JPH0247173B2 - - Google Patents

Info

Publication number
JPH0247173B2
JPH0247173B2 JP58076607A JP7660783A JPH0247173B2 JP H0247173 B2 JPH0247173 B2 JP H0247173B2 JP 58076607 A JP58076607 A JP 58076607A JP 7660783 A JP7660783 A JP 7660783A JP H0247173 B2 JPH0247173 B2 JP H0247173B2
Authority
JP
Japan
Prior art keywords
current
voltage
output signal
suppression
proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58076607A
Other languages
Japanese (ja)
Other versions
JPS59201631A (en
Inventor
Nobuo Eda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58076607A priority Critical patent/JPS59201631A/en
Publication of JPS59201631A publication Critical patent/JPS59201631A/en
Publication of JPH0247173B2 publication Critical patent/JPH0247173B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は電力系統の母線事故を検出する母線
保護継電器に関するものであ。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a busbar protection relay for detecting a busbar fault in a power system.

従来この種の装置として、第1図に示すものが
あつた。図において1は母線、2―1〜2―nは
母線1に接続された送電線、変圧器等の端子に設
置された変流器(以下CTと略す)、3―1〜3―
nはCT2―1〜2―nの2次電流に比例した出
力信号と取り出す入力装置で、次のものより構成
されている。即ち、4,5はトランスで、トラン
ス4は差動トランス、トランス5は抑制トランス
と称される。6は抵抗、7は全波整流回路でトラ
ンス5、抵抗6、全波整流回路7から構成される
部分は抑制出力回路と称する。
A conventional device of this type is shown in FIG. In the figure, 1 is a bus bar, 2-1 to 2-n are power transmission lines connected to bus 1, current transformers (hereinafter abbreviated as CT) installed at the terminals of transformers, etc., 3-1 to 3-
n is an input device for taking out an output signal proportional to the secondary current of CT2-1 to CT2-n, and is composed of the following items. That is, 4 and 5 are transformers, transformer 4 is called a differential transformer, and transformer 5 is called a suppression transformer. 6 is a resistor, 7 is a full-wave rectifier circuit, and the portion consisting of the transformer 5, resistor 6, and full-wave rectifier circuit 7 is called a suppression output circuit.

母線1に接続される全送電線の各回線のCT2
―1〜2―nに対して入力装置3―1と同じ構成
の入力装置を有し、これ以後の入力装置3―2〜
3―nで示している。8は母線保護継電器で次の
ものより構成されている。即ち、9,10はトラ
ンスでトランス9は差動トランス、トランス10
は抑制制御トランスと称する。11,12は全波
整流回路、13〜16は抵抗、17はコンデン
サ、18はレベル検出回路である。
CT2 of each line of all transmission lines connected to bus 1
-1 to 2-n have an input device with the same configuration as input device 3-1, and subsequent input devices 3-2 to
It is indicated by 3-n. 8 is a bus protection relay, which is composed of the following items. That is, 9 and 10 are transformers, transformer 9 is a differential transformer, and transformer 10
is called a suppression control transformer. 11 and 12 are full-wave rectifier circuits, 13 to 16 are resistors, 17 is a capacitor, and 18 is a level detection circuit.

次に動作について説明する。入力装置3―1〜
3―nに内蔵の差動トランス4の出力信号は全部
並列接続されていて、この出力信号(以下差動電
流と称する)を母線保護継電器8のトランス9,
10の各一次巻線の直列回路に導入する。次に入
力装置3―1〜3―nに内蔵の抑制出力回路の出
力信号を全部並列接続して、この出力信号(以下
抑制電圧と称する)を母線保護継電器8の抵抗1
4の両端に導入する。以上の回路構成でトランス
9,10に導入される差動電流は、キルヒホツク
の第1法則が成りたつようにCT2―1〜2―n
およびトランス4で総合変流比が全回線同一にな
るようにしているため平常時および母線外部事故
時は零であり、母線内部事故時は事故電流に比例
した電流となり、母線事故検出の基本量となるも
のである。上記の原則が成りたつのはCT2―1
〜2―n又はトランス4が飽和しない場合である
が、母線外部事故で大電流がCT2―1〜2―n
を貫通した場合はCT2―1〜2―nの飽和のた
め差動電流が零とならない場合がある。この様子
を第2図で説明する。
Next, the operation will be explained. Input device 3-1~
All the output signals of the differential transformer 4 built in 3-n are connected in parallel, and this output signal (hereinafter referred to as differential current) is sent to the transformer 9 of the bus protection relay 8,
Each of the 10 primary windings is introduced into a series circuit. Next, all the output signals of the built-in suppression output circuit are connected in parallel to the input devices 3-1 to 3-n, and this output signal (hereinafter referred to as suppression voltage) is applied to the resistor 1 of the bus protection relay 8.
Introduce it at both ends of 4. With the above circuit configuration, the differential current introduced into the transformers 9 and 10 is calculated as CT2-1 to CT2-n so that Kirchhock's first law is satisfied.
Since the total current transformation ratio is made to be the same for all lines in transformer 4, it is zero during normal times and when a fault occurs outside the bus, and when a fault occurs inside the bus, the current becomes proportional to the fault current, which is the basic value for bus fault detection. This is the result. The above principle holds true in CT2-1
~2-n or transformer 4 is not saturated, but due to an external fault on the bus, a large current can cause CT2-1 to CT2-2-n
If the current passes through CT2-1 to CT2-n, the differential current may not become zero due to saturation of CT2-1 to CT2-n. This situation will be explained with reference to FIG.

第2図aではΣIINは母線に流入する電流の総和
であり、同図bではIOUTは母線より外部事故点に
向いて流出する電流波形を表わしている。CT2
―1〜2―nが飽和しない場合は電流IOUTは第2
図aのΣIINと同じ大きさで位相のみが180゜異なつ
ているが、第2図bに示す例では、外部事故端の
CT2―1〜2―nが飽和し電両IOUTが途中で極
端に小さくなつたケースを示している。したがつ
て母線保護継電器8のトランス9,10には電流
ΣIINとIOUTのベクトル電流合成値IDが第2図cの
波形として印加されることになり、これは誤差の
差動電流という事になる。CT2―1〜2―n又
はトランス4が飽和しなければ前述の通り外部事
故時における差動電流IDは零のため誤動作するこ
とはないが、実際には第2図に示すようにCT飽
和を生じるためその対策を要することになる。従
来はこの対策として次のようにしている。入力装
置3―1〜3―nのトランス5、抵抗6、全波整
流回路7を介して導出する抑制出力信号はCT2
―1〜2―nの各2次電流に比例した電圧を全波
整流したもので、これを全回線並列接続している
ため、各回線のCT2―1〜2―nの2次電流中
最も大きい電流に比例した出力信号を導出する最
大値抑制方式となつている。したがつて外部事故
時は外部事故端の電流値が最も大きいため、これ
に比例すると考えてよい。この抑制電圧|ET
は母線保護継電器8の抵抗14の両端に導入し、
さらに抵抗15を介して抵抗16の両端に第2図
dに示した抑制電圧|ER|を導出するようにし
ている。
In FIG. 2a, ΣI IN is the sum of the current flowing into the bus, and in FIG. 2b, I OUT represents the current waveform flowing out from the bus toward the external fault point. CT2
-1 to 2-If n is not saturated, the current I OUT is the second
The magnitude is the same as ΣI IN in Figure a, only the phase is different by 180°, but in the example shown in Figure 2 b, the external fault end
This shows a case where CT2-1 to CT2-2-n are saturated and the voltage I OUT becomes extremely small midway through. Therefore, the vector current composite value I D of the currents ΣI IN and I OUT is applied to the transformers 9 and 10 of the bus protection relay 8 as the waveform shown in Figure 2c, and this is called the error differential current. It's going to happen. If CT2-1 to 2-n or transformer 4 are not saturated, the differential current I D at the time of an external fault will be zero as described above, so there will be no malfunction, but in reality, as shown in Figure 2, CT saturation occurs. Therefore, countermeasures are required. Conventionally, the following countermeasures have been taken: The suppression output signal derived via the transformer 5, resistor 6, and full-wave rectifier circuit 7 of the input devices 3-1 to 3-n is CT2.
It is a full-wave rectified voltage proportional to each secondary current of CT2-1 to CT2-n of each line, and since all lines are connected in parallel, the voltage proportional to the secondary current of CT2-1 to CT2-n of each line is the highest It uses a maximum value suppression method that derives an output signal proportional to a large current. Therefore, at the time of an external fault, the current value at the external fault end is the largest, so it can be considered that the current value is proportional to this. This suppression voltage | E T |
is introduced across the resistor 14 of the bus protection relay 8,
Furthermore, the suppression voltage |E R | shown in FIG. 2d is derived across the resistor 16 via the resistor 15.

一方CT2―1〜2―nの飽和による誤差電流
IDはトランス9に流れ、これに比例した出力が全
波整流回路11を介して抵抗13の両端に動作電
圧|EO|として発生する。母線保護継電器8は
前記動作電圧|EO|が抑制電圧|ER|より大き
くなつた場合に動作するものであるが、外部事故
時に発生する抑制電圧|ER|はCT2―1〜2―
nの誤差電流IDによる動作電圧|EO|より充分大
きくなるように抑制出力電圧値を設定している。
外部事故で誤動作させないためには、この抑制電
圧|ER|ができるだけ大きい方が有利であるが、
これが大きすぎると内部事故時に動作しなくなる
危険性があるため、この対策としてトランス1
0、全波整流回路12を介して抵抗15の両端に
差動電流に比例した抑制制御電圧|EP|を発生
させるようにして内部事故時に発生する差動電流
を利用して、抵抗14の両端に発生する抑制電圧
が抵抗16に伝達されないように抑制力を制御し
ている。この回路において問題となるのは、外部
事故時にCT2―1〜2―nが飽和して誤差差動
電流を生じ抑制制御電圧|EP|が発生した場合
抵抗14に導入された抑制電圧|ET|が抑制制
御電圧|EP|で打ち消されないという点である
が、これは第2図に示す通り対策している。
On the other hand, error current due to saturation of CT2-1 to 2-n
I D flows into the transformer 9, and an output proportional to this is generated across the resistor 13 via the full-wave rectifier circuit 11 as an operating voltage |E O |. The busbar protection relay 8 operates when the operating voltage |E O | becomes greater than the suppression voltage | ER
The suppression output voltage value is set to be sufficiently larger than the operating voltage |E O | due to the error current ID of n.
In order to prevent malfunctions due to external accidents, it is advantageous for this suppression voltage |E R | to be as large as possible.
If this is too large, there is a risk that it will not work in the event of an internal accident, so as a countermeasure,
0, a suppressing control voltage |E P The suppressing force is controlled so that the suppressing voltage generated at both ends is not transmitted to the resistor 16. The problem with this circuit is that when an external fault occurs, CT2-1 to CT2-2-n are saturated and an error differential current is generated, and when the suppression control voltage |E P | occurs, the suppression voltage |E introduced into the resistor 14 The point is that T | is not canceled by the suppression control voltage |E P |, but this is taken care of as shown in FIG.

前述の通り入力装置3―1〜3―nより導出さ
れる抑制電圧は各CT2次電流の内最大のものに比
例するため、外部事故時は外部事故端CTの2次
電流に比例することになり第2図の波形IOUTに比
例した出力信号となりこれが母線保護継電器8の
抑制入力抵抗14の両端に印加される。又CT飽
和による誤差差動電流は流入電流の和と流出電流
の差であるため第2図cの電流波形IDとなり、こ
れは母線保護継電器8の動作出力用トランス9と
抑制制御用トランス10に流れる。このような状
態において抑制出力抵抗16の両端に発生する電
圧|ER|は抵抗14の両端電圧|ET|(電流IOUT
に比例した電圧)から抵抗15の両端電圧|EP
|(電流IDに比例した電圧)を差し引いたもので
あり、この波形は第2図dの電圧波形|ER|の
ようになる。なおこの電圧波形|ER|の斜線部
はコンデンサ17の効果であり、誤差差動電流ID
が発生している期間抑制出力電圧|ER|を継続
させておくためのものである。
As mentioned above, the suppression voltage derived from the input devices 3-1 to 3-n is proportional to the maximum of the CT secondary currents, so in the event of an external fault, it will be proportional to the secondary current of the external fault terminal CT. This results in an output signal proportional to the waveform I OUT shown in FIG. 2, which is applied to both ends of the suppression input resistor 14 of the bus protection relay 8. Also, since the error differential current due to CT saturation is the difference between the sum of the inflow current and the outflow current, it becomes the current waveform I D shown in Fig. 2c, which is generated by the operation output transformer 9 of the bus protection relay 8 and the suppression control transformer 10. flows to In such a state, the voltage |E R | generated across the suppression output resistor 16 is equal to the voltage across the resistor 14 |E T |(current I OUT
(voltage proportional to ) to voltage across resistor 15 | E P
|(voltage proportional to current ID ), and this waveform becomes like the voltage waveform |E R | in FIG. 2d. Note that the shaded part of this voltage waveform |E R | is the effect of the capacitor 17, and the error differential current I D
This is to maintain the suppressed output voltage |E R | during the period in which it is occurring.

従来の母線保護継電器は以上のように構成され
ているので抑制出力抵抗16の両端に瞬間電圧が
入ればコンデンサ17の影響で抑制力が長く継続
することになるので母線内部事故時はこのような
状態になる事を防止しなければならない。したが
つて従来は母線内部事故時に発生する端子抑制電
圧|ET|即ち抵抗14の両端電圧と抑制制御電
圧|EP|即ち抵抗15の両端電圧の位相関係を
精密に調整し必ず電圧|EP|の方が電圧|ET
より早く発生するようにしており、この調整が大
変煩雑であるという欠点があつた。この欠点の影
響が最も大きく表われるのは母線事故時各送電線
から流入してくる電流に位相差がある場合であ
り、従来は実用上問題ないように調整はしている
が、原理的にその性能限界はある。この限界状態
を第3図に示す。第3図aにおいて電流波形IT1
IT2は母線に流入する各CTの2次電流波形、また
電流波形IDは差動電流で電流IT1とIT2のベクトル
合成値、同図bの電圧波形|ET|は電流IT1,IT2
に比例した出力電圧を全波整流し、その最大値を
取り出したものであり抑制入力電圧として母線保
護継電器8の抵抗14に導入される。同図c,d
の電圧波形|ED|,|EP|は差動電流IDに比例し
た電圧を全波整流したもので各々抵抗13,15
の両端に発生する電圧波形を表わしている。した
がつて抵抗16の両端に発生する電圧|ER|は
電圧|ET|と電圧|EP|の差であるため第3図
eの|ET|―|EP|のような波形となり、これ
が適当な定数で増幅され第3図fのような電圧波
形|ER|のようになる。なお斜線部はコンデン
サ17の効果によるものである。以上説明したよ
うに内部事故時に第3図a乃至fのような限界状
態となれば従来の母線保護継電器8では誤不動作
ということになる。
Conventional busbar protection relays are configured as described above, so if an instantaneous voltage is applied across the suppression output resistor 16, the suppression force will continue for a long time due to the influence of the capacitor 17, so in the event of an internal busbar accident, We must prevent this from happening. Therefore, in the past, the terminal suppression voltage that occurs in the event of an internal fault in the busbar |E T |, that is, the voltage across the resistor 14 and the suppression control voltage |E P | is more voltage | E T |
This has the disadvantage that this adjustment is very complicated, as it is made to occur earlier. The effect of this drawback is most noticeable when there is a phase difference between the currents flowing in from each transmission line during a bus fault. Conventionally, adjustments have been made so that there is no problem in practice, but There are limits to its performance. This limit state is shown in FIG. In Fig. 3a, the current waveform I T1 ,
I T2 is the secondary current waveform of each CT flowing into the bus bar, current waveform I D is the differential current, which is the vector composite value of currents I T1 and I T2 , and voltage waveform |E T | in the same figure b is the current I T1 ,I T2
The output voltage proportional to the output voltage is full-wave rectified, and its maximum value is extracted and introduced into the resistor 14 of the bus protection relay 8 as a suppressing input voltage. Figure c, d
The voltage waveforms |E D |, |E P | are full-wave rectified voltages proportional to the differential current I
It represents the voltage waveform generated at both ends of . Therefore, the voltage |E R | generated across the resistor 16 is the difference between the voltage |E T | and the voltage |E P |, so the waveform is as shown in FIG. This is amplified by an appropriate constant and becomes a voltage waveform |E R | as shown in FIG. 3(f). Note that the shaded area is due to the effect of the capacitor 17. As explained above, if the limit state as shown in FIGS. 3a to 3f occurs in the event of an internal accident, the conventional bus protection relay 8 will malfunction.

この発明は、上記のような従来のものの欠点を
除去するためになされたもので、母線内部事故時
に不要な抑制電圧が発生しないように抑制制御回
路を改善し、精密な時間協調をしなくても確実に
目的を達することができ、誤不動作することがな
く、簡単な構成で高性能な特性を確保できる母線
保護継電器を提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it improves the suppression control circuit so that unnecessary suppression voltage is not generated in the event of an internal bus fault, and eliminates the need for precise time coordination. It is an object of the present invention to provide a busbar protection relay that can reliably achieve its purpose, prevent malfunctions, and ensure high performance characteristics with a simple configuration.

以下この発明の一実施例の母線保護継電装置を
図について説明する。第4図は本実施例の母線保
護継電装置の原理回路図を示している。第4図に
おいて18―1,18―2はレベル検出回路、1
9は3次コイル付トランス、20,21,25は
いずれも抵抗、22はコンデンサ、23,24は
ダイオード、28は信号引延し回路、26は
NOT回路、27はAND回路である。尚上記以外
は第1図に示した符号と同一であり、図中同一符
号は同一又は相当部分を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A busbar protection relay device according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 4 shows a principle circuit diagram of the busbar protection relay device of this embodiment. In Fig. 4, 18-1 and 18-2 are level detection circuits, 1
9 is a transformer with a tertiary coil, 20, 21, and 25 are all resistors, 22 is a capacitor, 23 and 24 are diodes, 28 is a signal extension circuit, and 26 is a
The NOT circuit and 27 are an AND circuit. Components other than the above are the same as the reference numerals shown in FIG. 1, and the same reference numerals in the figure indicate the same or corresponding parts.

トランス19は従来のトランス9,10に相当
するものであり、1次コイル19aに入力される
差動電流IDに比例した出力を2次コイル19b及
び3次コイル19cに導出する。トランス19の
2次コイル19bに接続した抵抗20で差動電流
IDに比例した検出電圧E〓Oを導出し、これを全波整
流回路11で整流し、抵抗13を介して、電圧|
EO|に比例した動作出力電流|IO|として導出す
る。
The transformer 19 corresponds to the conventional transformers 9 and 10, and outputs an output proportional to the differential current ID input to the primary coil 19a to the secondary coil 19b and the tertiary coil 19c. The differential current is generated by the resistor 20 connected to the secondary coil 19b of the transformer 19.
A detection voltage E〓 O proportional to I D is derived, rectified by a full-wave rectifier circuit 11, and passed through a resistor 13 to generate a voltage |
It is derived as the operating output current |I O | proportional to E O |.

トランス19の3次コイル19cには、前記電
圧EOに比例した電圧|EP|が発生し、これをダ
イオード23で整流し、抵抗15を介して電圧|
EP|に比例した電流|IP|を得る。さらにトラン
ス19の3次コイル19cの端子電圧EPを抵抗
21、コンデンサ22より構成した位相シフト回
路29に導入し、抵抗21とコンデンサ22の中
間点とトランス19の3次コイル19cの中間タ
ツプ間に出力電圧KEP<θ=EP′(Kは定数、<θ
はEPとEP′の位相角を示す)を得て、これをダイ
オード24で整流し抵抗25を介して電圧|
EP′|に比例して電流|IP′|を得る。又一方、抵
抗16には第1図のように入力装置3―1〜3―
nより導出された抑制電圧|ET|が印加される
ようになつており、この電圧|ET|に比例した
電流|IT|を得るようにしている。
A voltage |E P | proportional to the voltage E O is generated in the tertiary coil 19c of the transformer 19, and this is rectified by the diode 23, and the voltage |E P | is generated through the resistor 15.
Obtain a current |I P | proportional to E P |. Furthermore, the terminal voltage E P of the tertiary coil 19c of the transformer 19 is introduced into a phase shift circuit 29 composed of a resistor 21 and a capacitor 22, and is applied between the midpoint between the resistor 21 and the capacitor 22 and the midpoint tap of the tertiary coil 19c of the transformer 19. The output voltage KE P <θ=E P ′ (K is a constant, <θ
represents the phase angle between E P and E P ′), which is rectified by the diode 24 and then converted to a voltage via the resistor 25 |
Obtain the current |I P ′| in proportion to E P ′|. On the other hand, the resistor 16 is connected to input devices 3-1 to 3-3 as shown in FIG.
A suppression voltage |E T | derived from n is applied, and a current |I T | proportional to this voltage |E T | is obtained.

以上の回路構成で、入力される差動電流IDが一
定値以上であればレベル検出回路18―1は出力
信号S1を出す。レベル検出回路18―2が動作す
れば、信号引延し回路28でその出力信号S2を一
定時間引延し、その間AND回路27の出力をロ
ツクするようにNOT回路26を介して接続して
いる。したがつてレベル検出回路18―2が瞬間
動作すれば、一定時間は母線保護継電器8の動作
をロツクすることになり、従来の第1図に示した
抑制出力引延し回路用コンデンサ17の効果と同
じである。レベル検出回路18―2の動作は抑制
出力|ET|と差動電流IDの瞬時値比較で演算され
ることになり動作式は|IT|−(|IP|+|IP′|)
>K(但しKは定数)で示すことができる。
With the above circuit configuration, the level detection circuit 18-1 outputs an output signal S1 if the input differential current ID is equal to or greater than a certain value. When the level detection circuit 18-2 operates, the signal extension circuit 28 extends its output signal S2 for a certain period of time, and during this time it is connected via the NOT circuit 26 to lock the output of the AND circuit 27. There is. Therefore, if the level detection circuit 18-2 operates instantaneously, the operation of the bus protection relay 8 will be locked for a certain period of time, and the effect of the conventional suppressing output extension circuit capacitor 17 shown in FIG. is the same as The operation of the level detection circuit 18-2 is calculated by comparing the instantaneous values of the suppression output |E T | and the differential current I D , and the operation formula is |I T |−(|I P |+|I P ′ |)
>K (where K is a constant).

次に本発明の効果と特長を第5図、第6図に基
づいて説明する。第5図は内部事故時の場合であ
り、また第6図は外部事故時の場合に於る各部の
信号波形図を示す。第5図の信号波形図は従来の
母線保護継電器に関する第3図の信号波形図に対
比しており、内部事故時に各回線から流入する電
流IT1,IT2に位相差がある場合の限界状態での動
作を説明するものである。第5図a,b,cに示
す電流、電圧波形ID,|ET|,|ED|は夫々第3図
a,b,cで説明したので、ここでは詳細説明を
省略する。電圧波形|ET|は端子抑制電圧で電
流IT1,IT2に比例した電圧を全波整流し、その内
の最大値を取り出したものである。第5図dの様
に、この電圧|ET|に比例した電流|IT|を差動
電流IDに比例した電流|IP|又は|IP′|で抑制制
御し、第5図eで示す|IT|−(|IP|+|IP′|)
なる出力信号をレベル検出器18―2で検出する
ようにしている。このため、第5図に示す通り従
来は電圧出力信号|EP|に比例した電流出力信
号|IP|だけでは充分消去できなかつた電流出力
信号|IT|が、電流信号|IP′|の補償出力で完全
に打ち消すことができるものである。
Next, the effects and features of the present invention will be explained based on FIGS. 5 and 6. FIG. 5 shows the case when an internal accident occurs, and FIG. 6 shows signal waveform diagrams of various parts when an external accident occurs. The signal waveform diagram in Figure 5 is compared to the signal waveform diagram in Figure 3 for a conventional bus protection relay, and is the limit state when there is a phase difference between the currents I T1 and I T2 flowing from each line in the event of an internal fault. This explains the operation. The current and voltage waveforms ID , | ET |, and | ED | shown in FIGS. 5a, b, and c have been explained in FIGS. 3a, b, and c, respectively, so detailed explanations thereof will be omitted here. The voltage waveform |E T | is a terminal suppression voltage obtained by full-wave rectification of the voltage proportional to the currents I T1 and I T2 , and the maximum value thereof is extracted. As shown in Fig. 5d, the current |I T | proportional to this voltage |E T | is suppressed and controlled by the current |I P | or |I P ′| proportional to the differential current I D. Indicated by e | I T | − ( | I P | + | I P ′ |)
The level detector 18-2 detects the output signal. Therefore, as shown in FIG. 5, the current output signal |I T |, which conventionally could not be erased sufficiently by the current output signal |I P | proportional to the voltage output signal |E P |, is replaced by the current signal |I P ′. This can be completely canceled out by the compensation output of |.

なお内部事故時の端子抑制電流|IT|は第1図
に示した各CT2―1〜2―nの2次電流中最大
のものに比例する抑制方式であるため比例係数を
1とすれば必ず差動電流IDに比例した電流出力信
号|IP|の方が大きい関係にあるため演算式|IT
|−(|IP|+|IP′|)=|ET|−(K1|ID|+K2
|ID|∠θ|)の定数K1,K2,∠θを適切に選
べば内部事故時には必ず|IP|+|IP′|>I|T
|とすることが可能であり、従来のように内部事
故時に各回線から流入する電流に位相差があつた
場合、差動電流のみでは消去できない部分を、|
IP′|で確実に補償することができる効果が明確
である。
Note that the terminal suppression current |I T | at the time of an internal fault is a suppression method that is proportional to the maximum secondary current of each CT2-1 to 2-n shown in Figure 1, so if the proportional coefficient is 1, then Since the current output signal |I P | that is always proportional to the differential current I D is larger, the calculation formula | I T
|−(|I P |+|I P ′|)=|E T |−(K 1 |I D |+K 2
If the constants K 1 , K 2 , and ∠θ of |I D | ∠θ |
If there is a phase difference in the current flowing in from each line during an internal fault as in the past, the part that cannot be erased by differential current alone can be
It is clear that the effect can be reliably compensated for by I P ′|.

次に第6図は外部事故時の場合に於る各部の信
号波形図について述べる。これは従来の第2図に
示した信号波形図と対比するものである。同図a
の電流波形ΣIINは流入電流の和を、同図bの電流
信号IOUTは流出電流でCT飽和を生じた場合の波
形を、同図cの電圧信号|ET|は端子抑制電圧
で電流IOUTに比例したもの、さらに同図dの電圧
信号|ED|は誤差差動電流ID=ΣIIN−IOUTに比例
したものである。同図eの抑制制御出力信号|IP
|は同図dの電圧信号|ED|の波形と同じであ
り、前述の通りK1|ID|に比例し、電流信号|
IP′|はK2|ID∠θ|に比例したものである。図示
の通りCT飽和を生じてない領域では誤差の差動
出力|ED|は発生しないで、飽和が開始すれば
|ED|が除々に大きくなり完全飽和の域になれ
ばCT2―1〜2―nの2次電流はIOUTの波形に
示すようにほとんど零となつてしまう。この飽和
はCT2―1〜2―nの1次電流の方向が逆転す
る(例えば正波より負波になる)まで継続する
が、そこから逆方向の飽和点までは2次電流が発
生することになる。したがつて第6図に示す通り
電圧出力信号|ET|と|ED|の発生する時間位
相には差があり、又電圧出力信号|ED|は連続
的なものではなく必ず負波の不飽和領域で一度零
となる領域があるを意味している。これ等の電圧
出力信号|ET|,|ED|に比例したものが各々|
IT|,|IP|であり、又出力信号|ED|に比例し
たものを位相角∠θを移相したものが第6図eの
電流出力信号|IP′|であるが、この位相角∠θ
を出力信号|ED|の途切れ時間、即ちCT不飽和
領域時間以内にしておけば、演算式|IT|−(|
IP|+|IP′|)において必ず|IT|>|IP|+|
IP′|の瞬時出力を得ることができる。
Next, FIG. 6 describes a signal waveform diagram of each part in the event of an external accident. This is in comparison with the conventional signal waveform diagram shown in FIG. Figure a
The current waveform ΣI IN in the same figure is the sum of the inflow currents, the current signal I OUT in the same figure b is the waveform when CT saturation occurs due to the outflow current, and the voltage signal |E T | in the same figure c is the terminal suppression voltage and the current The voltage signal |E D | shown in d of the figure is proportional to I OUT , and the voltage signal |E D | is proportional to the error differential current I D =ΣI IN −I OUT . Inhibition control output signal in figure e | I P
| is the same as the waveform of the voltage signal |E D | in d in the same figure, and is proportional to K 1 |I D | as described above, and the current signal |
I P ′| is proportional to K 2 |I D ∠θ|. As shown in the figure, in the region where CT saturation does not occur, the error differential output |E D | does not occur, but once saturation starts, |E D | gradually increases, and when it reaches complete saturation, CT2-1~ The secondary current of 2-n becomes almost zero as shown in the waveform of I OUT . This saturation continues until the direction of the primary current of CT2-1 to CT2-2-n is reversed (for example, from a positive wave to a negative wave), but from there a secondary current is generated in the opposite direction up to the saturation point. become. Therefore, as shown in Fig. 6, there is a difference in the time phase in which the voltage output signals |E T | and |E D | occur, and the voltage output signal |E D | is not continuous and is always a negative wave. This means that there is a region where it becomes zero once in the unsaturated region of . These voltage output signals |E T |, |E D | are proportional to each |
I T |, |I P |, and the current output signal |I P ′| in Figure 6e is the one proportional to the output signal |E D | shifted by the phase angle ∠θ. This phase angle ∠θ
If it is kept within the discontinuation time of the output signal |E D |, that is, the CT unsaturated region time, then the calculation formula |I T |−(|
I P |I P
The instantaneous output of I P ′| can be obtained.

したがつて|IT|−(|IP|+|IP′|)>K(K
はレベル検出回路18―2の検出値)を第6図f
の如くレベル検出回路18―2で検出して、同図
gに示すこの出力信号S2を信号引延し回路28で
その出力信号S2の途切れ時間T1以上信号を引延
せば第6図bのような連続化した出力信号S2′が
第4図のNOT回路26を介してAND回路27に
与えることができ、外部事故時のCT飽和に基づ
く誤差差動出力|ED|が一定値以上ありレベル
検出回路18―1の出力信号S1が発生しても母線
保護継電器8として動作することはない。
Therefore |I T |−(|I P |+|I P ′|)>K(K
is the detection value of the level detection circuit 18-2) as shown in Fig. 6 f.
If the level detection circuit 18-2 detects the output signal S2 as shown in FIG . The continuous output signal S 2 ' as shown in Figure b can be given to the AND circuit 27 via the NOT circuit 26 in Figure 4, and the error differential output |E D | based on CT saturation at the time of an external fault is Even if the output signal S1 of the level detection circuit 18-1 is generated above a certain value, it will not operate as the bus protection relay 8.

また上記実施例では別に信号引延し回路28を
設けロジツク的に処理しているが、従来のように
レベル検出回路18―2の入力信号をコンデンサ
等(すなわち第1図に示した従来回路図のコンデ
ンサ17に相当)で引延すアナログ的方法でもよ
く、又、本実施例ではレベル検出回路を18―1
と18―2に分離しているが、第1図のようにレ
ベル検出回路を共用して動作演算式を|IO|−
{|IT|−(|IP|+|IP′|)}+>Kとしても同様
の効果が得られる。又母線保護継電器8を導入す
る抑制出力信号|ET|は各回線のCT2―1〜2
―nの2次電流に比例した絶対値和であつてもよ
く、又CT2次出力位相が差動出力IDに対し逆位相
の関係にある回線のみのCT2次電流に比例した絶
対値和であつても同様の効果が得られる。
Further, in the above embodiment, a signal extension circuit 28 is separately provided to process the signal logically, but as in the conventional case, the input signal of the level detection circuit 18-2 is connected to a capacitor (i.e., the conventional circuit shown in FIG. 1). (corresponding to the capacitor 17) may also be used.In this embodiment, the level detection circuit is
Although it is separated into 18-2 and 18-2, the level detection circuit is shared as shown in Figure 1, and the operation calculation formula is |I O |-
{|I T |−(|I P |+|I P ′|)} + A similar effect can be obtained even if >K. In addition, the suppression output signal |E T | that introduces the bus protection relay 8 is the CT2-1 to CT2-2 of each line.
- It may be the sum of absolute values proportional to the secondary current of n, or it may be the sum of absolute values proportional to the CT secondary current of only the line where the CT secondary output phase is in the opposite phase relation to the differential output ID. The same effect can be obtained even if

以上のように、この発明の母線保護継電器によ
れば、母線内部事故時には、各CTからの流入電
流に位相差が生じた場合それによる不要な抑制電
圧を確実に打ち消し、また一方、母線外部事故時
にはCT飽和を生じた場合においても抑制作用に
不利な影響を与えない効果があり、簡単な抑制制
御補償回路を設けるだけで、従来は不可欠であつ
たシビアな時間協調が不要となり、内部事故時の
動作性能が大変確実なものとなる効果がある。
As described above, according to the bus protection relay of the present invention, when a fault occurs inside the bus, unnecessary suppressing voltage caused by a phase difference in the inflow current from each CT is reliably canceled out, and on the other hand, when a fault occurs outside the bus, Even when CT saturation occurs, it has the effect of not adversely affecting the suppression effect, and by simply installing a simple suppression control compensation circuit, the severe time coordination that was previously essential is no longer necessary, and it can be used in the event of an internal accident. This has the effect of making the operating performance very reliable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電力系統に適用した従来の母線保護継
電器の原理回路図、第2図及び第3図は従来の同
継電器の動作を説明する説明図で第2図は外部事
故時のまた第3図は内部事故時の各部信号の波形
説明図である。第4図はこの発明の一実施例によ
る母線保護継電器の原理回路図、第5図及び第6
図は同実施例継電器の原理を説明する説明図で、
第5図は内部事故時のまた第6図は外部事故時の
各部信号の波形説明図である。 1…母線、2―1〜2―n…CT、3―1〜3
―n…入力装置、4…差動トランス、5…抑制ト
ランス、6…抑制出力抵抗、7…全波整流回路、
8…母線継電器、9,10,19…トランス、1
1,12…全波整流回路、13,14,15,1
6,20,25…抵抗、17…コンデンサ、1
8,18―1,18―2…レベル検出回路、22
…移相用コンデンサ、23,24…ダイオード、
26…NOT回路、27…AND回路、28…信号
引延し回路、29…位相シフト回路。なお、図中
同一符号は同一又は相当部分を示す。
Figure 1 is a principle circuit diagram of a conventional busbar protection relay applied to the power system, Figures 2 and 3 are explanatory diagrams explaining the operation of the conventional busbar protection relay, and Figure 2 is a circuit diagram of a conventional busbar protection relay applied to the power system. The figure is an explanatory diagram of waveforms of signals of various parts at the time of an internal accident. FIG. 4 is a principle circuit diagram of a bus protection relay according to an embodiment of the present invention, and FIGS.
The figure is an explanatory diagram explaining the principle of the relay of the same example.
FIG. 5 is an explanatory diagram of waveforms of signals of various parts at the time of an internal accident, and FIG. 6 is an explanatory diagram of waveforms of signals of various parts at the time of an external accident. 1...Bus line, 2-1~2-n...CT, 3-1~3
-n...Input device, 4...Differential transformer, 5...Suppression transformer, 6...Suppression output resistor, 7...Full-wave rectifier circuit,
8...Busbar relay, 9,10,19...Transformer, 1
1, 12...Full wave rectifier circuit, 13, 14, 15, 1
6, 20, 25...Resistor, 17...Capacitor, 1
8, 18-1, 18-2...Level detection circuit, 22
... Phase shifting capacitor, 23, 24... Diode,
26...NOT circuit, 27...AND circuit, 28...signal extension circuit, 29...phase shift circuit. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 母線に連系した複数の回線に設けた変流器か
ら入力装置を介して該変流器の2次電流に比例し
た各出力信号を合成した差動出力信号と、上記2
次電流に比例した絶対値出力信号に基づいて得た
抑制出力信号を導入して上記母線の事故を検出す
る母線保護継電器において、上記差動出力信号が
一定値以上の時継電動作を許容する第1の検出要
素と、上記抑制出力信号の瞬時値に対し、上記抑
制出力信号を抑制する方向に働く上記差動出力信
号の絶対値に比例した第1の抑制制御出力信号及
び上記差動出力信号を位相シフトして得た第2の
抑制制御信号をそれぞれ作用させる第2の検出要
素とを備え、上記第2の検出要素が動作したとき
一定時間だけ上記第1の検出要素の動作出力信号
の供給を阻止させたことを特徴とする母線保護継
電器。
1. A differential output signal obtained by synthesizing each output signal proportional to the secondary current of the current transformer via an input device from a current transformer provided on a plurality of lines connected to the bus, and 2.
In a bus protection relay that detects a fault on the bus by introducing a suppression output signal obtained based on an absolute value output signal proportional to the next current, relaying operation is allowed when the differential output signal is above a certain value. a first detection element; a first suppression control output signal that is proportional to the absolute value of the differential output signal that acts in a direction to suppress the suppression output signal with respect to the instantaneous value of the suppression output signal; and the differential output; and a second detection element that applies a second suppression control signal obtained by phase-shifting the signal, and an operation output signal of the first detection element for a certain period of time when the second detection element operates. A busbar protection relay characterized by blocking the supply of.
JP58076607A 1983-04-28 1983-04-28 Bus protecting relay Granted JPS59201631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58076607A JPS59201631A (en) 1983-04-28 1983-04-28 Bus protecting relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58076607A JPS59201631A (en) 1983-04-28 1983-04-28 Bus protecting relay

Publications (2)

Publication Number Publication Date
JPS59201631A JPS59201631A (en) 1984-11-15
JPH0247173B2 true JPH0247173B2 (en) 1990-10-18

Family

ID=13610016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58076607A Granted JPS59201631A (en) 1983-04-28 1983-04-28 Bus protecting relay

Country Status (1)

Country Link
JP (1) JPS59201631A (en)

Also Published As

Publication number Publication date
JPS59201631A (en) 1984-11-15

Similar Documents

Publication Publication Date Title
JP2608701B2 (en) Inspection circuit for protective device
US4670811A (en) Differential-type protective relay
JPS61196718A (en) Ground-fault protector
JPH0247173B2 (en)
US3048745A (en) Power energization supply means for electrical protective relay systems
US3912979A (en) Pilot wire protective relaying apparatus
JPH0210655B2 (en)
JP2754517B2 (en) 12 pulse rectification load harmonic compensation method
JPS60148333A (en) Ratio differential relay
JPS6013244Y2 (en) Undervoltage relay with current compensation
JPS598417Y2 (en) Charging current compensation display line protection relay device
JPS6321420B2 (en)
JPS588225B2 (en) Hen Atsuki Hogo Keiden Houshiki
JPS5836124A (en) Current differential relay unit
SU922939A1 (en) Device for differential protection of multi-winding tranformer with voltage regulation under load
JPH0524733B2 (en)
JPS6353793B2 (en)
SU1410237A1 (en) Device for controlling thyristor converter
JPS5833774B2 (en) Control device for frequency converter
JPS62196019A (en) Differential relay for transformer protection
JPH0329866A (en) Exciting current detector of transformer
JPS6320088B2 (en)
JPS596724A (en) Transformer protecting relaying device
JPS60255010A (en) Differential relay
JPS593099B2 (en) Transformer protection relay method