JPH0246376B2 - - Google Patents

Info

Publication number
JPH0246376B2
JPH0246376B2 JP56142447A JP14244781A JPH0246376B2 JP H0246376 B2 JPH0246376 B2 JP H0246376B2 JP 56142447 A JP56142447 A JP 56142447A JP 14244781 A JP14244781 A JP 14244781A JP H0246376 B2 JPH0246376 B2 JP H0246376B2
Authority
JP
Japan
Prior art keywords
film
cooling
injection
ring
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56142447A
Other languages
Japanese (ja)
Other versions
JPS5845026A (en
Inventor
Toshio Taka
Hideaki Toda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP56142447A priority Critical patent/JPS5845026A/en
Publication of JPS5845026A publication Critical patent/JPS5845026A/en
Publication of JPH0246376B2 publication Critical patent/JPH0246376B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/913Cooling of hollow articles of tubular films externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この本発明は合成樹脂の管状フイルム製造工程
中、いわゆる空冷インフレーシヨン法により押出
機から筒状に取出すインフレーシヨンフイルム成
形方法に関するものである。 インフレーシヨン法とは溶融樹脂押出機の環状
出口から出るとともに冷却され、内圧と引取りに
より筒状に進行する樹脂フイルムを巻取るもので
ある。この製法により、ヘイズ値(かすみ度)、
グロス値(光沢度)よく、均質なフイルムを得る
ためには、フイルムを極力、急速に冷却する必要
があるとされ、種々の冷却法が行われている。 例えば特公昭48−10065号「フイルム製造機に
おける冷却装置」は、従来どおり押出機出口に設
けた冷却気噴射環の上方に、斜上向きの冷気、冷
水噴射環と、その冷気冷水を吸込む吸入環とを設
けて帯状にフイルムを冷却している。 特開昭53−146764号「インフレーシヨン・フイ
ルム成形方法」も同様の二段冷却式で、この場合
は水、吸入環を使わず、下段噴射環から適当に離
れた位置に上段噴射環を設け、冷却風を上方又は
斜め上方へ向けている。 即ちインフレーシヨンフイルムを流体により冷
却する場合、下段噴射環の上方に上段噴射環を加
え、その噴流は上方又は斜め上方へ向けるものが
最も進んだ公知技術であつた。本発明者等も同様
の知識でもつて冷却方法の研究を進めていた。 しかし、インフレーシヨンフイルムの冷却と製
品の品質、特に透明度との関係を研究するうち、
フイルムを急冷すると透明度が上がるという技術
常識には欠けている部分がある事が分つてきた。
押出機から出たばかりの所を如何に急冷しても、
フロストラインを下げるだけで透明度に影響しな
い。影響するのは透明な液相であつたフイルムが
半透明な固相にかわるフロストライン領域通過の
所要時間、つまり液相中に固相分が生じはじめて
から、全体の固相化完了までの時間で、この比較
的短い時間を、さらに急冷により短縮することが
透明度向上に有効なのである。 従つて、従来のようにフイルムを何となく広い
範囲にわたつて冷却する事は無用で、液相フイル
ムに固相分が発生する直前に強く急冷し、瞬時に
固相化が完了すればよい、という事が分つた。具
体的には在来の一般的方法でインフレーシヨンフ
イルムを上進させフロストラインを作らせ、この
フロストラインのすぐ下を急冷して、こゝに新し
いフロストラインを作ればよい。 しかし、その急冷手段として、前述の常識にな
らい斜上方へ充分な量の冷却気流を吹付けると、
上進フイルムが動揺を起こし、上進速度を遅くし
ないと不良製品を生ずるようになる。 幸い本発明者は実公昭53−15826号記載のイン
フレーシヨンフイルム安定用吸引環を保存してい
たので、試みにこの吸引環を噴射環として逆用
し、フローストライン下方へ直角に冷気を噴射さ
せたところ、フイルムに動揺を起こす事なく、高
い透明度が得られた。 この成功はフイルムの広い領域の噴流を当て
ず、フロストライン下側の水平な線ともいうべき
狭い範囲を冷却対象とし、こゝに至近距離から直
角に噴流を当てた事による。フイルム固相化の促
進のためにはフイルム円周上の一線を急冷すれば
充分で、この線上で固相化開始、終了が瞬時に終
つてしまう。他の部分への噴流は透明度向上に無
縁であり、フイルムに動揺を与えるだけである。 そして、同じ強さの噴流を当てる場合、フイル
ムに直角に、つまり水平方向に当てれば、その水
平面でフイルムが絞られるだけであるが、斜上方
へ当てると、フイルムが真円を保つて上進してい
るわけでないから、押される高さが場所により異
り、ひずみを大きくする。また噴射細隙の製作精
度誤差も斜めに当てる場合、大きく影響する。両
者が重なつてフイルムのひずみが増大し動揺を強
める。そのほか大量の噴流が上方に渦流を作る
事、同じ高さで冷却度が異り温度差(強度差)を
生ずるため引取りによる伸びが不均一になる事も
動揺を強め品質低下につながると考えられる。 さて、上述のような研究の結果得られたこの発
明の構成の実施態様を図面を参照して説明する。 第1図はこの発明を適用した引取方向が上向き
のインフレーシヨンフイルム成形装置の一実施例
で、1は溶融樹脂押出機、2はダイで環状出口2
aを備える。図示しないダイ2の中央部に内圧用
空気口がある。環状出口2aの外周には公知の冷
却空気噴射環(エアリング)3があり、樹脂は環
状出口2aから出るとともに冷却され粘性を高め
て筒状に上進する。 筒状のインフレーシヨンフイルムFは、この発
明による上段噴射環10を加えなくても、図示し
たように筒状で上進し、ガイド板4により扁平に
畳まれ、引取用ニップローラ5、多数の案内ロー
ラを経てワインダー6により巻取られる。二基の
ブロワー7は噴射環3と10へ風を送る。 従来同様、環状出口2a外周を取巻く噴射環3
は、前述のように斜上方へ冷却用空気を送るもの
で説明を略すが、押出機1内で例えば150℃、200
℃など粘性の低い状態のものを、押出しと同時に
急冷し、一応筒状を保つて上進できる程度まで粘
性を高める作用をする。上進中にニツプローラ5
により引伸ばされてさらに薄くなるが、薄いため
外気による冷却も速く、二次冷却をしなくても、
やがて100℃前後の凝固点に達し、それまで透明
であつたフイルムFがフロストライン0から半透
明に変つて進む。 さて、このような在来装置によつて作られたイ
ンフレーシヨンフイルムにこの発明の成形方法を
適用する手順を述べる。まず対象とするインフレ
ーシヨン・フイルムFのフロストライン0付近の
外周を少い間隙で取巻くに適した寸法で、内周に
環状噴射細隙11、その上板に平行な整流用環状
12をもつ冷却気噴射環10を用意する。 これをインフレーシヨン・フイルムFを作る前
に噴射環3の上方に上下動可能に設置しておく。
無論、水平姿勢を保つての上下動である。もつと
も、この新しい噴射環10は二つ割りにして、既
に上進しているインフレーシヨン・フイルムFの
外周に設置できるようにしてもよい。噴射環10
の中心線は環状出口2aのそれに一致させる。 この噴射環10の上下位置決めは、さきに述べ
たこの発明の原理にもとづき次のように行う。即
ちインフレーシヨン・フイルムFに既に生じてい
るフロストライン0の少し下側のフイルム透明部
分外周を線状冷却できる位置に固定するのであ
る。少し下側というのは、下方へ離れるほど凝固
までの瞬間冷却量が増すから、冷却能力に見合つ
た、あまり離れない下側の意である。噴射環10
は予備実験用だけ上下動可能なものとして高さを
決め、生産用噴射環10は上下動しないものを使
つてもよい。また透明部分というのは、フイルム
に未だ全く固相分が生じていないため高温部分同
様の透明さを保つている部分の意である。フロス
トラインに近接し、一部に緩冷却による固相分が
生じはじめている所では、この発明の急速固化の
効果が減る。 第2図の左半分にインフレーシヨン・フイルム
F、その下段噴射環3だけによるフロストライン
0と、これに対する新しい噴射環の噴射細隙11
の位置を示す。なお、これは説明図で、実物と比
例寸法に画いてはない。 第2図右半分に温度曲線TによりフイルムFの
温度分布の傾向を示している。押出機の環状出口
2aから出た時のフイルム押出温度T1は例えば
150℃、200℃といつた高温で、これが下段噴射環
3の冷却を受けて急速に冷えながら薄肉に引伸ば
されて上進する。そして、例えば110℃の凝固温
度T2に近づくとフイルムの液相中に固相分が生
じはじめる。この固相分がふえ肉眼で見えるよう
になり、間もなく完全に固相化する現象が起きて
いる領域をフロストラインと称している。 この発明はフロストライン0に近づき、しかも
未だ固相分が出はじめない凝固開始温度よりやや
高温の透明部分に新しい噴射環10の噴射細隙1
1をほゞ直角に向ける。噴射によりその部分は急
冷され、直ちに凝固終了温度よりさらに低い温度
まで過冷され、そこに淡いフロストラインを残
して上進し、以後は自然冷却の温度勾配で冷却し
巻取られるのである。 新しい噴射環10は冷却気噴流をフイルムF面
にほゞ直角に、そしてフイルムFに回復可能な凹
みCを生ずる強さで当てる。噴流をフイルム面に
ほゞ直角に当てる事により、噴流の大部分がフイ
ルム面に接し、冷却に有効に働くのであつて、従
来のように気流の大半がフイルム面に接しない層
流となつて流れ去ることがなく冷却効率が高い。 なお上段噴射環10の噴流とフイルムF面との
角度は、90゜を中心として70゜〜110゜なら使用可能
で、好ましくは80゜〜100゜であり、無論、90゜が最
高であつた。噴流がフイルムFに回復可能な凹み
Cを生ぜしめる強さであるという事は、噴流によ
りフイルムの円滑な上進を不可能にするような事
がないのは勿論、吹付けにより当然生ずる凹み
も、上進により円滑に回復する程度にとゞめるの
意で、またそれで充分に発明の目的を達せられ
る。 冷却気噴射は、噴射環10の噴射細隙11が噴
流を分散なく直進せしめる形状であり、そして、
噴射細隙11とフイルム面との間隔が途中で噴流
の分散を生ずるほど離れていない事が望ましい。
少くとも細隙11の上下板の上下への開放角を
10゜以上にすべきではない。 また生産速度を高めるとフイルムFの上昇速度
が速くなり、冷却される時間が短かくなるので、
冷却速度を高める事が必要となる。 従つて、冷却気体を大量、高速で吹付ける事に
なるのであつて、全周均一に加圧されるフイルム
の線状冷却部分はよいとしても、上下への放散流
に沿うフイルム面が影響を受けるようになる。下
方への放散流により下側フイルム面に歪を生じて
も線状冷却部分へ進んだ時、均一に締付けられる
のでさほど問題ではないが、上方へ放散流は放置
できない。 この上方への放散流対策として、噴射環10の
上面内周沿いに上述の整流用環板12を設けたの
である。第3図はその一例を示す拡大説明図で、
細隙11の上板の上に間隙をおいて同軸に重な
り、上記上板に準じた内径で、細隙11に平行す
る環板部分を主要部とする放散流整流用環板12
である。この場合水平な噴射細隙11の上側環板
上面の所々に脚材13を立て、その上に環板12
を細隙11に平行するように固定している。環板
12と細隙11の上板との間隔は5〜20mmでよか
つたが、環板12の寸法、位置は実験により気流
安定効果の最もよいところに決める。この環板1
2は第3図の実施例では単なる平板であるが、第
4,5図の実施例のように、水平環板12の内縁
に垂直部12aを下方に、あるいは上方へも12
bを加える等、その形状、寸法は設計者に任せら
れ、要はフイルムF面沿いに乱流、渦流を生じ
て、フイルムFに問題になる程度の歪み、動揺を
与える事を防げるものであればよい。第6図によ
り効果を得られた細隙11噴射縁と環板12内縁
の断面形状6例を示し、第7図により効果を得ら
れなかつた三例A′,B′,C′と従来の吹上げる型
式の二例D′,E′とを示す。これらの主要部寸法、
つまり第4図に例示した細隙間隙a、細隙11上
板と環板12との最小間隔b、環状12の内縁高
さc、細隙11と環板12の内周半径差d等は実
験結果と共に後述する。 この発明が主な対象とする合成樹脂はポリオレ
フイン系高分子樹脂で、高圧法ポリエチレン、中
低圧法ポリエチレン、ポリプロピレン、ポリブテ
ン−1等エチレン、プロピレン、ブテン−1等の
単独重合体及び共重合体、それらの混合物等であ
る。 なかんずく、直鎖状低密度ポリエチレン及びそ
れと他のポリオレフイン樹脂との混合物からなる
ポリオレフイン樹脂には本発明が極めて有効で、
従来、高圧法低密度ポリエチレンでは得られなか
つた透明性、光沢、光学特性(例えばヘーズ4%
以下、グロス110%以上)がしかも高い生産性を
もつて得られる。 上記直鎖状低密度ポリエチレンはエチレンと炭
素数3〜12のα−オレフイン例えばプロピレン、
ブテン−1、ヘキセン−1、4メチル−1−ペン
テン、オクテン−1、デセン−1等の少くともひ
とつを、チーグラー型触媒の存在下、従来公知の
中低圧法、又は高圧法によつて製造されるもので
ある。さらに中低圧法としては、気相法、スラリ
ー法、溶液法等いずれの方法によるものでもよ
い。 本発明はフイルムF外周の水平線状部分に冷却
対象を絞つた事、そしてその線状部分に噴射を
ほゞ直角に当てるという最も冷却効率の高い方法
をとつた事及び整流用環板12を設けたことによ
り、最小限の噴射量で完全冷却をなし、インフレ
ーシヨン・フイルムFの進行に従来のような悪影
響を与えることなく透明度向上の目的を達した。 上段噴射環10が筒状フイルムFの勝手に膨張
した形の断面を正しい円形に絞る働きがある事
と、前述のような従来の斜上方へ噴流の欠点を有
しない事によると思われるが、この発明は透明度
向上のほかに上進フイルム筒の動揺を減じ安定化
する効果を生じた。その結果、フイルムFの厚み
ムラ(偏肉)が著しく減ずるという大きな効果が
加わつた。またフイルムFの動揺が少く冷却効果
向上のため高速引取りが可能になり、従来考えら
れなかつた90m/分という高速生産下に高透明な
フイルムの製造が可能になつたのである。 次に、その直鎖状低密度ポリエチレン、高圧法
低密度ポリエチレン及びそれらのブレンド物のイ
ンフレーシヨン法に、この発明を適用し、そのフ
ロストライン側噴射環内周断面形を第6図、第7
図のように変えて行つた実験結果を第1表、第2
表として示す。いずれも次の条件で実験した。 押出機シリンダ径 50mm 押出機環状出口2aの径 150mm 同じく出口間隙 2.5mm 仕上フイルム厚み 20μ フイルム畳み幅 300mm 噴射細隙、フイルム間距離 5.0mm フロストライン0と噴射細隙との距離 約50mm 細隙、環板用材の厚み 5〜8mm ダイ2から上段噴射環10までの距離 720mm (但し実験番号1〜4)
The present invention relates to a method for forming a synthetic resin tubular film, in which a tubular film is taken out from an extruder by a so-called air-cooled inflation method during the manufacturing process. The inflation method involves winding up a resin film that exits from the annular outlet of a molten resin extruder and is cooled and advances into a cylindrical shape due to internal pressure and take-up. With this manufacturing method, haze value (haze degree),
In order to obtain a homogeneous film with a good gloss value, it is considered necessary to cool the film as rapidly as possible, and various cooling methods have been used. For example, Japanese Patent Publication No. 48-10065 ``Cooling device for film manufacturing machine'' has an obliquely upward cool air and cold water injection ring above the cooling air injection ring provided at the exit of the extruder, as well as a suction ring that sucks the cold air and cold water. The film is cooled in a band-like manner. JP-A No. 53-146764 "Inflation film forming method" also uses a similar two-stage cooling method, in which the upper injection ring is placed at a suitable distance from the lower injection ring without using water or a suction ring. The cooling air is directed upward or diagonally upward. That is, when cooling the blown film with a fluid, the most advanced known technology was to add an upper injection ring above the lower injection ring and direct the jet upward or diagonally upward. The present inventors had also proceeded with research on cooling methods based on similar knowledge. However, as we researched the relationship between cooling blown film and product quality, especially transparency, we discovered that
It has become clear that the common technical knowledge that rapidly cooling a film increases its transparency is lacking.
No matter how quickly you cool down the area just out of the extruder,
Transparency is not affected by simply lowering the frost line. What is affected is the time required for the film to pass through the frost line region, where the film changes from a transparent liquid phase to a translucent solid phase, that is, the time from when solid phase components begin to form in the liquid phase until the entire solid phase is completed. Therefore, further shortening this relatively short time by rapid cooling is effective in improving transparency. Therefore, it is unnecessary to cool the film over a wide area as in the past, and it is sufficient to rapidly cool the film strongly just before the solid phase is generated in the liquid phase film, and the solid phase is completed instantly. I understand what happened. Specifically, the inflation film can be advanced to form a frost line using a conventional general method, and the area immediately below this frost line can be rapidly cooled to form a new frost line. However, as a rapid cooling method, if a sufficient amount of cooling air is blown diagonally upward according to the common sense mentioned above,
The advancing film will oscillate, resulting in defective products unless the advancing speed is slowed down. Fortunately, the inventor had saved the suction ring for stabilizing the blown film described in Utility Model Publication No. 53-15826, so he attempted to reversely use this suction ring as an injection ring to inject cold air perpendicularly below the frost line. When sprayed, high transparency was obtained without causing any disturbance to the film. This success was achieved by not applying the jet over a wide area of the film, but instead targeting a narrow area below the frost line, which could be called a horizontal line, and applying the jet at right angles from close range. In order to promote solid phase formation of the film, it is sufficient to rapidly cool a line on the circumference of the film, and solid phase formation begins and ends instantly on this line. Jetting to other parts has nothing to do with improving transparency and only causes agitation to the film. If a jet of the same strength is applied at right angles to the film, that is, in a horizontal direction, the film will only be squeezed in that horizontal plane, but if it is applied diagonally upward, the film will maintain a perfect circle and move upwards. Because the pressure is not on the ground, the height of the pressure varies depending on the location, increasing the strain. Furthermore, errors in manufacturing accuracy of the injection slit have a large effect when the injection is applied obliquely. When the two overlap, the distortion of the film increases and the oscillation becomes stronger. In addition, we believe that the large amount of jet flow creates an upward vortex, and that the degree of cooling at the same height is different, resulting in temperature differences (strength differences), resulting in uneven elongation due to take-up, which increases agitation and leads to quality deterioration. It will be done. Now, embodiments of the configuration of the present invention obtained as a result of the above-mentioned research will be described with reference to the drawings. FIG. 1 shows an embodiment of an inflation film forming apparatus to which the present invention is applied and whose take-off direction is upward.
Equipped with a. There is an air port for internal pressure in the center of the die 2 (not shown). A known cooling air injection ring (air ring) 3 is provided on the outer periphery of the annular outlet 2a, and as the resin exits from the annular outlet 2a, it is cooled, increases its viscosity, and moves upward in a cylindrical shape. The cylindrical inflation film F moves upward in a cylindrical shape as shown in the figure, without adding the upper injection ring 10 according to the present invention, is folded flat by the guide plate 4, and is moved by the taking-off nip roller 5 and a large number of It passes through a guide roller and is wound up by a winder 6. Two blowers 7 send air to injection rings 3 and 10. As before, the injection ring 3 surrounding the outer periphery of the annular outlet 2a
As mentioned above, the cooling air is sent diagonally upward, and the explanation is omitted, but inside the extruder 1, for example, 150℃, 200℃
It works by rapidly cooling a material with low viscosity, such as ℃, at the same time as it is extruded, increasing its viscosity to the point where it can move upward while maintaining its cylindrical shape. Nitz Prora 5 while moving up
The material is stretched and becomes even thinner, but because it is thin, it is quickly cooled by the outside air, and even without secondary cooling,
Eventually, the freezing point of around 100°C is reached, and the film F, which had been transparent until then, changes from frost line 0 to translucent. Now, a procedure for applying the molding method of the present invention to a blown film made using such conventional equipment will be described. First, it has dimensions suitable for surrounding the outer periphery of the target inflation film F near the frost line 0 with a small gap, and has an annular injection slit 11 on the inner periphery and a rectifying annular 12 parallel to the upper plate. A cooling air injection ring 10 is prepared. This is installed above the injection ring 3 so that it can move up and down before making the inflation film F.
Of course, this is vertical movement while maintaining a horizontal posture. However, this new injection ring 10 may be divided into two parts so that it can be installed on the outer periphery of the inflation film F that is already moving upward. Injection ring 10
The center line of the annular outlet 2a is made to coincide with that of the annular outlet 2a. The vertical positioning of the injection ring 10 is performed as follows based on the principle of the invention described above. That is, the outer periphery of the transparent portion of the film slightly below the frost line 0 already formed on the inflation film F is fixed at a position where it can be linearly cooled. Slightly lower means lower, commensurate with the cooling capacity, and not too far down, since the farther downward you go, the more the instantaneous cooling amount until solidification increases. Injection ring 10
The height of the injection ring 10 may be determined so that it can move up and down only for preliminary experiments, and the injection ring 10 for production may be one that does not move up and down. Also, the transparent portion refers to a portion where no solid phase has yet been generated in the film and thus maintains the same transparency as the high temperature portion. In areas close to the frost line where solid phase components are beginning to form due to slow cooling, the rapid solidification effect of the present invention is reduced. In the left half of Figure 2, there is a frost line formed only by the inflation film F and its lower injection ring 3.
0 and the injection slit 11 of the new injection ring for this
Indicates the location of Please note that this is an explanatory drawing and is not drawn to scale in proportion to the actual product. The right half of FIG. 2 shows the tendency of the temperature distribution of the film F by a temperature curve T. For example, the film extrusion temperature T 1 when exiting from the annular outlet 2a of the extruder is
At a high temperature of 150°C or 200°C, it is cooled rapidly by the lower injection ring 3 and is stretched into a thin layer as it moves upward. Then, as the solidification temperature T 2 approaches, for example, 110° C., a solid phase component begins to form in the liquid phase of the film. The area where this solid phase content increases and becomes visible to the naked eye and soon completely solidifies is called a frost line. In this invention, the injection slit 1 of the new injection ring 10 is formed in the transparent part which is close to the frost line 0 and which is slightly higher than the solidification start temperature at which solid phase components do not begin to appear.
1 at a nearly right angle. By injection, that part is rapidly cooled and immediately subcooled to a temperature even lower than the final solidification temperature, leaving a faint frost line there as it moves upwards, whereupon it is cooled by the temperature gradient of natural cooling and then wound up. The new injection ring 10 applies a jet of cooling air substantially perpendicular to the surface of the film F and with an intensity that causes a reversible indentation C in the film F. By applying the jet stream almost perpendicularly to the film surface, most of the jet stream comes into contact with the film surface, which works effectively for cooling, and unlike conventional methods, most of the air flow does not come into contact with the film surface, resulting in a laminar flow. It does not flow away and has high cooling efficiency. The angle between the jet stream of the upper injection ring 10 and the film F surface can be used if it is 70° to 110° with 90° as the center, preferably 80° to 100°, and of course 90° is the maximum. . The fact that the jet flow is strong enough to cause a recoverable dent C in the film F means that the jet flow will not make it impossible for the film to advance smoothly, and it will also prevent the dents that naturally occur due to spraying. , the intention is to limit the amount to a level that allows for smooth recovery through upward movement, and this is sufficient to achieve the purpose of the invention. The cooling air injection has a shape in which the injection slit 11 of the injection ring 10 allows the jet to proceed straight without dispersion, and
It is desirable that the distance between the jet slit 11 and the film surface is not so far as to cause dispersion of the jet midway.
At least the vertical opening angle of the upper and lower plates of the slit 11.
It should not be more than 10°. In addition, when the production speed is increased, the rising speed of the film F becomes faster and the cooling time becomes shorter.
It is necessary to increase the cooling rate. Therefore, a large amount of cooling gas is sprayed at high speed, and although the linear cooling part of the film that is uniformly pressurized all around is good, the film surface that follows the upward and downward dispersion flow is affected. You will begin to receive it. Even if the lower film surface is distorted due to the downwardly dispersing flow, it is not a big problem because it will be tightened uniformly when it advances to the linear cooling part, but the upwardly dispersing flow cannot be left alone. As a countermeasure against this upwardly dispersing flow, the above-mentioned rectifying ring plate 12 is provided along the inner periphery of the upper surface of the injection ring 10. Figure 3 is an enlarged explanatory diagram showing one example.
Annular plate 12 for dispersion flow rectification, which coaxially overlaps the upper plate of slit 11 with a gap therebetween, has an inner diameter similar to that of the upper plate, and has an annular plate portion parallel to slit 11 as the main part.
It is. In this case, legs 13 are erected at various places on the upper surface of the upper ring plate of the horizontal injection gap 11, and the ring plate 12 is placed on top of the legs 13.
is fixed parallel to the slit 11. The distance between the ring plate 12 and the upper plate of the narrow gap 11 was set at 5 to 20 mm, but the dimensions and position of the ring plate 12 were determined through experiments at a position that would give the best air flow stabilization effect. This ring plate 1
2 is a mere flat plate in the embodiment shown in FIG. 3, but as in the embodiments shown in FIGS.
The shape and dimensions, such as adding b, are left to the designer, and the point is that it should be able to prevent turbulence and vortices along the film F surface and cause distortion and agitation to the extent that the film F becomes problematic. Bye. Fig. 6 shows six examples of the cross-sectional shapes of the injection edge of the slit 11 and the inner edge of the ring plate 12 that achieved the effect, and Fig. 7 shows three examples A', B', C' where the effect was not obtained, and the conventional Two examples of blow-up types, D' and E', are shown. These main dimensions,
In other words, the narrow gap a, the minimum distance b between the upper plate of the narrow gap 11 and the ring plate 12, the inner edge height c of the ring 12, the inner radius difference d between the narrow gap 11 and the ring plate 12, etc. illustrated in FIG. This will be described later along with the experimental results. The synthetic resins that this invention mainly targets are polyolefin polymer resins, including homopolymers and copolymers of high-pressure polyethylene, medium-low-pressure polyethylene, polypropylene, polybutene-1, etc., ethylene, propylene, butene-1, etc. A mixture thereof, etc. In particular, the present invention is extremely effective for polyolefin resins made of linear low-density polyethylene and mixtures thereof with other polyolefin resins.
Transparency, gloss, and optical properties that were previously unobtainable with high-pressure low-density polyethylene (for example, 4% haze)
(Gross 110% or more) can be obtained with high productivity. The above-mentioned linear low-density polyethylene includes ethylene and an α-olefin having 3 to 12 carbon atoms, such as propylene.
At least one of butene-1, hexene-1, 4methyl-1-pentene, octene-1, decene-1, etc. is produced by a conventionally known medium-low pressure method or high pressure method in the presence of a Ziegler type catalyst. It is something that will be done. Further, as the medium-low pressure method, any method such as a gas phase method, a slurry method, a solution method, etc. may be used. The present invention focuses on cooling the horizontal linear portion of the outer periphery of the film F, employs a method with the highest cooling efficiency of applying jets to the linear portion at almost right angles, and provides a rectifying ring plate 12. As a result, complete cooling can be achieved with a minimum amount of injection, and the objective of improving transparency can be achieved without adversely affecting the progress of the blown film F as in conventional methods. This seems to be due to the fact that the upper injection ring 10 has the function of squeezing the arbitrarily expanded cross section of the cylindrical film F into a correct circular shape, and that it does not have the above-mentioned disadvantage of the obliquely upward jet flow. In addition to improving transparency, this invention has the effect of reducing and stabilizing the oscillation of the advancing film tube. As a result, a significant effect was added in that the thickness unevenness (uneven thickness) of the film F was significantly reduced. In addition, the film F is less shaken and the cooling effect is improved, making it possible to take it off at high speed, making it possible to produce highly transparent films at a production speed of 90 m/min, which was previously unimaginable. Next, the present invention was applied to the inflation method of linear low density polyethylene, high pressure low density polyethylene, and blends thereof, and the cross-sectional shapes of the inner circumference of the injection ring on the frost line side are shown in Figs. 7
Tables 1 and 2 show the results of experiments conducted with changes as shown in the figure.
Shown as a table. All experiments were conducted under the following conditions. Extruder cylinder diameter 50mm Diameter of extruder annular outlet 2a 150mm Exit gap 2.5mm Finished film thickness 20μ Film folding width 300mm Injection slit, distance between films 5.0mm Distance between frost line 0 and injection slit Approx. 50mm Slit, Thickness of ring plate material: 5 to 8 mm Distance from die 2 to upper injection ring 10: 720 mm (Experiment numbers 1 to 4)

【表】【table】

【表】【table】

【表】【table】

【表】 実験番号1〜11はこの発明のもので、1〜8は
好結果を得ており、9〜11はよくない。参考に加
えた実験番号12,13は従来のフロストライン側噴
射環を用いたもので、その12の噴射角60゜、13は
45゜で、いずれも引取速度60m/分ではフイルム
が不安定で使用できない事を示している。 詳細説明するまでもなく、上表の(ヘ),(ト),
(ヨ),(タ),(レ),(ソ)の各項にこの発明の優
秀性がよく現れており、また整流用環板12がそ
の目的に反する形状寸法になると悪い結果を生じ
ている。 以上、この発明を図示した実施例を参照して説
明したが、この発明の実施態様はその要旨を変え
ることなく多様に変化、応用し得ることはいうま
でもない。上下、水平という言葉は相対的なもの
で、絶対的上下、水平を意味しない。フイルムの
引取方向は上方のほか、下方でも水平でも斜方向
でもよい。冷却気は空気に限らない。上段噴射環
10を一個に限るわけでなく予備冷却用、事後冷
却用噴射環を加えることを妨げない。 整流用環板も一枚でなく複数枚にするとか、噴
射細隙の下側にも加えるとか、環板と細隙上板の
間に積極的に気流を送つて整流作用を強めると
か、環板をより複雑で整流効果の高い断面にする
とか、その他、実施に当る設計者、現場技術者の
工夫により、この発明はさらにその効果を高める
であろう。 この発明は、従来ばく然としていたインフレー
シヨンフイルムの冷却による品質向上の原理を究
明し、冷却すべきは凝固開始から完了までの極め
て限られた範囲である事を明示した。そして具体
的には下段噴流の冷却だけで生ずるフロストライ
ンを目安とし、その下側を局部的線状冷却し、そ
の場で凝固開始、完了、過冷却を起こさせるか
ら、従来の緩慢な冷却、固化による不透明化が激
減した。 しかも、その線状冷却手段として、従来のフイ
ルム面沿いの噴流で冷やす常識を破り、フイルム
面にほゞ直角に噴流を当てゝ大きな成功を得た。 また特に生産性を上げるため上段噴射環の噴流
の流速、流量を増大した場合、冷却領域を最小限
にしても、やはりフイルム安定度への影響を避け
られないのであるが、この発明は噴射細隙の上側
(引取側)に整流用環板を加える事によりフイル
ムの動揺、不安定化を実用上、支障ない程度に抑
え得たのである。 即ち、この発明はインフレーシヨン法による樹
脂フイルム成形技術の理論面、実用面に貢献する
ところ大なるものである。
[Table] Experiment numbers 1 to 11 are those of this invention, 1 to 8 obtained good results, and 9 to 11 obtained poor results. Experiment numbers 12 and 13 added for reference used the conventional frost line side injection ring, and the injection angle for 12 was 60°, and for 13
45° and a take-up speed of 60 m/min, the film is unstable and cannot be used. There is no need to explain the details, but (F), (G),
The excellence of this invention is clearly shown in (Y), (T), (R), and (S), and if the shape and dimensions of the rectifying ring plate 12 are contrary to its purpose, bad results will occur. There is. Although the present invention has been described above with reference to the illustrated embodiments, it goes without saying that the embodiments of the present invention can be varied and applied in various ways without changing the gist thereof. The terms vertical and horizontal are relative terms and do not mean absolute vertical or horizontal. The direction in which the film is taken may be upward, downward, horizontal, or diagonal. Cooling air is not limited to air. The number of upper injection rings 10 is not limited to one, and injection rings for pre-cooling and post-cooling may be added. There are various ways to improve the rectifying effect, such as using multiple rectifying ring plates instead of one, adding one to the bottom of the jet slit, or actively sending airflow between the ring plate and the upper plate of the slit to strengthen the rectifying effect. The effects of this invention will be further enhanced by making the cross-section more complex and having a higher rectifying effect, or by making other efforts by the designers and field engineers who implement it. This invention has clarified the principle of improving the quality of blown film by cooling it, which had hitherto been unclear, and clarified that cooling is required within an extremely limited range from the start of solidification to the completion of solidification. Specifically, we use the frost line that occurs only by cooling the lower jet as a guide, and locally cool the lower side of the line in a linear manner to cause solidification to begin, complete, and supercool on the spot. Opaqueness due to solidification has been drastically reduced. Furthermore, as a linear cooling means, we achieved great success by applying a jet flow almost perpendicular to the film surface, breaking from the conventional wisdom of cooling with a jet flow along the film surface. In addition, especially when the flow velocity and flow rate of the jet in the upper injection ring are increased to increase productivity, even if the cooling area is minimized, the film stability cannot be avoided. By adding a rectifying ring plate above the gap (take-up side), it was possible to suppress film oscillation and destabilization to a level that would not cause any practical problems. That is, the present invention greatly contributes to the theoretical and practical aspects of resin film molding technology using the inflation method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例説明図、第2図は
同じく要部拡大図兼温度分布説明図、第3図は第
1図の要部拡大説明図、第4,5図はこの発明の
噴射環の他の二実施例の内周部断面説明図、第
6,7図は実験に用いた噴射環内周部の断面説明
図である。 F……インフレーシヨン・フイルム、,0
…フロストライン、C……フイルム凹み、10…
…冷却気噴射環、11……噴射細隙、12……整
流用環板。
Fig. 1 is an explanatory diagram of one embodiment of this invention, Fig. 2 is an enlarged view of the main part and explanatory diagram of temperature distribution, Fig. 3 is an enlarged explanatory diagram of the main part of Fig. 1, and Figs. 4 and 5 are an explanatory diagram of the main part of this invention. Figures 6 and 7 are cross-sectional explanatory views of the inner peripheral part of the injection ring used in the experiment. F...Inflation film, 0 ...
...Frost line, C...Film dent, 10...
... Cooling air injection ring, 11 ... Injection slit, 12 ... Rectification ring plate.

Claims (1)

【特許請求の範囲】 1 押出機の環状出口から出た溶融樹脂を、出口
付近の任意の冷却装置により適当に冷却しつゝ、
内圧と引取りにより、筒状のフロストラインをも
つインフレーシヨン・フイルムとして進行させ、 その筒状フイルム面にほゞ直角に、噴流を分散
なく直進させる噴射細隙と、その細隙の上板の上
に間隙をおいて同軸に重なり、上記上板に準じた
内径で、上記細隙に平行する環板部分を主要部と
する放散気流整流用環板とを内周にもつ線状冷却
用冷却気噴射環により、上記フロストライン付近
のフイルム外周を、少ない間隙で、取巻き、その
噴射環を上記環状出口と同芯を保つて位置調節
し、その噴流が上記フラストラインの位置より少
し押出機寄りで、フイルムに未だ全く固相分が生
じていない透明部分の外周を線状冷却できる位置
に固定し、噴射させるのであつて、 その噴射環の噴流の強さは、噴流を直角に当
てゝフイルム周面に回復可能な線状凹みを生ぜし
める程度とし、その冷却能力は上記噴流を受ける
フイルムの透明部分の温度から瞬時に、その線状
冷却位置で、凝固を開始、完了せしめるものとす
る事を特徴とするインフレーシヨン・フイルムの
成形方法。
[Claims] 1. The molten resin discharged from the annular outlet of the extruder is appropriately cooled by an arbitrary cooling device near the outlet,
An injection slit that advances as an inflation film with a cylindrical frost line using internal pressure and withdrawal, and allows the jet to travel straight without dispersion almost at right angles to the surface of the cylindrical film, and an upper plate of the slit. For linear cooling, the inner periphery includes a ring plate for rectifying diffused air, which overlaps coaxially with a gap above the upper plate, has an inner diameter similar to the above upper plate, and has a ring plate part parallel to the above gap as the main part. A cooling air injection ring surrounds the outer periphery of the film near the frost line with a small gap, and the injection ring is positioned concentrically with the annular outlet so that the jet stream is slightly below the position of the frost line in the extruder. The outer periphery of the transparent part of the film, where no solid phase has yet formed, is fixed at a position where it can be linearly cooled, and the injection is performed.The strength of the jet from the injection ring is determined by applying the jet at a right angle. The cooling capacity shall be such that a recoverable linear depression is created on the film circumference, and the cooling capacity shall be such that solidification is started and completed instantly at the linear cooling position from the temperature of the transparent part of the film receiving the jet flow. A method for forming an inflation film, which is characterized by:
JP56142447A 1981-09-11 1981-09-11 Method of molding inflation film Granted JPS5845026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56142447A JPS5845026A (en) 1981-09-11 1981-09-11 Method of molding inflation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56142447A JPS5845026A (en) 1981-09-11 1981-09-11 Method of molding inflation film

Publications (2)

Publication Number Publication Date
JPS5845026A JPS5845026A (en) 1983-03-16
JPH0246376B2 true JPH0246376B2 (en) 1990-10-15

Family

ID=15315517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56142447A Granted JPS5845026A (en) 1981-09-11 1981-09-11 Method of molding inflation film

Country Status (1)

Country Link
JP (1) JPS5845026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121607A (en) * 2010-12-09 2012-06-28 Axis:Kk Plastic bag

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53146764A (en) * 1977-05-27 1978-12-20 Mitsui Petrochem Ind Ltd Film forming by inflation
JPS56167417A (en) * 1980-05-30 1981-12-23 Nippon Yunikaa Kk Method and apparatus for forming plastic film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53146764A (en) * 1977-05-27 1978-12-20 Mitsui Petrochem Ind Ltd Film forming by inflation
JPS56167417A (en) * 1980-05-30 1981-12-23 Nippon Yunikaa Kk Method and apparatus for forming plastic film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121607A (en) * 2010-12-09 2012-06-28 Axis:Kk Plastic bag

Also Published As

Publication number Publication date
JPS5845026A (en) 1983-03-16

Similar Documents

Publication Publication Date Title
US4118453A (en) Method and apparatus for the extrusion of tubular thermoplastic film
US4472343A (en) Tubular film process
JPS5881128A (en) Manufacture of inflation film and apparatus therefor
US4447387A (en) Process for manufacture of tubular film
JPH0246376B2 (en)
JPH0246375B2 (en)
JPH0246377B2 (en)
US3207823A (en) Production of flattened tubular plastic film
JPH0118851B2 (en)
JPH0361575B2 (en)
JPH0220624A (en) Bulging device and its bulging method
JP2549788B2 (en) Production method of blown film
JPS5892528A (en) Air-ring and inflation film forming method using the same
JP3792889B2 (en) Film inflation molding method and apparatus
JPS5939524A (en) Chamber for forming inflation film
JPS6020937A (en) Process and apparatus for surface treatment with solvent vapor
JP3490721B2 (en) Manufacturing method of blown film
JPH0152171B2 (en)
JPS5894433A (en) Method of forming inflation film
JP3152972B2 (en) Internal mandrel
JP2549771B2 (en) Inflation film molding method
JPH0516208A (en) Mandrel for cooling
JPS5929125A (en) Method for molding thermoplastic resin film
JPS58212918A (en) Formation of blown film and cooling ring for forming the same
JP2511349B2 (en) Tubular film forming equipment