JPH0246375A - Flow control valve - Google Patents

Flow control valve

Info

Publication number
JPH0246375A
JPH0246375A JP19544088A JP19544088A JPH0246375A JP H0246375 A JPH0246375 A JP H0246375A JP 19544088 A JP19544088 A JP 19544088A JP 19544088 A JP19544088 A JP 19544088A JP H0246375 A JPH0246375 A JP H0246375A
Authority
JP
Japan
Prior art keywords
valve
liquid
main valve
valve seat
liquid supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19544088A
Other languages
Japanese (ja)
Inventor
Toshiaki Motohashi
俊明 本橋
Akira Tanaka
明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tatsuno Co Ltd
Original Assignee
Tokyo Tatsuno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tatsuno Co Ltd filed Critical Tokyo Tatsuno Co Ltd
Priority to JP19544088A priority Critical patent/JPH0246375A/en
Publication of JPH0246375A publication Critical patent/JPH0246375A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lift Valve (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

PURPOSE:To set multiple kinds of flows ranging from a small flow to a large flow by constituting the main valve of a flow control valve with multiple step sections so that the tip section is tapered in steps. CONSTITUTION:The main valve 2 of a flow control valve 1 faces a valve seat hole 8a, multiple step sections 2a and 2b are formed on it so that the tip side is tapered in a steps. This main valve 2 is driven by the fluid pressure controlled by solenoid valves 13 and 17, for example. Positions of the step sections 2a and 2b of a valve plug against the valve seat hole 8a are adjusted by this drive, the valve opening is adjusted by the interval between the valve seat hole 8a and the step sections 2a and 2b.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は吐出量を切換えることのできる流量制御弁に閉
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a flow control valve that can switch the discharge amount.

(従来技術) ガソリンスタンド等で用いられている満タンになるまで
自動的に給液する給液機及びプリセット給液機では、給
液に応じて流量を切換えて給液できる弁が要求されてい
る。
(Prior art) Liquid dispensers and preset liquid dispensers used at gas stations and the like that automatically dispense liquid until the tank is full require a valve that can switch the flow rate depending on the liquid being dispensed. There is.

このような流量の切換えを弁によって行なう技術は、工
作機械のサイクルタイム短縮手段等において利用されて
いるが(例えば日刊工業新聞社発行「油圧教本」102
.103頁参照)、これらには、3位貫切換弁のほかに
幾つかの流量制御弁が必要となって、設備がかなり複雑
で高価なものになるほか、大量の給液を行なうようなも
のには適用できないといった問題を有している。
The technology of switching the flow rate using a valve is used as a means to shorten the cycle time of machine tools, etc.
.. (See page 103), these require several flow rate control valves in addition to the 3-way switching valve, making the equipment quite complex and expensive, as well as those that require large amounts of liquid to be supplied. The problem is that it cannot be applied to

このような問題を解消するため、本出願人は、弁体背面
の液室に、給液管路の上流側と下流側に連通する導液通
孔と排液通孔を設けるとともに、導液通孔と排液通孔に
独立して各通孔を開閉することのできる弁を配設して、
この弁を操作することにより液室内の圧力を変えて弁体
の開度を変えることのできる流量制御弁を提案した。
In order to solve such problems, the applicant provided a liquid guide hole and a drain hole that communicate with the upstream and downstream sides of the liquid supply pipe in the liquid chamber on the back of the valve body, and A valve that can open and close each hole independently is installed in the through hole and the drainage hole.
We proposed a flow control valve that can change the opening degree of the valve body by changing the pressure inside the liquid chamber by operating this valve.

(解決すべき課題) これによれば、単一の弁体をもって大流量から小流量へ
と吐出量を切換えることのできるが、ストロークの調整
が困難で設定流量に変動が生じやすいという不都合があ
った。
(Issues to be solved) According to this method, the discharge amount can be switched from a large flow rate to a small flow rate using a single valve body, but there are disadvantages in that it is difficult to adjust the stroke and the set flow rate tends to fluctuate. Ta.

本発明は、このような事情に鑑みてなされたものであっ
て、その目的とするところは、小流量から大流量を複数
種類の流量でもってを高い信頼性で設定することができ
る新規な流量制御弁を提供することにある。
The present invention has been made in view of these circumstances, and its purpose is to provide a new flow rate that can be set with high reliability with multiple types of flow rates ranging from small flow rates to large flow rates. The purpose of this invention is to provide a control valve.

(課題を解決するための手段) すなわち、本発明はかかる課題を解決するための流量制
御弁として、流入側と流出側を連通させる弁座穴と、こ
の弁座穴に対向するとともに先端側が段階的に細くなる
複数の段差部を形成した主弁と、段差部の段差に対応さ
せて主弁を駆動する手段を備え、駆動手段により弁座穴
に対する弁体の段差の位雪を調節して弁座穴と段差部と
の間隙により弁開度を調整するようにした。
(Means for Solving the Problem) That is, the present invention provides a flow rate control valve for solving the problem, including a valve seat hole that communicates the inflow side and the outflow side, and a valve seat hole that faces the valve seat hole and has a stepped tip end. The main valve is provided with a main valve formed with a plurality of stepped portions that become narrower, and a means for driving the main valve in accordance with the steps of the stepped portions. The valve opening degree is adjusted by the gap between the valve seat hole and the step.

(実施例) そこで以下に本発明の詳細を図示した実施例に基づいて
説明する。
(Example) The details of the present invention will be described below based on illustrated examples.

第1図は本発明の一実施例を示したものであって、図中
符号2は、給液管3の一部に配設した流量制御弁1とし
ての主弁で、この主弁2は、後述する弁座穴8aに対向
する面には先端側が段階的に細くなる直径rl、r2を
有するとともに、段差部d+、d2を有する複数の段差
部2a、2bが形成されており(第2図)、またその背
面と蓋4との間に設ゆたスプリング5の押圧力と、導液
通孔11を介して背面の液圧室7に作用する管路上流側
の静圧を受けで弁座穴8aに対向して常時弁座8に着座
するように構成されている。
FIG. 1 shows an embodiment of the present invention, and the reference numeral 2 in the figure is a main valve as a flow control valve 1 disposed in a part of a liquid supply pipe 3. , a plurality of step portions 2a, 2b having step portions d+, d2 are formed on the surface facing the valve seat hole 8a, which will be described later, and have diameters rl and r2 that are tapered stepwise on the tip side. ), it also receives the pressing force of the spring 5 installed between the rear surface and the lid 4, and the static pressure on the upstream side of the pipe acting on the hydraulic pressure chamber 7 on the rear surface through the liquid guide hole 11. It is configured to always sit on the valve seat 8 facing the valve seat hole 8a.

一方この主弁21Fr摺動自在に挿通した弁本体10側
には、給液管3の上流側に連通する導液通孔11と、給
液管3の下流側に連通する排液通孔15が設けられ、各
通孔11.15には各通孔11.15を開閉する第1電
磁弁13及び第2電磁弁17が設けられている。
On the other hand, on the side of the valve body 10 through which the main valve 21Fr is slidably inserted, a liquid guide hole 11 communicating with the upstream side of the liquid supply pipe 3 and a drain liquid passage hole 15 communicating with the downstream side of the liquid supply pipe 3 are provided. Each through hole 11.15 is provided with a first solenoid valve 13 and a second solenoid valve 17 for opening and closing each through hole 11.15.

なお、図中符号6は主弁2に設けたバッキング、14.
18は導液通孔11と排液通孔15に設ゆた流量調整用
のネジ弁を、また19は主弁2の流入側と流出側を隔て
る壁部に通孔を穿設してなる最低流量設定用の側路をそ
れぞれ示している。
In addition, the reference numeral 6 in the figure indicates a backing provided on the main valve 2, and 14.
18 is a screw valve for adjusting the flow rate provided in the liquid guide hole 11 and the drain hole 15, and 19 is a through hole bored in the wall separating the inflow side and the outflow side of the main valve 2. Each side channel for setting the minimum flow rate is shown.

つぎに、このように構成された流量制御弁1の開閉動作
を第1図及び第3図によって説明する。
Next, the opening/closing operation of the flow control valve 1 configured as described above will be explained with reference to FIGS. 1 and 3.

全開動作(第3図(a)) 第1及び第2の各電磁弁13.17がそれぞれ導液通孔
11及び排液通孔15を閉塞し、かつ主弁2が弁座8に
当接して給液管31Fr閉止している第1図の状態のも
とで図示しない給液ポンプを作動し、ついで第2電磁弁
17に通電すると、電磁弁17は排液通孔15を開いて
主弁2背面の液圧室7と給液管3の下流側を連通状態に
する。このため、液圧室7内の液は給液管3の下流側に
流出し、これに伴って主弁2は上流側の液の圧力を受け
て限界点まで上昇し、管路を全開して最大流量を設定す
ることになる(第3図(a ))。
Fully open operation (FIG. 3(a)) The first and second solenoid valves 13 and 17 respectively close the liquid guide hole 11 and the liquid drain hole 15, and the main valve 2 abuts the valve seat 8. When the liquid supply pump (not shown) is operated in the state shown in FIG. 1 in which the liquid supply pipe 31Fr is closed and the second electromagnetic valve 17 is energized, the electromagnetic valve 17 opens the drain passage hole 15 and drains the main liquid. The hydraulic pressure chamber 7 on the back side of the valve 2 and the downstream side of the liquid supply pipe 3 are brought into communication. Therefore, the liquid in the hydraulic pressure chamber 7 flows out to the downstream side of the liquid supply pipe 3, and the main valve 2 receives the pressure of the liquid on the upstream side and rises to its limit point, fully opening the pipe. The maximum flow rate is set using the following steps (Fig. 3(a)).

開度調節動作(第3図(b)乃至(e))上記した全開
状態から開度を絞るには第2電磁弁17を消勢し排液通
孔]5を閉じで下流側との連通を断つ一方、第1電磁弁
13に通電し、導液通孔11を開放して給液管3の上流
側と液圧室7を連通状態にする。これにより主弁2は液
圧室7内の圧力上昇により下降を開始する(第3図(b
))、所定の流Nを設定する段差部2bが弁座穴8aに
到達したら、その時点で第1電磁弁13への通電を断っ
で導液通孔11を閉塞する。これにより、液圧室7内は
導液通孔11を閉じた時点の圧力により主弁2の段差部
2tl弁座穴8aに挿入した状態を保つ(第2図(C)
)、これにより、実質的に段差部2bと弁座穴8aとの
隙間により規定される開口でもって流量が決定される。
Opening adjustment operation (Fig. 3 (b) to (e)) To reduce the opening from the fully open state described above, deenergize the second solenoid valve 17 and close the drain hole 5 to communicate with the downstream side. On the other hand, the first electromagnetic valve 13 is energized, the liquid guide hole 11 is opened, and the upstream side of the liquid supply pipe 3 and the hydraulic pressure chamber 7 are brought into communication. As a result, the main valve 2 starts to descend due to the pressure increase in the hydraulic chamber 7 (Fig. 3(b)
)) When the stepped portion 2b that sets the predetermined flow N reaches the valve seat hole 8a, at that point, the first electromagnetic valve 13 is de-energized and the liquid guide hole 11 is closed. As a result, the inside of the hydraulic chamber 7 maintains the state in which the stepped portion 2tl of the main valve 2 is inserted into the valve seat hole 8a due to the pressure at the time when the liquid introduction hole 11 is closed (Fig. 2 (C)
), thereby, the flow rate is determined by the opening substantially defined by the gap between the stepped portion 2b and the valve seat hole 8a.

そしてこの絞った状態からざらに吐出量を絞るには、再
度第1電磁井13を付勢して導液通孔11を開く(第3
図(d ))、これにより液圧室7内の液圧上昇により
主弁2が降下して大径側の段差部2aが弁座穴8aに移
動する。この時点で第1の電磁弁13への通電を断って
導液通孔11を閉塞する。これにより、主弁2は、大径
の段差部2aを弁座穴8aに挿入した状態で停止して第
3の流量を設定することになる(第3図(e)。
To roughly reduce the discharge amount from this reduced state, the first electromagnetic well 13 is energized again to open the liquid guide hole 11 (the third
As shown in Fig. (d), the main valve 2 is lowered due to an increase in the hydraulic pressure in the hydraulic pressure chamber 7, and the stepped portion 2a on the large diameter side moves to the valve seat hole 8a. At this point, the first electromagnetic valve 13 is de-energized and the liquid guide hole 11 is closed. As a result, the main valve 2 is stopped with the large-diameter stepped portion 2a inserted into the valve seat hole 8a, and the third flow rate is set (FIG. 3(e)).

ところで、これらの段差2a、2bは、弁座方向に対し
て一定の段差部dl  62を有するから、この長さd
 +  62の範囲内に弁座の移動が収まっていさえす
れば、弁座穴8aは段差部2a、2bにより実質的に絞
られることになるから、主弁2の移動精度に裕度をもた
せることができる。
By the way, since these steps 2a and 2b have a constant step portion dl 62 in the direction of the valve seat, this length d
As long as the movement of the valve seat is within the range of +62, the valve seat hole 8a will be substantially constricted by the step portions 2a and 2b, so a margin should be provided for the movement accuracy of the main valve 2. Can be done.

閉止動作(第1図) そして最後に主弁2を閉じるには、第1電磁弁13を付
勢し導液通孔11を開放したままにすれば、液圧室7内
の液圧により主弁2は弁座8に当接するまで下降して弁
座81F!、閉塞する。これにより、上流側と下流側と
は側路19によってのみ連通され、この側路19により
決る最低流量が設定される。これにより、安定した微小
流量により液を供給することができる。なお、液の供給
を停止する場合は、例えば給液装置にあっては、流出口
側に接続されでいる給液ノズル27の主弁49を閉塞す
ることにより行うことができる(第5.6図)。
Closing operation (Fig. 1) Finally, to close the main valve 2, if the first solenoid valve 13 is energized and the liquid guide hole 11 is kept open, the main valve is closed by the hydraulic pressure in the hydraulic chamber 7. Valve 2 descends until it touches valve seat 8, and valve seat 81F! , occlusion. Thereby, the upstream side and the downstream side are communicated only through the side passage 19, and a minimum flow rate determined by this side passage 19 is set. Thereby, the liquid can be supplied at a stable minute flow rate. When stopping the liquid supply, for example, in a liquid supply device, this can be done by closing the main valve 49 of the liquid supply nozzle 27 connected to the outlet side (see Section 5.6). figure).

ところで、第4図は上述した流量制御弁1を用いた計量
装置の一例を示したもので、制御装置2oにより制御を
受けるモータ21で駆動される給液ポンプ22からノズ
ルに到る給液管24には、その上流側から流量計25、
上記した流量制御弁1、ノズルホース26、給液ノズル
27が順に配設され、また制御装!20には、流量計2
5に接続した流量パルス発信器28からのパルス信号と
、キーボード上のプリセット釦29により設定された給
液量に相当する信号と、ノズルスイッチ7oからの各信
号が入力し、また制御装[20から出力した信号は、上
記した第1、第2の電磁弁13.17と、流量及びプリ
セットjlヲ表示する表示器3]へ出力するように構成
されている。
By the way, FIG. 4 shows an example of a metering device using the above-mentioned flow rate control valve 1, in which a liquid supply pipe leading to a nozzle from a liquid supply pump 22 driven by a motor 21 controlled by a control device 2o is shown. 24, from the upstream side there is a flow meter 25,
The above-described flow control valve 1, nozzle hose 26, and liquid supply nozzle 27 are arranged in this order, and a control device! 20 has a flowmeter 2
A pulse signal from the flow rate pulse transmitter 28 connected to the control unit [20 The signal output from the controller is configured to be output to the first and second electromagnetic valves 13, 17 and the display 3 which displays the flow rate and preset value.

第5.6図は、上述した流量制御弁]を適用するのに好
適な給液ノズルの一実施例を示すもので、給液ノズル2
7は、大別して筒先部40と筒胴部41と握り部43と
によって構成されてあり、筒先部40には、一端が筒先
部40の先端付近に開口した空気流路管44が挿入され
ていて、その他端は筒胴部41に設けたチエツク弁45
の負圧発生部46と、自動閉弁機構47の負圧室48内
に開口している。このチエツク弁45は、これと主弁4
9とにより形成される液室50と、筒先部40とを連通
させるとともに、給液時にチエツク弁45自体の開弁動
作を阻害しない程度の径を持つ小径の細孔51が設けら
れている。
Figure 5.6 shows an example of a liquid supply nozzle suitable for applying the above-mentioned flow rate control valve.
7 is roughly divided into a cylinder tip part 40, a cylinder body part 41, and a grip part 43, and an air flow path pipe 44 having one end opened near the tip of the cylinder tip part 40 is inserted into the cylinder tip part 40. The other end is a check valve 45 provided in the cylinder body 41.
It opens into the negative pressure generating section 46 of the valve and the negative pressure chamber 48 of the automatic valve closing mechanism 47 . This check valve 45 is connected to the main valve 4.
A small pore 51 is provided to communicate the liquid chamber 50 formed by the liquid chamber 9 with the cylinder tip 40, and has a small diameter that does not inhibit the opening operation of the check valve 45 itself during liquid supply.

一方、上記した筒胴部41には、その側面に計量装冒内
の給液ポンプ22(第4図)に連通するホース26の端
部が結合し、ここから筒先部40へ達する流路には、弁
杆52を介してスプリング53により常時流路を閉塞す
るよう付勢された主弁49が配設されており、またこの
筒胴部41の側面には、負圧室48内に生じた負圧によ
りダイヤフラム54を変形させて主弁49を閉止する自
動閉弁機構47が設けられている。この自動閉弁機構4
7は周知のように、空気流路管44の筒先部40先端に
位置する開口端44aがタンク内の液により塞がれた際
主弁49を閉鎖するよう作動するもので、空気流路管4
4と連通する負圧室48には、常時バネ55により外方
へ付勢されたダイヤフラム54が張設され、このダイヤ
フラム54には、特公昭51−27885号公報に見ら
れるようなコ字状をなす駒57が固設されていて、この
駒57の長孔内で摺動する2本のビン581Fr弁杆5
2の一部に設けた切欠き59内に位置させた上、弁杆5
2内に挿通したブツシュロッド60の凹部に係脱させる
ことにより、弁杆52とブツシュロッド60を接離させ
るように構成されている。上記したブツシュロッド60
は、その復端に作用するスプリング62によって常時レ
バー63を前向きに付勢するようその背面に当接してい
て、一端をビン64により回動可能に枢支されたレバー
63を引くことによりブツシュロッド60!スプリング
62に抗して図中右方へ移動し、ビン58を介してこれ
と結合した弁杆52、主弁497i!伴って流路を開放
するように構成されている。
On the other hand, the end of the hose 26 that communicates with the liquid supply pump 22 (FIG. 4) in the metering fitting is connected to the side surface of the above-mentioned cylinder body 41, and a flow path from there to the cylinder tip 40 is connected. A main valve 49 is disposed through a valve rod 52 and is biased by a spring 53 so as to close the flow path at all times. An automatic valve-closing mechanism 47 is provided that deforms the diaphragm 54 using negative pressure and closes the main valve 49. This automatic valve closing mechanism 4
As is well known, 7 operates to close the main valve 49 when the open end 44a located at the tip of the cylindrical tip 40 of the air flow pipe 44 is blocked by liquid in the tank. 4
A diaphragm 54, which is always urged outward by a spring 55, is attached to the negative pressure chamber 48 that communicates with the negative pressure chamber 48. A piece 57 forming a shape is fixedly installed, and two bottles 581Fr valve rod 5 that slide in the long hole of this piece 57
The valve rod 5 is positioned within the notch 59 provided in a part of the valve rod 5.
The valve rod 52 and the bushing rod 60 are brought into contact with and separated from each other by engaging and disengaging the bushing rod 60 inserted into the bushing rod 2. Bush rod 60 mentioned above
is in contact with the back surface of the lever 63 so as to constantly urge the lever 63 forward by a spring 62 acting on its return end.By pulling the lever 63, whose one end is rotatably supported by a pin 64, the bushing rod 60 is moved. ! The valve rod 52 and the main valve 497i move to the right in the figure against the spring 62 and are connected to this via the pin 58! Accordingly, the flow path is opened.

ところで、上記した筒胴部41にはチエツク弁45の上
流側に主弁49と当接して流路を閉塞する弁座65が摺
動可能に配設されている。この弁座65は上記した一般
的な弁座機能のほかに、液面検知によりブツシュロッド
60から外されてここに当接した主弁49を、その襖の
給液停止に伴って生じた液圧からの開放により主弁49
を図中右方へ前進動させ、再びビン58を介してこれを
ブツシュロッド6oに結合させる機能を有するもので、
この弁座65の背面には、スプリング53の付勢力に抗
して主弁491F!:図中右方へ移動させるに足る圧縮
スプリング66の付勢力が作用している。
Incidentally, a valve seat 65 is slidably disposed in the above-mentioned cylinder body 41 on the upstream side of the check valve 45 and abuts against the main valve 49 to close the flow path. In addition to the above-mentioned general valve seat function, this valve seat 65 has the function of controlling the main valve 49, which was removed from the bushing rod 60 when the liquid level was detected and abutted here, by the hydraulic pressure generated when the liquid supply to the sliding door is stopped. Main valve 49 is opened by opening from
It has the function of moving forward to the right in the figure and connecting it to the bushing rod 6o again via the bottle 58.
On the back side of this valve seat 65, the main valve 491F! resists the biasing force of the spring 53! : The biasing force of the compression spring 66 is acting, which is sufficient to move it to the right in the figure.

なお、図中符号67は弁座65の右方移動の限界点に設
けたストッパ、68はレバー63を引いた位置で保持す
るための掛金を示している。
In the figure, reference numeral 67 indicates a stopper provided at the limit point of rightward movement of the valve seat 65, and 68 indicates a latch for holding the lever 63 in the pulled position.

つぎに、前述した流量制御弁を用い満タン給液をする場
合における上記給液ノズルの動作を第7図に基づいて説
明する。
Next, the operation of the liquid supply nozzle when full liquid is supplied using the above-mentioned flow rate control valve will be explained based on FIG. 7.

給液ノズル27が計量装置のノズル掛けに掛けられてい
る状態、つまり、給液ポンプ22が停止し、かつレバー
63が操作されていない状態のもとでは、第7図(i)
に示したように、筒胴部4]内に摺動自在に組付けられ
た弁座65は、その背面に作用するスプリング66の付
勢力によりストッパ67に当接する位置まで図中右方へ
前進動じている。このため、スプリング53に付勢され
て弁座65に当接している主弁49も図中右方へ押戻さ
れ、この闇に、弁杆52の切欠き59内に位置するビン
58は、プッシュ口・ンド60の凹部59に係合して弁
杆52とブツシュロッド60を結合させる。
When the liquid supply nozzle 27 is hung on the nozzle hook of the metering device, that is, when the liquid supply pump 22 is stopped and the lever 63 is not operated, the state shown in FIG. 7(i)
As shown in FIG. 2, the valve seat 65, which is slidably assembled inside the cylinder body 4, moves forward to the right in the figure until it comes into contact with the stopper 67 due to the biasing force of the spring 66 acting on the back surface of the valve seat 65. I'm moving. For this reason, the main valve 49, which is in contact with the valve seat 65 under the force of the spring 53, is also pushed back to the right in the figure, and in this darkness, the bottle 58 located in the notch 59 of the valve rod 52 is It engages with the recess 59 of the push port/end 60 to connect the valve rod 52 and bushing rod 60.

この状態のもとで、例えば自動車の燃料タンク内にガン
リンを充填すべくノズル掛けから給液ノズル27を外す
と、ノズルスイッチからの信号により制御装置20内の
計数手段はリセットされて表示器31を零にし、これと
同時にポンプモータ21は給液ポンプ22を駆動する。
Under this condition, for example, when the liquid supply nozzle 27 is removed from the nozzle hook in order to fill the fuel tank of an automobile with Ganrin, the counting means in the control device 20 is reset by a signal from the nozzle switch, and the display 31 is set to zero, and at the same time, the pump motor 21 drives the liquid supply pump 22.

今の場合には、流量制御弁1の主弁2が閉塞されている
から(第1図)、ポンプ22により送られてきた液は、
側路19を経由してノズル27に流れ込む、このため、
スプリング66に付勢されて前進位M(図中右方)1F
r占めていた弁座65は、給液ポンプ22からの液圧を
受けて主弁49を当接させたまま後退する(第7図(i
i))。
In this case, since the main valve 2 of the flow control valve 1 is closed (Fig. 1), the liquid sent by the pump 22 is
flows into the nozzle 27 via the side channel 19, thus
Forced by spring 66, forward position M (right side in the figure) 1F
The valve seat 65, which was occupied by
i)).

つぎに筒先部40を自動車の燃料タンクの給液口に挿入
してレバー631F!、引き、その位置で掛金68に係
止すると、レバー63に押されたブツシュロッド60は
ビシ58を介して結合一体となした弁杆52を図中右方
へ引戻しで主弁49を開く(第7図(iii)) 、こ
のとき主弁1の側路19から微少流量、例えば毎分7β
で液が流れる(篤8図1)、この流量で少し給液された
後に流量制御弁1のソレノイド17を付勢して排液通路
15を開いて主弁2を全開にすると、例えば毎分45β
の吐出jl!もって通常の給液が開始され(第3図a、
第8図■)、これに伴って流量パルス発信器28から出
力したパルスは逐次計数手段によつ積算されて表示器3
1に給液量として表示される。
Next, insert the tube tip 40 into the fuel supply port of the car's fuel tank and press the lever 631F! , and when it is locked in the latch 68 at that position, the bushing rod 60 pushed by the lever 63 pulls back the valve rod 52, which is integrally connected via the screw 58, to the right in the figure to open the main valve 49 (the second 7 (iii)), at this time, a small flow rate, for example 7β per minute, is generated from the side passage 19 of the main valve 1.
After a small amount of liquid is supplied at this flow rate, the solenoid 17 of the flow control valve 1 is energized to open the drain passage 15 and the main valve 2 is fully opened, for example, every minute. 45β
The discharge of jl! At this point, normal liquid supply starts (Fig. 3a,
Accordingly, the pulses output from the flow rate pulse generator 28 are integrated by the sequential counting means and displayed on the display 3.
1 is displayed as the amount of liquid supplied.

給液ポンプ22から送られてきた液をチエツク弁45の
負圧発生部46から筒先部4oへと導いた上、ここから
タンク内(こ供給する。言うまでもなく、細孔51の径
が小さいため、主弁49を経由した液の圧力により十分
に開弁することができる。そして、このようにして給液
が開始されると、チエツク弁45の負圧発生部46には
ベンチュリー効果により負圧が生じ、ここに開口した空
気流路管44の内部を負圧にするが、空気流路管44の
筒先部4o側開口端44aは大気中にあって空気を吸引
しているため、管44内はこの時点で常圧となっている
The liquid sent from the liquid supply pump 22 is guided from the negative pressure generating part 46 of the check valve 45 to the cylinder tip 4o, and then supplied from there into the tank.Needless to say, since the diameter of the pore 51 is small, The valve can be opened sufficiently by the pressure of the liquid that has passed through the main valve 49.When the liquid supply is started in this way, negative pressure is generated in the negative pressure generating section 46 of the check valve 45 due to the Venturi effect. occurs, creating a negative pressure inside the air flow pipe 44 opened here, but since the open end 44a of the air flow pipe 44 on the cylinder tip 4o side is in the atmosphere and sucks air, the air flow pipe 44 At this point, the pressure inside is normal.

このようにして、1oβ程度給油されると制御装置12
0から信号が出て、第2電磁弁17を閉塞した状態で、
第1電磁弁13に微少時間駆動電流を流す、これにより
、第1電磁弁13は瞬間的に開き、そして閉じる。これ
により液室内7の液体が少量増加することになって、主
弁2が弁座8側に移動する。これによりの段差部2bと
弁座穴8aとの径の差で決る流量、例えば35β/分の
流量に絞られることになる第3図C1第8図III)、
この流量絞り動作により流入量が低下してタンクからの
吹返しが防止される。
In this way, when approximately 1oβ is refueled, the control device 12
With the signal output from 0 and the second solenoid valve 17 closed,
A driving current is applied to the first solenoid valve 13 for a short time, so that the first solenoid valve 13 momentarily opens and then closes. As a result, the liquid in the liquid chamber 7 increases by a small amount, and the main valve 2 moves toward the valve seat 8 side. As a result, the flow rate is determined by the difference in diameter between the stepped portion 2b and the valve seat hole 8a, for example, the flow rate is reduced to 35β/min (Fig. 3 C1, Fig. 8 III),
This flow rate throttling operation reduces the inflow amount and prevents blowback from the tank.

引続く給液によりタンク内の液面レベルが上昇し、やが
て筒先部40の開口端44aが液面上のアワにより閉塞
されると、空気流路管44と連通している負圧室48内
は、負圧発生部46での負圧作用を受けて負圧となり、
この負圧によりバネ55に抗してダイヤフラム54を図
中上方に吸弓し、これと一体となった駒57を引上げて
ビン58をブツシュロッド60の凹部59から外す。
The liquid level in the tank rises due to subsequent liquid supply, and when the open end 44a of the tube tip 40 is eventually blocked by the bubbles on the liquid level, the inside of the negative pressure chamber 48 communicating with the air flow pipe 44 becomes a negative pressure due to the negative pressure action in the negative pressure generating section 46,
This negative pressure causes the diaphragm 54 to move upward in the figure against the spring 55, and the piece 57 integrated with the diaphragm 54 is pulled up to remove the bottle 58 from the recess 59 of the bushing rod 60.

これにより、ビン58による拘止を解かれた弁杆52は
ビン58を伴いつつ自己に作用するスプリング53の付
勢力により図中左方へ移動し、主弁49を弁座65に当
接させて閉止して給液を停止する(第7図(1V))。
As a result, the valve rod 52, which is released from the restraint by the bottle 58, moves to the left in the figure due to the biasing force of the spring 53 acting on itself while taking the bottle 58 with it, and brings the main valve 49 into contact with the valve seat 65. to close it and stop the liquid supply (Fig. 7 (1V)).

そしてこの状態になると、制御装置20は第1の電磁弁
]3を開き主弁2を閉塞させ(第1図)、ついでポンプ
モータ21を停止させる。このため、液圧を解かれた弁
座65は、スプリング66の付勢により主弁49を押し
やりながら図中右方へ前進動じ、その終端において再び
ビン58を介して弁杆52とブツシュロッド60とを結
合させようとする。この過程において弁座65の移動に
伴なって液室50が拡大するため、ここに負圧が発生し
ようとするが、チエツク弁45の細孔51を介して筒先
部40がら空気が供給されるため、過度な圧力低下を引
き起すことなく、弁座65はスムーズにビン58を介し
て弁杆52とブツシュロッド60とを結合させる位置ま
で前進動を行なうことができる(第7図(V))。
When this state is reached, the control device 20 opens the first solenoid valve 3 to close the main valve 2 (FIG. 1), and then stops the pump motor 21. Therefore, the valve seat 65, which has been released from the hydraulic pressure, moves forward to the right in the figure while pushing the main valve 49 away due to the urging force of the spring 66, and at the end of the movement, the valve seat 65 is again connected to the valve lever 52 and the bushing rod 60 via the bottle 58. and try to combine them. In this process, as the valve seat 65 moves, the liquid chamber 50 expands, so negative pressure tends to occur here, but air is supplied from the cylinder tip 40 through the pore 51 of the check valve 45. Therefore, the valve seat 65 can smoothly move forward via the pin 58 to the position where the valve lever 52 and bushing rod 60 are connected without causing an excessive pressure drop (FIG. 7(V)). .

ついでこの状態から予め設定された時間、すなわちアワ
が消えるまでの2〜3秒の時Mが経過すると、制御装置
20によりポンプモータ21が再び作動させられる。こ
れにより、流量制御弁1の側路19から液がノズル27
に流れ込み、箇胴部41内に流入した液は、スプリング
66に抗して弁座65を図中左方へ復退させ、主弁49
と弁座65とを離間させて樽び給液動作に入らせる(第
7図(iii)  第8図I°)、この再給油が行なわ
れる段階では、すでに満タンに近いので、しばらくする
と流量制御弁1の主弁2を小流量、例えば2oβ/分と
なるように第2電磁弁17に制御装置120は微少時間
駆動電流を流しく第3図e、第8図■)、第1の段差2
aに設定させて給液を行なう(第3図e、第4図II[
)。
Then, when a preset time M, which is 2 to 3 seconds until the bubble disappears, has elapsed from this state, the pump motor 21 is operated again by the control device 20. As a result, liquid flows from the side passage 19 of the flow control valve 1 to the nozzle 27.
The liquid flowing into the main valve body 41 moves the valve seat 65 back to the left in the figure against the spring 66, and the liquid flows into the main valve 49.
and the valve seat 65 to enter the barrel liquid supply operation (Fig. 7 (iii), Fig. 8 I°). At the stage when this refueling is performed, the tank is already close to full, so after a while the flow rate will increase. The control device 120 applies a driving current for a minute time to the second solenoid valve 17 so that the main valve 2 of the control valve 1 has a small flow rate, for example, 2oβ/min (Fig. 3 e, Fig. 8 ■), the first Step 2
Set it to a and perform liquid supply (Fig. 3 e, Fig. 4 II [
).

そしてこの給液再開動作の後、再び空気流路管44の筒
先部4o側開口端44aがアワにより閉ざされ、これと
ともに作動した自動閉弁機構47が主弁49を閉じて給
液を停止し、ポンプモータを停止し、また流量制御弁1
の主弁2を閉塞させる(第1図)、そして2〜3秒後に
ポンプモータが再び作動させられ、上述の工程と同様に
して側路19からノズル27に給液が行なわれるが、こ
の段階では、はぼ溝タシであるので、主弁2を開くこと
なく、側路19だけによる給液を行ない(第8図I ”
’)、給液量に端数が無くなったときに制御手段20は
タンク内が満クンになったものと見なしポンプモータ2
11Fr停止させて全ての給液動作を終了する。
After this liquid supply restart operation, the opening end 44a of the air flow path pipe 44 on the cylinder tip 4o side is closed again by the bubble, and the automatic valve closing mechanism 47 that operates at the same time closes the main valve 49 and stops the liquid supply. , stop the pump motor, and also close the flow control valve 1.
The main valve 2 of the main valve 2 is closed (Fig. 1), and the pump motor is operated again after 2 to 3 seconds, and liquid is supplied from the side passage 19 to the nozzle 27 in the same manner as in the process described above, but at this stage In this case, since it is a hollow groove, the main valve 2 is not opened and liquid is supplied only through the side passage 19 (Fig. 8 I").
'), when there is no fraction in the amount of liquid supplied, the control means 20 assumes that the tank is full, and the pump motor 2
11Fr is stopped and all liquid supply operations are completed.

なお、プリセット給液の場合は、所望量をプリセット釦
29より入力して給液を行なえば、給液Iに応じて制御
装置20からの信号により流量制御弁1の第1、第2の
電磁弁13.17は開閉し、設定量でポンプモータ21
から停止して給液が終る。
In the case of preset liquid supply, if the desired amount is input from the preset button 29 and the liquid is supplied, the first and second electromagnetic valves of the flow control valve 1 are activated by a signal from the control device 20 according to the liquid supply I. Valve 13.17 opens and closes and pump motor 21 at a set amount.
It stops from then and fluid supply ends.

なお、この実施例においては、流量制御弁1の電磁弁]
3.17への通電時間により主弁の移動量を制御してい
るが、一定幅を有するパルスの個数を制御するようにし
ても同様の作用を奏することは明らかである。
In addition, in this embodiment, the solenoid valve of the flow control valve 1]
Although the amount of movement of the main valve is controlled by the energization time of 3.17, it is clear that the same effect can be obtained by controlling the number of pulses having a constant width.

また、この実施例においては、供給すべき液体の圧力を
積極的に利用して主弁2を移動させているが、管路を圧
縮気体源等の他の圧力源に接続したり、また主弁2を電
磁弁等の機械的駆動手段に接続して直接移動させるよう
にしても同様の作用を示すことは明らかである。
In addition, in this embodiment, the main valve 2 is moved by actively utilizing the pressure of the liquid to be supplied, but it is also possible to connect the pipe line to another pressure source such as a compressed gas source, or It is clear that the same effect can be obtained even if the valve 2 is connected to a mechanical drive means such as a solenoid valve and moved directly.

ざらに、上述の実施例においては段差部を2つとしたが
1もしくは3以上であっても同様の作用を奏することは
明らかである。
Generally speaking, in the above-described embodiment, there are two stepped portions, but it is clear that the same effect can be achieved even if there are one, three or more stepped portions.

(発明の効果) 以上述べたように本発明によれば、流入側と流出側を連
通させる弁座穴と、弁座穴に対向するとともに先端側が
段階的に細くなる複数の段差部を形成した主弁と、段差
部の段差に対応させて主弁を駆動する手段を備えたので
、段差部の段差により定まるストロークにさえ移動させ
れば目的の流量に設定することができ、高い信頼性でも
って複数種類の流量を設定できるばかりでなく、主弁の
移動制御に精密さを不要として主弁を移動させるための
制御機構の簡素化を図ることができる。
(Effects of the Invention) As described above, according to the present invention, a valve seat hole that communicates the inflow side and the outflow side, and a plurality of step portions facing the valve seat hole and tapering in stages on the tip side are formed. Since it is equipped with a main valve and a means for driving the main valve in response to the difference in level, the desired flow rate can be set by simply moving it to the stroke determined by the level difference in the level difference, with high reliability. This not only makes it possible to set a plurality of types of flow rates, but also eliminates the need for precision in controlling the movement of the main valve, thereby simplifying the control mechanism for moving the main valve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す流量制御弁の断面図、
第2図は主弁の段差部を示す拡大図、第3図は(a)乃
至(e)はその各動作を示す図、第4図は上記流量制御
弁を用いた給液装置の一例を示す図、第5.6図は上記
流量制御弁に適した給液ノズルの一例を示す断面図、第
7図は同上給液のノズルの動作を示す説明図で、第8図
は満タン給油時の流量を示す図である。 1・・・・流量制御弁 2a、2b・・・・段差部 7・・・・液圧室 13・・・・第1電磁弁 17・・・・第2電磁弁 2・・・・主弁 3・・・・給液管 11・・・・導液通孔 15・・・・排液通孔 19・・・・側路 時間
FIG. 1 is a sectional view of a flow control valve showing an embodiment of the present invention;
Fig. 2 is an enlarged view showing the stepped portion of the main valve, Fig. 3 is a diagram showing each of its operations (a) to (e), and Fig. 4 is an example of a liquid supply device using the above flow rate control valve. Figure 5.6 is a sectional view showing an example of a liquid supply nozzle suitable for the above flow control valve, Figure 7 is an explanatory diagram showing the operation of the same liquid supply nozzle, and Figure 8 is a diagram showing the operation of the liquid supply nozzle. FIG. 1...Flow rate control valves 2a, 2b...Step portion 7...Liquid pressure chamber 13...First solenoid valve 17...Second solenoid valve 2...Main valve 3...Liquid supply pipe 11...Liquid guide hole 15...Drainage hole 19...Side route time

Claims (1)

【特許請求の範囲】[Claims]  流入側と流出側を連通させる弁座穴と、該弁座穴に対
向するとともに先端側が段階的に細くなる複数の段差部
を形成した主弁と、前記段差部の段差長に対応させてに
主弁を駆動する手段を備えてなる流量制御弁。
A valve seat hole that communicates the inflow side and the outflow side, a main valve that is formed with a plurality of step portions facing the valve seat hole and tapered in stages on the tip side, and a valve seat hole that communicates with the inflow side and the outflow side; A flow control valve comprising means for driving a main valve.
JP19544088A 1988-08-04 1988-08-04 Flow control valve Pending JPH0246375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19544088A JPH0246375A (en) 1988-08-04 1988-08-04 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19544088A JPH0246375A (en) 1988-08-04 1988-08-04 Flow control valve

Publications (1)

Publication Number Publication Date
JPH0246375A true JPH0246375A (en) 1990-02-15

Family

ID=16341097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19544088A Pending JPH0246375A (en) 1988-08-04 1988-08-04 Flow control valve

Country Status (1)

Country Link
JP (1) JPH0246375A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065457A (en) * 2001-08-29 2003-03-05 Nidec Tosok Corp Solenoid valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065457A (en) * 2001-08-29 2003-03-05 Nidec Tosok Corp Solenoid valve

Similar Documents

Publication Publication Date Title
KR970004745B1 (en) Liquid delivery apparatus
JPH0246375A (en) Flow control valve
JPH0246376A (en) Flow control valve
JPH0245399A (en) Liquid feeder
JP3358636B2 (en) Automatic refueling nozzle
JP3009011B2 (en) Liquid supply device
WO2020227192A1 (en) Beverage dispensing machines with dispensing valves
JP2005524587A (en) Fluid proper amount supply system and dual mode system fluid operated flow valve used therefor
JPH01139400A (en) Liquid-feed nozzle
KR940005953B1 (en) Pressure-control valve for oiler
JP2583210B2 (en) Liquid supply device
JPH0764396B2 (en) Liquid supply device
CA1289921C (en) Liquid delivery apparatus
JP3522015B2 (en) Refueling device
KR920004979B1 (en) Fueling-nozzle
JPS63162500A (en) Liquid feeder
JP2701040B2 (en) Liquid supply device
JP3248536B2 (en) Liquid supply device
JPH0193686A (en) Flow control valve
JPH049945B2 (en)
JPH0814331B2 (en) 2-stage switching type on-off valve
JPH11210922A (en) Solenoid valve
JPH0442275B2 (en)
JPH06559B2 (en) Liquid supply device
JPH1035800A (en) Oil feed nozzle with automatic closing valve