pulsation, so the volumetric efficiency can be made higher than when it is closed (peak B). Therefore, according to this embodiment, the volumetric efficiency shown by the solid line can be obtained by controlling the opening and closing of the intake control valve in accordance with changes in engine speed.

上記の吸気制御を行うに際し、本実施例におい
ては、各吸気通路2a,2b,2c,2dがわん
曲して配置されているのに対応してこれら各吸気
通路を連通させる連通管6は特にそのわん曲部の
内周側に開口するように位置しているので、その
遠心力により大部分が各吸気通路外周側内壁に沿
つて流れる各吸気通路中の吸気は、連通管を設け
たことによる各吸気管の内壁の形状変化の影響を
受けることはない。したがつて各吸気通路2a,
2b,2c,2dがわん曲していても吸気抵抗を
特に増大させることがなくなる。
When performing the above-mentioned intake control, in this embodiment, since the intake passages 2a, 2b, 2c, and 2d are arranged in a curved manner, the communication pipe 6 that connects these intake passages is particularly designed. Since the curved portion is located so as to open on the inner circumference side, most of the air in each intake passage flows along the inner wall on the outer circumference side of each intake passage due to the centrifugal force. It is not affected by changes in the shape of the inner wall of each intake pipe due to Therefore, each intake passage 2a,
Even if 2b, 2c, and 2d are curved, the intake resistance will not be particularly increased.

考案の効果 本考案によれば、機関の広範囲な運転域にわた
り高い体積効率が得られるのみでなく、各吸気通
路がわん曲された状態で配置されていても、これ
らの吸気通路の連通管がそのわん曲部の内周側に
開口するように位置しているため、各吸気通路の
わん曲外周側の内壁面は前記連通管設置に伴う形
状の変化を生じることがなく、吸気の大部分はこ
のわん曲部外周側内壁面に沿つて流れることがで
き、したがつてこの種の多気筒内燃機関の吸気装
置において吸気抵抗の増大することが防止でき、
機関の高出力が得られるものとなる。
Effects of the invention According to the invention, not only can high volumetric efficiency be obtained over a wide operating range of the engine, but even if each intake passage is arranged in a curved state, the communication pipes of these intake passages can be Since it is located so as to open on the inner circumference side of the curved portion, the inner wall surface on the curved outer circumference side of each intake passage does not change in shape due to the installation of the communication pipe, and most of the intake air can flow along the inner wall surface on the outer circumferential side of this curved portion, and therefore, an increase in intake resistance can be prevented in the intake system of this type of multi-cylinder internal combustion engine.
This results in high engine output.

また連通管を各吸気通路の内側に配置すること
により吸気装置全体がコンパクトとなり車輌搭載
上も有利なものとなる。
Further, by arranging the communication pipes inside each intake passage, the entire intake device becomes compact and is advantageous in terms of installation in a vehicle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示す正面図、第2図
は同上実施例の側面断面図、第3図は吸気制御弁
の開閉と機関の負荷及び速度との関係を示す図、
第4図は吸気制御弁の開閉制御により体積効率の
変化する状態を示す図である。 1……機関本体、2a,2b,2c,2d……
吸気通路、3……サージタンク、6……連通管、
7a,7b,7c,7d……吸気制御弁。
FIG. 1 is a front view showing an embodiment of the present invention, FIG. 2 is a side sectional view of the same embodiment, and FIG. 3 is a diagram showing the relationship between opening and closing of the intake control valve and engine load and speed.
FIG. 4 is a diagram showing how the volumetric efficiency changes due to the opening/closing control of the intake control valve. 1... Engine body, 2a, 2b, 2c, 2d...
Intake passage, 3...Surge tank, 6...Communication pipe,
7a, 7b, 7c, 7d... Intake control valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] サージタンク下流側に、同一方向にわん曲した
複数の吸気通路を並列配置し、この各吸気通路を
相互に連通するよう各吸気通路に開口する連通路
を設け、この連通路は、前記開口部から見て各吸
気通路の上流側及び下流側が共にこの連通路側へ
わん曲するような位置に配し、前記開口部は各吸
気通路の前記わん曲部の内周側に位置せしめ、前
記連通路には前記各吸気通路を開閉制御する制御
弁を設け、この制御弁は機関の高負荷・低中速回
転域で閉じ、その他の運転域では開くよう制御さ
れる多気筒内燃機関の吸気装置。
A plurality of intake passages curved in the same direction are arranged in parallel on the downstream side of the surge tank, and a communication passage opening in each intake passage is provided so that the intake passages communicate with each other. The upstream and downstream sides of each intake passage are both curved toward the communication passage when viewed from above, and the opening is located on the inner circumferential side of the curved part of each intake passage, and A control valve for controlling the opening and closing of each intake passage is provided in the passage, and the control valve is controlled to be closed in a high load/low to medium speed rotation range of the engine and opened in other operating ranges. .
JP12022184U 1984-08-06 1984-08-06 Intake system for multi-cylinder internal combustion engine Granted JPS6136126U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12022184U JPS6136126U (en) 1984-08-06 1984-08-06 Intake system for multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12022184U JPS6136126U (en) 1984-08-06 1984-08-06 Intake system for multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPS6136126U JPS6136126U (en) 1986-03-06
JPH0247235Y2 true JPH0247235Y2 (en) 1990-12-12

Family

ID=30679052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12022184U Granted JPS6136126U (en) 1984-08-06 1984-08-06 Intake system for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6136126U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116019A (en) * 1984-11-08 1986-06-03 Mazda Motor Corp Engine intake-air device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534007B2 (en) * 1975-02-27 1978-02-13

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534007U (en) * 1976-06-29 1978-01-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534007B2 (en) * 1975-02-27 1978-02-13

Also Published As

Publication number Publication date
JPS6136126U (en) 1986-03-06

Similar Documents

Publication Publication Date Title
JPS62228622A (en) Suction device for engine
JPS60164619A (en) Suction device for multicylinder internal-combustion engine
JP4032906B2 (en) Multi-cylinder engine intake system
JPH0247235Y2 (en)
JP4006789B2 (en) Intake device for internal combustion engine
JPS61187520A (en) Intake device of engine
JPH01190921A (en) Twin turbo type internal combustion engine
JP2537076B2 (en) Internal combustion engine intake system
JPH0240267Y2 (en)
JPH0437229Y2 (en)
JP2899734B2 (en) Intake device for internal combustion engine
JPH0320499Y2 (en)
JPH0528338Y2 (en)
JPH0241310Y2 (en)
JPS62126223A (en) Exhaust device for multicylinder engine
JPH0716031Y2 (en) Variable intake system for multi-cylinder internal combustion engine
JP2507971Y2 (en) Engine intake system
JPH0320497Y2 (en)
JPS6131147Y2 (en)
JPS614821A (en) Intake device for internal-combustion engine
JPH0738661Y2 (en) Engine intake system
JPH0639054Y2 (en) Engine intake system
JPH0212271Y2 (en)
JPH0612199Y2 (en) Intake manifold structure for engine
JPH11159332A (en) Variable intake device for multicylinder engine