JPH0246340B2 - - Google Patents

Info

Publication number
JPH0246340B2
JPH0246340B2 JP60228201A JP22820185A JPH0246340B2 JP H0246340 B2 JPH0246340 B2 JP H0246340B2 JP 60228201 A JP60228201 A JP 60228201A JP 22820185 A JP22820185 A JP 22820185A JP H0246340 B2 JPH0246340 B2 JP H0246340B2
Authority
JP
Japan
Prior art keywords
cutting
airflow
chips
cutting tool
cutting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60228201A
Other languages
Japanese (ja)
Other versions
JPS6288542A (en
Inventor
Juichi Okazaki
Hidenori Shinno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60228201A priority Critical patent/JPS6288542A/en
Publication of JPS6288542A publication Critical patent/JPS6288542A/en
Publication of JPH0246340B2 publication Critical patent/JPH0246340B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0042Devices for removing chips
    • B23Q11/006Devices for removing chips by sucking and blowing simultaneously

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【発明の詳細な説明】 (イ) 発明の目的 [産業上の利用分野] この発明は、特に超精密切削加工における切屑
の処理技術に関するものである。
[Detailed Description of the Invention] (a) Object of the Invention [Field of Industrial Application] This invention particularly relates to a technology for processing chips in ultra-precision cutting.

近年、ダイヤモンドバイドを用いて旋削加工に
より、極めて高精度の平面鏡、球面鏡、非球面鏡
等の光学部品が製作されるようになつた。この加
工法は、ガラスや金属の研磨法に比べて、加工時
間が短く、出来上がつた金属鏡の反射率が高く、
かつ耐久性があるなど、多くの優れた特徴を持つ
ており、レーザ核融合用反射鏡、天体望遠鏡、X
線や紫外線望遠鏡、レーザ加工用反射鏡等をはじ
め、これから多方面に利用されてゆくものと思わ
れる。超精密旋盤は、高精度の回転主軸、静圧軸
受、単結晶ダイヤモンドバイト、高剛性ベツドな
どによつて構成され、百分の1μmのオーダーでの
加工精度が実現されている。
In recent years, extremely high-precision optical components such as plane mirrors, spherical mirrors, and aspherical mirrors have come to be manufactured by turning using diamond vide. This processing method takes less time than polishing glass or metal, and the reflectance of the finished metal mirror is high.
It has many excellent features such as being durable and durable, and is useful for laser fusion reflectors, astronomical telescopes,
It is expected that it will be used in a wide range of fields in the future, including in line and ultraviolet telescopes, and reflectors for laser processing. Ultra-precision lathes are comprised of a high-precision rotating spindle, hydrostatic bearings, single-crystal diamond bits, and highly rigid beds, achieving machining accuracy on the order of 1/100 μm.

この様な超精密旋盤による旋削加工は、ドライ
または揮発性油の環境下で銅やアルミニウム合金
に対して、数μm程度以下の切込みで行なわれ、
切屑は箔状で生じる。しかして、この超精密旋削
においてはこの切屑の処理が特に重要である。
Turning using such an ultra-precision lathe is performed on copper or aluminum alloys in a dry or volatile oil environment with a depth of cut of several μm or less.
Chips are produced in the form of foil. Therefore, in this ultra-precision turning, the disposal of these chips is particularly important.

[従来の技術] 切屑の排出の良否と仕上面の品位との間には大
きな相関がある。すなわち、切屑の排出が良好で
ない場合、切屑が切削面に当つて損傷を与え、良
好な仕上面が得られない。
[Prior Art] There is a strong correlation between the quality of chip evacuation and the quality of the finished surface. That is, if the discharge of chips is not good, the chips will hit the cutting surface and cause damage, making it impossible to obtain a good finished surface.

超精密旋削においては通常、切削点の近くに真
空吸引機の吸入口を置き、切屑を吸いとることに
よつて切屑の排出が行われる。必要に応じて、切
削点に向けて空気噴流や切削油のミストを噴流す
ることもある。これらの設定によつて切削点付近
に高速の気流が生じ、切屑は、この気流にのつ
て、切削面に当ることのないように排出される。
In ultra-precision turning, chips are usually discharged by placing a suction port of a vacuum suction machine near the cutting point and sucking up the chips. If necessary, a jet of air or a mist of cutting oil may be directed toward the cutting point. These settings create a high-speed airflow near the cutting point, and the chips are discharged along with this airflow without hitting the cutting surface.

[発明が解決しようとする問題点] この従来の切屑排出方法では、第3図示すよう
に工具21のまわりに空気の渦22や澱みを生
じ、しばしば切屑がその渦や澱みに巻き込まれ、
速やかに排出されずに切削面を傷付ける結果とな
る。このような事態に陥らないように吸入口の大
きさ、形状、位置、角度等や吸引の強さを調節す
る。しかしこの調節は非常に微妙であり、特に切
屑が連続的でない場合や、連続的であつても細い
場合には大変困難になる。
[Problems to be Solved by the Invention] In this conventional chip evacuation method, air vortices 22 and stagnation are generated around the tool 21 as shown in FIG.
This results in damage to the cutting surface because it is not discharged quickly. To avoid this situation, adjust the size, shape, position, angle, etc. of the suction port and the strength of suction. However, this adjustment is very delicate and becomes particularly difficult when the chips are not continuous or are continuous but thin.

このようなことから、切屑の排出が容易かつ確
実で、切屑が切削面に当ることのない切屑の処理
技術の開発が望まれている。
For this reason, it is desired to develop a chip disposal technique that allows easy and reliable removal of chips and prevents the chips from hitting the cutting surface.

この発明は上記の如き事情に鑑みてなされたも
のであつて、切削点のまわりに渦や澱みのない安
定な気流を作り、この気流に沿つて切屑を削面に
当てることなく確実に排出することができる切削
工具を提供することを目的とするものである。
This invention was made in view of the above-mentioned circumstances, and it is an object of the present invention to create a stable airflow around the cutting point without swirls or stagnation, and to reliably discharge chips along this airflow without hitting the cutting surface. The purpose of this invention is to provide a cutting tool that can

(ロ) 発明の構成 [問題を解決するための手段] この目的に対応して、この発明の切削工具は、
切削工具の刃先の近傍に気流整流面を配設してな
ることを特徴としている。
(b) Structure of the invention [Means for solving the problem] Corresponding to this purpose, the cutting tool of the present invention has the following features:
The cutting tool is characterized by an air flow rectifying surface placed near the cutting edge.

以下、この発明の詳細を一実施例を示す図面に
ついて説明する。
Hereinafter, details of the present invention will be explained with reference to the drawings showing one embodiment.

第1図において、1は切削工具であり、切削工
具1は回転する工作物2を切削点3において切削
するものである。
In FIG. 1, 1 is a cutting tool, and the cutting tool 1 cuts a rotating workpiece 2 at a cutting point 3.

切削工具1の近傍には切削点3を挾んで噴射ノ
ズル4及び吸引ダクト5が配設されている。
An injection nozzle 4 and a suction duct 5 are arranged near the cutting tool 1 with the cutting point 3 interposed therebetween.

吸引ダクト5は切削点3の近傍の空気を吸引し
て、切削点3の近傍に気流を形成し、切削点3か
ら発生する切屑6を気流に沿つて流動させ、かつ
吸引するものである。
The suction duct 5 sucks air near the cutting point 3 to form an airflow near the cutting point 3, and causes chips 6 generated from the cutting point 3 to flow along the airflow and is sucked.

噴射ノズル4は必要に応じて設けるもので、切
削点3に向かつて空気を噴射し、気流を形成す
る。また、この空気の噴射気流中に必要に応じて
切削油のミストを混入する。
The injection nozzle 4 is provided as necessary, and injects air toward the cutting point 3 to form an airflow. Further, if necessary, a mist of cutting oil is mixed into the air jet stream.

切削工具1は第2図に示すようにバイト7及び
整流ガイド8とからなつている。
The cutting tool 1 consists of a cutting tool 7 and a rectifying guide 8, as shown in FIG.

バイト7はシヤンク11及びシヤンク11の先
に取付けられた刃先チツプ12とからなつてい
る。
The cutting tool 7 consists of a shank 11 and a cutting edge tip 12 attached to the tip of the shank 11.

整流ガイド8はシヤンク11に取付けられて刃
先チツプの両側に翼状に張り出しているが、特に
重要な点として整流ガイド8の表面のうち工作物
2に対向する面は気流整流面13を成すもので、
この気流整流面13は望ましくは流線形とする
が、この気流整流面13のほぼ中央部に刃先チツ
プ12が突出するために、この気流整流面の一体
連続性は刃先チツプ12の箇所で中断している。
The rectifying guide 8 is attached to the shank 11 and protrudes like wings on both sides of the cutting edge tip, but it is particularly important that the surface of the rectifying guide 8 that faces the workpiece 2 forms the airflow rectifying surface 13. ,
This airflow regulating surface 13 is preferably streamlined, but since the cutting edge tip 12 protrudes from the approximate center of this airflow regulating surface 13, the integral continuity of this airflow regulating surface is interrupted at the cutting edge tip 12. ing.

この整流ガイド8はバイト7と一体に形成して
もよいし、また、バイト7とは別体として成形
し、バイト7に着脱可能な構造にしてもよい。
The rectifying guide 8 may be formed integrally with the cutting tool 7, or may be formed separately from the cutting tool 7, and may have a structure that can be attached to and detached from the cutting tool 7.

[作用] このように構成された切削工具1を使用して工
作物2の切削加工をする場合には、吸引ダクト5
で空気を吸引すると、噴射ノズル4を使用する場
合には、その噴射ノズル4から噴射された空気と
協働して、切削点3から吸引ダクト5に達する気
流14が形成される。この気流14は気流整流面
13に案内されて整流され、渦や澱みのない気流
となる。切削点3から発生した切屑6はこの気流
14に浮遊して流れ吸引ダクト5に吸引される。
[Operation] When cutting the workpiece 2 using the cutting tool 1 configured in this way, the suction duct 5
When air is sucked in, an air flow 14 reaching the suction duct 5 from the cutting point 3 is formed in cooperation with the air injected from the injection nozzle 4 when the injection nozzle 4 is used. This airflow 14 is guided and rectified by the airflow rectifying surface 13, resulting in an airflow without swirls or stagnation. Chips 6 generated from the cutting point 3 float in this airflow 14 and are sucked into the flow suction duct 5.

(ハ) 発明の効果 このように、この発明の切削工具では、切削点
から吸引ダクト5に達する気流が整流ガイド8の
気流整流面13によつて渦や澱みのない気流に整
流され、切削点から発生した切屑は、この渦や澱
みのない気流によつて吸引ダクト5に運ばれるの
で、切屑が切削点から容易かつ確実に排出され、
切屑が削面に当ることがなく、良好な切削加工を
することができる。
(c) Effect of the invention As described above, in the cutting tool of the present invention, the airflow reaching the suction duct 5 from the cutting point is rectified by the airflow rectifying surface 13 of the rectifying guide 8 into an airflow without swirls or stagnation, and the airflow reaches the suction duct 5 from the cutting point. The chips generated from the cutting point are carried to the suction duct 5 by this airflow without vortices or stagnation, so the chips are easily and reliably discharged from the cutting point.
Chips do not hit the cutting surface, allowing for good cutting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係わる切削工具
の使用状態を示す斜視説明図、第2図はこの発明
の一実施例に係わる切削工具の斜視説明図、及び
第3図は従来の切削工具近傍の気流を示す斜視説
明図である。 1……切削工具、2……工作物、3……切削
点、4……噴射ノズル、5……吸引ダクト、6…
…切屑、7……バイト、8……整流ガイド、11
……シヤンク、12……刃先チツプ、13……気
流整流面、14……気流、15……切屑。
FIG. 1 is a perspective explanatory view showing how a cutting tool according to an embodiment of the present invention is used, FIG. 2 is a perspective explanatory view of a cutting tool according to an embodiment of the present invention, and FIG. 3 is a conventional cutting tool. It is a perspective explanatory view showing the airflow near a tool. 1... Cutting tool, 2... Workpiece, 3... Cutting point, 4... Injection nozzle, 5... Suction duct, 6...
...Chip, 7...Bite, 8...Rectification guide, 11
...Shank, 12...Blade tip, 13...Airflow rectifying surface, 14...Airflow, 15...Cuts.

Claims (1)

【特許請求の範囲】[Claims] 1 切削工具の刃先の近傍に気流整流面を配設し
てなることを特徴とする切削工具。
1. A cutting tool characterized by having an air flow rectifying surface arranged near the cutting edge of the cutting tool.
JP60228201A 1985-10-14 1985-10-14 Cutting tool Granted JPS6288542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60228201A JPS6288542A (en) 1985-10-14 1985-10-14 Cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60228201A JPS6288542A (en) 1985-10-14 1985-10-14 Cutting tool

Publications (2)

Publication Number Publication Date
JPS6288542A JPS6288542A (en) 1987-04-23
JPH0246340B2 true JPH0246340B2 (en) 1990-10-15

Family

ID=16872782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60228201A Granted JPS6288542A (en) 1985-10-14 1985-10-14 Cutting tool

Country Status (1)

Country Link
JP (1) JPS6288542A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799723B2 (en) * 2000-06-28 2011-10-26 株式会社アマダ Punch mold
JP7018183B2 (en) * 2017-05-09 2022-02-10 株式会社城山 Cutting method using a cutting tool for resin film

Also Published As

Publication number Publication date
JPS6288542A (en) 1987-04-23

Similar Documents

Publication Publication Date Title
US20090057282A1 (en) Laser machining method utilizing variable inclination angle
EP2204255A3 (en) Laser processing apparatus with controller for positioning the focus point at different levels in the object to be processed
EP2422916A1 (en) Laser machining method
US20080253849A1 (en) Mono Crystalline Diamond Cutting Tool for Ultra Precision Machining
KR880004885A (en) Milling Methods and Milling Tools
RU95106641A (en) Unit of cutter holder
US20130271863A1 (en) Flycutting groove machining method and flycutting mirror finishing method on film-like workpiece
CN105642986A (en) Taper and ball-end milling cutter
CN112475339A (en) Laser in-situ auxiliary turning tool and using method thereof
JPH0246340B2 (en)
CN113414889B (en) Method and device for compounding laser-assisted diamond cutting and laser polishing in situ
KR20090117978A (en) Cutting blade
JPH02145903U (en)
JPS63144931A (en) Chips removing device
JPH06170629A (en) Chamfering tool
JPH09272104A (en) Cutting tip and rotary cutting tool
JP2005057160A (en) Dicing device
JP2005342805A (en) Radius end mill and cutting method using it
JP2000094211A (en) Milling cutter
EP0557057A1 (en) Tool for use in the manufacture of binary optical elements
Fang et al. An experimental study of micromachining step-mirrors for laser-diode beam shaping
CN211840284U (en) High-speed rough machining tool bit
JPH0339705A (en) Method for working end surface part of optical fiber
CN206230261U (en) A kind of clamping device for being easy to obtain different angular cutters
CS241136B2 (en) Single-edge reamer with circular edge

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term