JPH0246885B2 - - Google Patents

Info

Publication number
JPH0246885B2
JPH0246885B2 JP59069858A JP6985884A JPH0246885B2 JP H0246885 B2 JPH0246885 B2 JP H0246885B2 JP 59069858 A JP59069858 A JP 59069858A JP 6985884 A JP6985884 A JP 6985884A JP H0246885 B2 JPH0246885 B2 JP H0246885B2
Authority
JP
Japan
Prior art keywords
flip
circuit
clock
liquid level
flop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59069858A
Other languages
Japanese (ja)
Other versions
JPS60213822A (en
Inventor
Yoshihiko Sunakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP59069858A priority Critical patent/JPS60213822A/en
Publication of JPS60213822A publication Critical patent/JPS60213822A/en
Publication of JPH0246885B2 publication Critical patent/JPH0246885B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/266Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【発明の詳細な説明】 本発明は液位をデジタル信号で直接取り出せる
ようにした液位計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid level measuring device that can directly obtain liquid level as a digital signal.

従来液位計測装置としては、フロートを用いた
ものや、静電容量式で信号をアナログ量で取り出
す方式のものがあつた。
Conventional liquid level measuring devices include those that use floats and those that use capacitance to extract signals in analog quantities.

しかし、フロート式は機械的構成部を備えるた
め、故障が起きた時修理が困難であり、また静電
容量を用いたアナログ式の方法では高精度のもの
とするには極めて高価につくという欠点がある。
However, since the float type has mechanical components, it is difficult to repair when a failure occurs, and the analog method using capacitance is extremely expensive to achieve high precision. There is.

本発明は静電容量の違いにより検出された液位
を直接デジタル量で取り出せるようにしたもの
で、機械的構成部分が全くなく、高精度の液位計
測装置を安価に提供できるようにした。
The present invention enables the liquid level detected by the difference in capacitance to be obtained directly in digital form, and has no mechanical components at all, making it possible to provide a high-precision liquid level measuring device at a low cost.

以下本発明を実施例図に基いて説明する。 The present invention will be explained below based on embodiment figures.

第1図において、底面が閉塞した保護筒1に、
液流入口2aを下部に有する電極収納管2が貫通
し、同電極収納管2内には相対向したコンデンサ
用の一対の電極3aと3b、4aと4b、5aと
5b、6aと6b、7aと7bを設けてある。各
電極の一方の極3b〜7bは保護筒1内で全て接
地され、他方の極3a〜7aは、保護筒1内にあ
るフリツプフロツプ回路8,9,10,11,1
2の各クロツク端CKと、抵抗13,14,15,
16,17を介してクロツク入力端CKIに接続さ
れている。
In FIG. 1, in the protective tube 1 whose bottom surface is closed,
An electrode housing tube 2 having a liquid inlet 2a at the bottom passes through the electrode housing tube 2, and inside the electrode housing tube 2, a pair of opposing electrodes for capacitors 3a and 3b, 4a and 4b, 5a and 5b, 6a and 6b, 7a are installed and 7b are provided. One pole 3b to 7b of each electrode is all grounded inside the protective tube 1, and the other pole 3a to 7a are connected to flip-flop circuits 8, 9, 10, 11, 1 inside the protective tube 1.
2 clock ends CK and resistors 13, 14, 15,
16 and 17 to the clock input terminal CKI.

また各フリツプフロツプ回路のD入力端は、フ
リツプフロツプ回路8のD入力端だけが接地さ
れ、他は全て1つ前のフリツプフロツプ回路のQ
出力端に接続されており、これによりシフトレジ
スタを形成している。
Also, among the D input terminals of each flip-flop circuit, only the D input terminal of flip-flop circuit 8 is grounded, and all the others are grounded.
It is connected to the output end, thereby forming a shift register.

イニシヤル入力端INTには、フリツプフロツ
プ回路8のみがセツト入力端Sを接続してあるが
他のフリツプフロツプ回路は全てリセツト端Rを
接続してあり、レベル検出端LVEは各抵抗22,
23,24,25と、これらに直列に接続された
ダイオード18,19,20,21を介して各フ
リツプフロツプ回路のQ端に接続してある。
Only the flip-flop circuit 8 has the set input terminal S connected to the initial input terminal INT, but all other flip-flop circuits have the reset terminal R connected to the initial input terminal INT, and the level detection terminal LVE is connected to each resistor 22,
23, 24, 25 and diodes 18, 19, 20, 21 connected in series to the Q terminal of each flip-flop circuit.

次に本発明の回路動作について説明する。 Next, the circuit operation of the present invention will be explained.

第1図において、電極6,7が液中に没してい
ると、空中にある電極3,4,5に比べて電極
6,7の静電容量は、液体の比誘電率をεSとする
とεS倍となる。
In Fig. 1, when electrodes 6 and 7 are submerged in the liquid, the capacitance of electrodes 6 and 7 is smaller than that of electrodes 3, 4, and 5 in the air, and the relative permittivity of the liquid is ε S. Then, it becomes ε S times.

ここでクロツク入力端CKIよりクロツクパルス
を入力すると、空気の静電容量を有する電極3,
4,5に接続されたa、b、c点の波形は、第2
図のように元のクロツクパルスよりt1時間遅れた
クロツク波形となる。ところが液により増大した
静電容量を持つ電極6,7に接続されたd、e点
の波形は、同じく第2図のように元のクロツク波
形よりさらにt1+t2時間遅れた波形を示す。
Here, when a clock pulse is input from the clock input terminal CKI, the electrode 3, which has an air capacitance,
The waveforms of points a, b, and c connected to
As shown in the figure, the clock waveform is delayed by t1 hours from the original clock pulse. However, the waveforms at points d and e, which are connected to electrodes 6 and 7 whose capacitance has been increased by the liquid, show a waveform that is further delayed by t 1 +t 2 hours from the original clock waveform, as shown in FIG.

このためフリツプフロツプ回路11,12はフ
リツプフロツプ回路8,9,10より常にt2だけ
遅れたクロツクを受けることになる。
Therefore, flip-flop circuits 11 and 12 always receive a clock delayed by t 2 from flip-flop circuits 8, 9, and 10.

最初イニシヤル入力端INTにイニシヤルセツ
トパルスを入力すると、第3図に示すようにフリ
ツプフロツプ回路8がセツトされ、他は全てリセ
ツトされる。次にCKIより1番目のクロツクP1
入力されると、フリツプフロツプ回路8の状態は
フリツプフロツプ回路9に移動し、以後クロツク
入力がP2、P3と入力される度に下段のフリツプ
フロツプ回路にQ出力状態がシフトされて行く。
ところがフリツプフロツプ回路11のクロツク端
CKに接続されている電極は液中に没しているた
め静電容量が多く、実際にフリツプフロツプ回路
11のCK端に入力されるクロツクパルスはフリ
ツプフロツプ回路10に入力されたものよりもt2
秒ほど遅れて入力されてくる。これがP2′であり、
P2′が入力されてくる時点ではすでにフリツプフ
ロツプ回路10はQ出力状態になつているためフ
リツプフロツプ回路11のD端は高レベルであ
り、したがつてt2秒後にフリツプフロツプ回路1
1もQ出力状態になつてしまう。このためクロツ
クパルスP2′入力後P3入力までのt3秒間、液面直
前と直後の2つのフリツプフロツプ回路が同時に
Q出力状態となる。この状態を検出することによ
り液位を求めることができる。この検出はレベル
検出端LVEから行なつており、そのレベル検出
回路を第4図に基いて説明する。
When an initial set pulse is first input to the initial input terminal INT, the flip-flop circuit 8 is set as shown in FIG. 3, and everything else is reset. Next, when the first clock P 1 is input from CKI, the state of the flip-flop circuit 8 is transferred to the flip-flop circuit 9. From then on, each time the clock input is input as P 2 and P 3 , the state of the flip-flop circuit 8 is transferred to the lower flip-flop circuit. The output state is shifted.
However, the clock end of the flip-flop circuit 11
The electrode connected to CK has a large capacitance because it is submerged in the liquid, and the clock pulse actually input to the CK terminal of the flip-flop circuit 11 is t 2 higher than that input to the flip-flop circuit 10.
The input is delayed by about a second. This is P 2 ′,
At the time when P 2 ' is input, the flip-flop circuit 10 is already in the Q output state, so the D terminal of the flip-flop circuit 11 is at a high level. Therefore, after t 2 seconds, the flip-flop circuit 1
1 also ends up in the Q output state. Therefore, for t 3 seconds after the clock pulse P 2 ' is input and until the clock pulse P 3 is input, the two flip-flop circuits immediately before and immediately after the liquid level are simultaneously in the Q output state. By detecting this state, the liquid level can be determined. This detection is performed from the level detection terminal LVE, and the level detection circuit thereof will be explained based on FIG.

同図にはオペアンプを用いた加算回路を示して
あり、抵抗の値が全て等しいとみなすと、出力
V0は、 V0=−(V1+V2+V3+V4) となり、V0端電位は複数電圧の加算の和となつ
ている。
The figure shows an adder circuit using an operational amplifier.If all resistance values are assumed to be equal, the output will be
For V 0 , V 0 =−(V 1 +V 2 +V 3 +V 4 ), and the potential at the V 0 end is the sum of multiple voltages.

通常フリツプフロツプ回路8〜12は1個ずつ
Q出力状態となるためV0の値も定まつたものと
なるが、水面付近の電極に接続された2つのフリ
ツプフロツプ回路が同時出力状態になるとV0
力は変化するので、これを検出回路26で検出す
る。
Normally, flip-flop circuits 8 to 12 enter the Q output state one by one, so the value of V 0 is also fixed, but if two flip-flop circuits connected to electrodes near the water surface enter the simultaneous output state, the V 0 output changes, so this is detected by the detection circuit 26.

電極間のピツチをP、イニシヤルセツト後検出
回路26で同時出力状態が検知されるまでにフリ
ツプフロツプ回路に加えたクロツクパルス数を
n、基準点P0から液面までの距離をLとすると、 L=nP となるので、この演算を行なう回路を設けること
により液位を算出できる。
If the pitch between the electrodes is P, the number of clock pulses applied to the flip-flop circuit until the simultaneous output state is detected by the detection circuit 26 after initial setting is n, and the distance from the reference point P0 to the liquid level is L, then L = nP. Therefore, by providing a circuit that performs this calculation, the liquid level can be calculated.

次に計測値を遠方に伝送する手段を第5〜7図
によつて説明する。
Next, means for transmitting measured values to a distant place will be explained with reference to FIGS. 5 to 7.

第5図において、27は水晶発振子等を用いた
クロツクパルス発生回路、28は計測制御回路で
あり、クロツクパルスを入力して一定の時間割に
従つてパルスを発生する。発生するパルスは、
IT端からはイニシヤルセツトパルス、MK端
からはマークパルス、STA端からはスタートパ
ルスである。まず制御回路28がIT端により
イニシヤルセツトパルスを出力するとフリツプフ
ロツプ回路群が初期化される。次にMK端より長
いマークパルスが出力され、同パルスはゲート2
9を通つて受信側Pに行き、同時にSTA端より
のパルスにより制御用フリツプフロツプ回路31
がQ出力状態となつてANDゲート30より発振
器27よりのクロツクパルスがCKIに出力され
る。このクロツクパルスは同時にデータパルスと
して受信側Pにも出力される。やがて検出回路2
6により水面が検出されると、STP端よりスト
ツプパルスが出力され、制御用フリツプフロツプ
回路31が出力状態となり、クロツクパルスの
出力は停止する。一方受信側が受けとるパルスを
示したのが第6図で、1周期内にマークパルスと
データパルスがあり、これを受信側では第7図に
示すように、マーク信号検出後、データパルスの
数を計数し、スペース信号を検出した時点のパル
ス数にピツチPを掛ければ液位が算出される。こ
れにより液位表示の更新を行ない、以後同じ操作
を行なうことで常に最新の液位を知ることができ
るようになつている。
In FIG. 5, 27 is a clock pulse generation circuit using a crystal oscillator or the like, and 28 is a measurement control circuit which inputs clock pulses and generates pulses according to a fixed time schedule. The generated pulse is
The initial set pulse is sent from the IT end, the mark pulse is sent from the MK end, and the start pulse is sent from the STA end. First, when the control circuit 28 outputs an initial set pulse from the IT terminal, the flip-flop circuit group is initialized. Next, a longer mark pulse is output from the MK end, and the same pulse is output from the gate 2.
9 to the receiving side P, and at the same time the control flip-flop circuit 31 is activated by the pulse from the STA terminal.
becomes the Q output state, and the clock pulse from the oscillator 27 is output from the AND gate 30 to CKI. This clock pulse is simultaneously output to the receiving side P as a data pulse. Eventually the detection circuit 2
When the water surface is detected by 6, a stop pulse is output from the STP terminal, the control flip-flop circuit 31 goes into the output state, and the output of the clock pulse is stopped. On the other hand, Fig. 6 shows the pulses received by the receiving side. There are mark pulses and data pulses within one cycle, and the receiving side calculates the number of data pulses after detecting the mark signal as shown in Fig. 7. The liquid level is calculated by counting and multiplying the number of pulses at the time the space signal is detected by the pitch P. This allows the liquid level display to be updated, and by performing the same operation thereafter, you can always know the latest liquid level.

以上のように本発明によれば、関単な回路によ
り正確な液位をデジタル値で検出することがで
き、クロツクパルスをデータパルスとして直接送
信することにより液位データを送信回路等で処理
する手間が省ける利点がある。
As described above, according to the present invention, an accurate liquid level can be detected as a digital value using a simple circuit, and by directly transmitting clock pulses as data pulses, it is possible to eliminate the need for processing liquid level data in a transmitting circuit, etc. This has the advantage that it can be omitted.

なお第8図は液位計測回路と電極群とを1個の
保護筒に設けず、分離して別々にした他の実施例
を示す。
Note that FIG. 8 shows another embodiment in which the liquid level measuring circuit and the electrode group are not provided in one protection tube, but are separated and provided separately.

また電極の構造は、第9図に示すように一様な
導体35を内側に設けた円筒34内に、電極板3
7を所要ピツチで表面に設けた筒36を設けた構
造のものとするばあいもある。さらに第10図に
示すように、導体35はタンク側壁に設け、電極
板37は、導体35側タンク内側壁近くに立設し
たポスト36へ所定ピツチで設けて導体35と対
向させるようにするばあいもある。
Further, the structure of the electrode is as shown in FIG. 9, in which an electrode plate 3
In some cases, a structure is provided in which a tube 36 is provided on the surface of the tube 7 at a required pitch. Furthermore, as shown in FIG. 10, the conductor 35 is provided on the side wall of the tank, and the electrode plate 37 is provided at a predetermined pitch on a post 36 erected near the inner wall of the tank on the side of the conductor 35 so as to face the conductor 35. There is also love.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る液位計測装置の一例を示
す回路図、第2図はクロツクパルス波形図、第3
図はクロツクパルスとフリツプフロツプ回路の出
力との関係を示す出力波形図、第4図はレベル検
出回路図、第5図は信号伝送回路図、第6図は送
信データの出力波形図、第7図は計測データを処
理する方法を示すフローチヤート、第8図は電極
と計測回路とを別々にしてタンクに取り付けた状
態を示す図、第9図と第10図は電極構造の他の
実施例を示す図である。 図中、1……保護筒、2……電極収納管、2a
……液流入口、3,4,5,6,7……電極、
8,9,10,11,12……フリツプフロツプ
回路、13,14,15,16,17,22,2
3,24,25……抵抗、18,19,20,2
1……ダイオード、26……検出回路、27……
発振器、28……制御回路、29,30……ゲー
ト回路、31……制御用フリツプフロツプ回路、
32……タンク、33……液位計測回路。
FIG. 1 is a circuit diagram showing an example of a liquid level measuring device according to the present invention, FIG. 2 is a clock pulse waveform diagram, and FIG.
The figure is an output waveform diagram showing the relationship between clock pulses and the output of the flip-flop circuit, Figure 4 is a level detection circuit diagram, Figure 5 is a signal transmission circuit diagram, Figure 6 is an output waveform diagram of transmission data, and Figure 7 is a diagram of the signal transmission circuit. A flowchart showing a method for processing measurement data, Fig. 8 shows a state in which the electrode and measurement circuit are separated and attached to a tank, and Figs. 9 and 10 show other embodiments of the electrode structure. It is a diagram. In the figure, 1...protection tube, 2...electrode storage tube, 2a
...Liquid inlet, 3, 4, 5, 6, 7... Electrode,
8, 9, 10, 11, 12...Flip-flop circuit, 13, 14, 15, 16, 17, 22, 2
3, 24, 25...Resistance, 18, 19, 20, 2
1... Diode, 26... Detection circuit, 27...
Oscillator, 28...control circuit, 29, 30...gate circuit, 31...control flip-flop circuit,
32...Tank, 33...Liquid level measurement circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 タンク内に垂直に設けられた導体と、この導
体と対峙するようタンク内に所定ピツチで垂直に
設けられた静電容量を有する複数の電極、これら
各電極に対応するシフトレジスタを構成するフリ
ツプフロツプ回路の各クロツク端とクロツクパル
スを出力するクロツク入力端に前記各電極を接続
し、各フリツプフロツプ回路の出力を検知する液
位計測回路、とを備えてなる液位計測装置。
1 A conductor provided vertically within a tank, a plurality of electrodes having capacitance provided vertically within the tank at predetermined pitches to face the conductor, and a flip-flop configuring a shift register corresponding to each of these electrodes. A liquid level measuring device comprising: a liquid level measuring circuit that connects each of the electrodes to each clock terminal of the circuit and a clock input terminal that outputs a clock pulse, and detects the output of each flip-flop circuit.
JP59069858A 1984-04-07 1984-04-07 Liquid-level measuring device Granted JPS60213822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59069858A JPS60213822A (en) 1984-04-07 1984-04-07 Liquid-level measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59069858A JPS60213822A (en) 1984-04-07 1984-04-07 Liquid-level measuring device

Publications (2)

Publication Number Publication Date
JPS60213822A JPS60213822A (en) 1985-10-26
JPH0246885B2 true JPH0246885B2 (en) 1990-10-17

Family

ID=13414922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59069858A Granted JPS60213822A (en) 1984-04-07 1984-04-07 Liquid-level measuring device

Country Status (1)

Country Link
JP (1) JPS60213822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218740A (en) * 2006-02-16 2007-08-30 Taiheiyo Cement Corp Liquid level sensor device, concrete product, and submergence state detection system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138880A (en) * 1991-05-29 1992-08-18 Lee/Maatuk Engineering, Inc. Digital level sensing probe system
EP1744132A1 (en) * 2005-07-11 2007-01-17 Siemens Milltronics Process Instruments Inc. Capacitive level sensor with a plurality of segments comprising each a capacitor and a circuit
CN105572479B (en) * 2015-11-27 2018-11-02 天龙中闽科技有限公司 The circuit module for measuring capacitance capacity of stackable extension, the convenient liquid level detection circuit of extension
US10926548B2 (en) * 2016-04-29 2021-02-23 Hewlett-Packard Development Company, L.P. Printing apparatus and methods for detecting fluid levels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218740A (en) * 2006-02-16 2007-08-30 Taiheiyo Cement Corp Liquid level sensor device, concrete product, and submergence state detection system

Also Published As

Publication number Publication date
JPS60213822A (en) 1985-10-26

Similar Documents

Publication Publication Date Title
US4628612A (en) Tilt angle detection device
US4788488A (en) Continuous condition sensing system
CN85109527A (en) Differential capacitance detector
JPS6263812A (en) Pressure detector
JPH0246885B2 (en)
US4237420A (en) Temperature sensing circuit
EP0311947B1 (en) Count error detecting device for count type measuring instruments
US5045797A (en) Continuous condition sensing system determining liquid level by admittance measurement
US5525899A (en) Physical quantity change detection device which detects change by detecting a phase difference between two pulses
US4163396A (en) Digital readout pressure sensor
CN1017748B (en) Transducer for comparison thermometry with thermistor
US4055082A (en) Net oil computer
US4017794A (en) Circuit for measuring time differences among events
US4728816A (en) Error and calibration pulse generator
US4534046A (en) Flow quantity measuring apparatus
RU2208805C2 (en) Device measuring electric capacitance and/or resistance
EP0110850B1 (en) Device for setting a numeric display
SU817605A1 (en) Digital phase meter
JPH0329704Y2 (en)
SU1394049A1 (en) Level indicator
SU799119A1 (en) Discriminator of signal time position
SU1522147A1 (en) Device for measuring pulse time position and duration
SU1629513A2 (en) Zenith angle transducer
SU1425834A1 (en) Device for measuring ratio of time intervals
SU945822A1 (en) Device for sinchronous machine interior angle measuring and registering

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term