JPH0246251B2 - - Google Patents

Info

Publication number
JPH0246251B2
JPH0246251B2 JP60112288A JP11228885A JPH0246251B2 JP H0246251 B2 JPH0246251 B2 JP H0246251B2 JP 60112288 A JP60112288 A JP 60112288A JP 11228885 A JP11228885 A JP 11228885A JP H0246251 B2 JPH0246251 B2 JP H0246251B2
Authority
JP
Japan
Prior art keywords
schiff base
membrane
group
complex
metal complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60112288A
Other languages
Japanese (ja)
Other versions
JPS61271004A (en
Inventor
Kyoshi Sugie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11228885A priority Critical patent/JPS61271004A/en
Publication of JPS61271004A publication Critical patent/JPS61271004A/en
Publication of JPH0246251B2 publication Critical patent/JPH0246251B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明は選択透過膜、更には高分子シツフ塩基
金属錯体より形成される選択透過膜に係わるもの
である。 近年、膜の選択透過性を利用して流体混合物か
ら特定の成分を濃縮・分離する膜分離法が注目さ
れ、研究開発が盛んに行われている。気体混合物
を取扱うプロセスにおいても、分離過程で相変化
を伴なわないために省エネルギーの観点から膜分
離プロセスが有望視され工業的規模のプロセスに
適用の試みが始まつている。 従来、合成ポリマーからなる膜を用いて気体混
合物を分離する試みは多くなされているが、気体
の透過速度及び選択透過性において充分とはいえ
ず、実用に供し得なかつた。 また、選択性を高める目的で気体を選択的に配
位する金属錯体を膜中に導入する試みが行われて
おり、例えば特公昭54−13476号公報には高分子
金属錯体からなる膜状体の製造方法が開示されて
いる。しかしながらこれらの膜状体は錯体の導入
率を高めるとゲル化が起こり、製膜性が落ちる等
の問題点を有していた。 本発明者は高透過性と選択性を兼ね備えた選択
透過膜を得るべく鋭意検討を行つた結果、特定の
構造の高分子シツフ塩基金属錯体より形成される
膜が大きな透過性と優れた選択性を有しているこ
とを見出し本発明に到達した。 すなわち本発明は、下記一般式() [ここでnは0又は1〜20の整数を、mは2又は
3を表わし、MはFe、Co、Cu、Ni、Mn、Cr及
びZnよりなる群から選ばれた金属を表わし、i
とjはi+j=1、i≧0.1を満足する正の数で
あり、R1、R2、R3及びR4はそれぞれ独立に、水
素原子、アルキル基、アリール基、ハロゲン原子
又はアルコキシ基を表わす。] で表わされる繰返し単位から実質的になる高分子
シツフ塩基金属錯体より形成されたことを特徴と
する選択透過膜である。 本発明で用いられる高分子シツフ塩基金属錯体
は低原子価状態にある中心金属と、高分子の側鎖
に共有結合を介して導入されたシツフ塩基化合物
からなる配位子との錯体である。本発明で用いら
れる高分子シツフ塩基金属錯体の中心金属は鉄、
コバルト、銅、ニツケル、マンガン、クロム、亜
鉛よりなる群より選ばれた低原子価の遷移金属で
あり、特に鉄、コバルトが好ましい。 本発明で用いられる高分子シツフ塩基金属錯体
の配位子はサリチルアルデヒド誘導体と2級アミ
ノ基を有するジアミンを反応させて得られるシツ
フ塩基を含み、このシツフ塩基がα−オレフイン
と無水マレイン酸との共重合体の側鎖に共有結合
を介して結合されている。α−オレフインは重合
性、溶解性、製膜性等の観点からnは0〜20が好
ましく、更に好ましくは10〜20である。2級アミ
ノ基を有するジアミンとしてはジエチレントリア
ミン、ジプロピレントリアミンが挙げられる。α
−オレフイン/無水マレイン酸共重合体へのシツ
フ塩基金属錯体部分の導入率iは酸素吸脱着効率
の点から0.1以上であることが望ましく、更に好
ましくは0.2以上である。溶解性、成形加工性等
要求に応じて反応条件を選ぶことにより任意の導
入率を選ぶことができる。 一般式()における置換基R1、R2、R3、R4
としては水素原子、アルキル基、アリール基、ハ
ロゲン原子、またはアルコキシ基より選ばれた任
意の置換基が好ましく、その具体例としては下記
の置換基を挙げることができるが、これらに限定
されるわけではない。即ち、メチル、エチル、n
−ブチル、sec−ブチル、tert−ブチル、n−ヘ
キシル等のアルキル基、フエニル基等のアリール
基、フツ素原子、塩素原子、臭素原子等のハロゲ
ン原子、メトキシ基、エトキシ基、n−プロポキ
シ基、n−ブトキシ基等のアルコキシ基などであ
る。 本発明の膜は平膜状、スパイラル状又は中空糸
状等任意の形態で用いることができる。また、実
用的な気体透過速度を得るためには、選択透過性
を示す活性層の厚みを薄くすることが必要とな
る。この目的のために異方性膜、あるいは支持体
上に保持して複合膜等任意の構造に成形すること
ができる。かかる支持体としては金属、ガラス、
セラミツクス、合成及び天然高分子等種々の材質
のものを使用することができ、その形態もシート
状、板状、スパイラル状、チユーブ状、中空繊維
状等使用目的に応じ任意に選択できる。特にポリ
エチレン多孔質フイルム、ポリプロピレン多孔質
膜、セルロース系限外過膜、ポリカーボネート
多孔質膜、ポリスルホン系限外過膜、ポリフツ
化ビニリデン多孔質膜等の高分子多孔質体が好ま
しい。 本発明の選択透過膜は2種以上の流体混合物か
ら特定の成分を濃縮する目的で使用される。例え
ば大気からの酸素富化空気の製造にきわめて有効
である。 以下実施例によつて本発明の内容を具体的に説
明するが、本発明はこれらに限定されるものでは
ない。 実施例 1 サリチルアルデヒド12.2gをイソプロパノール
200mlに溶解し、これにジエチレントリアミン5.2
gをイソプロパノール200mlに溶かした溶液を滴
下した。撹拌しながら2.5時間還流して反応させ
た、放冷後メタノール80mlに溶解した水酸化カリ
ウム5.6gを加えた。次いで酢酸コバルト4水塩
12.5gを45mlの水に溶かした溶液を加え、2.5時
間還流して反応させた。放冷後生じた沈澱を別
した(シツフ塩基コバルト錯体)。オクタデセ
ン/無水マレイン酸共重合体( PA−18、ガル
フ社)7.0gをベンゼン150mlに溶解し、これに上
で得たシツフ塩基コバルト錯体7.4gをジメチ
ルホルムアミド100mlに溶かした溶液を滴下し、
1昼夜還流し反応させた。得られた反応液をメタ
ノール中に注ぎ、生じた沈澱を別後真空乾燥し
て高分子シツフ塩基金属錯体を得た。 生成物の同定を行い、1R測定より1642cm-1
近にアミドの吸収が認められると共に、無水マ
レイン酸ユニツトのνC=0の吸収は強度が弱くなり
高分子側への錯体構造の導入が確認された。元素
分析より生成物の組成比がC:H:N:Co=
65.0:8.68:5.30:7.24と得られ、計算値(導入
されたCo原子を基準として)C:H:N:Co=
67.8:8.35:5.16:7.24にほぼ一致した。 元素分析値より求めたシツフ塩基コバルト錯体
の導入率は78.7mol%であつた。 実施例 2 空気透過速度が1×10-2cm3/cm2・s.cmHgのポ
リスルホン多孔質膜にシリコンポリマーの薄いコ
ート層を形成し、酸素透過速度が4.3×10-4cm3
cm2・s.cmHg、αO2 N2=1.6の改質支持体を得た。 高分子シツフ塩基錯体の1.78mg/ml−ベンゼ
ン/ジメチルホルムアミド混合溶媒溶液(ベンゼ
ン:ジメチルホルムアミド=9:1)を水面上に
滴下すると溶液は自発的に展開し、溶媒の揮散あ
るいは水への溶出に伴つて水面上に高分子シツフ
塩基錯体の薄膜が形成した。この薄膜を上記改質
支持体上に10層積層して得られた高分子シツフ塩
基錯体複合膜の気体透過性を調べた所、優れた気
体選択透過性を有することが明らかとなつた。結
果を表1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a selectively permeable membrane, and more particularly to a selectively permeable membrane formed from a polymeric Schiff base metal complex. In recent years, membrane separation methods that utilize the permselectivity of membranes to concentrate and separate specific components from fluid mixtures have attracted attention, and research and development are being actively conducted. Even in processes that handle gas mixtures, membrane separation processes are seen as promising from an energy-saving perspective because they do not involve phase changes during the separation process, and attempts have begun to apply them to industrial-scale processes. In the past, many attempts have been made to separate gas mixtures using membranes made of synthetic polymers, but the gas permeation rate and permselectivity were not sufficient, and these membranes could not be put to practical use. In addition, attempts have been made to introduce metal complexes that selectively coordinate gases into membranes for the purpose of increasing selectivity. A manufacturing method is disclosed. However, these membrane-like bodies had problems such as gelation occurring when the introduction rate of the complex was increased, resulting in a decrease in film-forming properties. As a result of intensive studies to obtain a selectively permeable membrane that has both high permeability and selectivity, the present inventor found that a membrane formed from a polymeric Schiff base metal complex with a specific structure has high permeability and excellent selectivity. The present invention was achieved by discovering that the present invention has the following properties. That is, the present invention provides the following general formula () [Here, n represents 0 or an integer from 1 to 20, m represents 2 or 3, M represents a metal selected from the group consisting of Fe, Co, Cu, Ni, Mn, Cr and Zn, and i
and j are positive numbers satisfying i+j=1, i≧0.1, and R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, an alkyl group, an aryl group, a halogen atom, or an alkoxy group. represent ] This is a selectively permeable membrane characterized by being formed from a polymeric Schiff base metal complex consisting essentially of repeating units represented by the following. The polymer Schiff base metal complex used in the present invention is a complex of a central metal in a low valence state and a ligand consisting of a Schiff base compound introduced into the side chain of the polymer via a covalent bond. The central metal of the polymer Schiff base metal complex used in the present invention is iron,
It is a low-valent transition metal selected from the group consisting of cobalt, copper, nickel, manganese, chromium, and zinc, with iron and cobalt being particularly preferred. The ligand of the polymer Schiff base metal complex used in the present invention contains a Schiff base obtained by reacting a salicylaldehyde derivative with a diamine having a secondary amino group, and this Schiff base reacts with α-olefin and maleic anhydride. is bonded to the side chain of the copolymer via a covalent bond. In α-olefin, n is preferably 0 to 20, more preferably 10 to 20, from the viewpoint of polymerizability, solubility, film forming property, etc. Examples of diamines having a secondary amino group include diethylenetriamine and dipropylenetriamine. α
- The introduction rate i of the Schiff base metal complex moiety into the olefin/maleic anhydride copolymer is desirably 0.1 or more, more preferably 0.2 or more from the viewpoint of oxygen adsorption/desorption efficiency. Any introduction rate can be selected by selecting reaction conditions according to requirements such as solubility and moldability. Substituents R 1 , R 2 , R 3 , R 4 in general formula ()
Any substituent selected from a hydrogen atom, an alkyl group, an aryl group, a halogen atom, or an alkoxy group is preferable, and specific examples thereof include the following substituents, but the substituents are not limited to these. isn't it. i.e. methyl, ethyl, n
-Alkyl groups such as -butyl, sec-butyl, tert-butyl, n-hexyl, aryl groups such as phenyl, halogen atoms such as fluorine, chlorine, and bromine, methoxy, ethoxy, and n-propoxy groups , an alkoxy group such as n-butoxy group, and the like. The membrane of the present invention can be used in any form such as a flat membrane, a spiral, or a hollow fiber. In addition, in order to obtain a practical gas permeation rate, it is necessary to reduce the thickness of the active layer exhibiting selective permeability. For this purpose, it can be formed into an arbitrary structure such as an anisotropic membrane or a composite membrane held on a support. Such supports include metal, glass,
Various materials such as ceramics, synthetic and natural polymers can be used, and the shape can be arbitrarily selected depending on the purpose of use, such as sheet, plate, spiral, tube, and hollow fiber. Particularly preferred are porous polymers such as polyethylene porous film, polypropylene porous membrane, cellulose ultrafiltration membrane, polycarbonate porous membrane, polysulfone ultrafiltration membrane, and polyvinylidene fluoride porous membrane. The selectively permeable membrane of the present invention is used for the purpose of concentrating a specific component from a mixture of two or more fluids. For example, it is extremely effective in producing oxygen-enriched air from the atmosphere. The content of the present invention will be specifically explained below with reference to Examples, but the present invention is not limited thereto. Example 1 12.2g of salicylaldehyde was dissolved in isopropanol.
Dissolve 5.2 diethylenetriamine in 200ml
A solution of g dissolved in 200 ml of isopropanol was added dropwise. The reaction mixture was refluxed for 2.5 hours with stirring. After cooling, 5.6 g of potassium hydroxide dissolved in 80 ml of methanol was added. Then cobalt acetate tetrahydrate
A solution of 12.5 g dissolved in 45 ml of water was added, and the mixture was refluxed for 2.5 hours to react. After cooling, the precipitate formed was separated (Schiff base cobalt complex). 7.0 g of octadecene/maleic anhydride copolymer (PA-18, Gulf Corporation) was dissolved in 150 ml of benzene, and a solution of 7.4 g of the Schiff base cobalt complex obtained above in 100 ml of dimethylformamide was added dropwise.
The reaction mixture was refluxed for one day and night. The resulting reaction solution was poured into methanol, and the resulting precipitate was separated and dried under vacuum to obtain a polymeric Schiff base metal complex. The product was identified, and 1R measurement revealed an amide absorption near 1642 cm -1 , and the absorption at ν C=0 of maleic anhydride unit became weaker, confirming the introduction of a complex structure into the polymer side. It was done. From elemental analysis, the composition ratio of the product is C:H:N:Co=
65.0:8.68:5.30:7.24 is obtained, and the calculated value (based on the introduced Co atom) is C:H:N:Co=
It almost matched 67.8:8.35:5.16:7.24. The introduction rate of Schiff base cobalt complex determined from elemental analysis was 78.7 mol%. Example 2 A thin coating layer of silicone polymer was formed on a polysulfone porous membrane with an air permeation rate of 1×10 -2 cm 3 /cm 2 s.cmHg, and an oxygen permeation rate of 4.3×10 -4 cm 3 /
A modified support with cm 2 ·s.cmHg and α O2 N2 =1.6 was obtained. When a 1.78 mg/ml solution of polymer Schiff base complex in a benzene/dimethylformamide mixed solvent (benzene: dimethylformamide = 9:1) is dropped onto the water surface, the solution spontaneously develops and the solvent evaporates or elutes into the water. As a result, a thin film of polymeric Schiff base complex was formed on the water surface. When the gas permeability of the polymer Schiff base complex composite membrane obtained by laminating 10 layers of this thin membrane on the above-mentioned modified support was examined, it was revealed that it had excellent gas selective permselectivity. The results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 一般式() [ここでnは0または1〜20の整数を、mは2又
は3を表わし、Mは、Fe、Co、Cu、Ni、Mn、
Cr及びZnよりなる群から選ばれた金属を表わし、
iとjはi+j=1、i≧0.1を満足する正の数
であり、R1、R2、R3およびR4はそれぞれ独立
に、水素原子、アルキル基、アリール基、ハロゲ
ン原子又はアルコキシ基を表わす。] で表わされる繰返し単位から実質的になる高分子
シツフ塩基金属錯体より形成されたことを特徴と
する選択透過膜(但し、単分子凝縮膜を除く)。
[Claims] 1 General formula () [Here, n represents 0 or an integer from 1 to 20, m represents 2 or 3, and M represents Fe, Co, Cu, Ni, Mn,
Represents a metal selected from the group consisting of Cr and Zn,
i and j are positive numbers satisfying i+j=1, i≧0.1, and R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, an alkyl group, an aryl group, a halogen atom, or an alkoxy group. represents. ] A selectively permeable membrane (excluding monomolecular condensation membranes), characterized in that it is formed from a polymeric Schiff base metal complex consisting essentially of repeating units represented by the following.
JP11228885A 1985-05-27 1985-05-27 Permselective membrane Granted JPS61271004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11228885A JPS61271004A (en) 1985-05-27 1985-05-27 Permselective membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11228885A JPS61271004A (en) 1985-05-27 1985-05-27 Permselective membrane

Publications (2)

Publication Number Publication Date
JPS61271004A JPS61271004A (en) 1986-12-01
JPH0246251B2 true JPH0246251B2 (en) 1990-10-15

Family

ID=14582937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11228885A Granted JPS61271004A (en) 1985-05-27 1985-05-27 Permselective membrane

Country Status (1)

Country Link
JP (1) JPS61271004A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112289A (en) * 1983-10-31 1985-06-18 アセア アクチーボラグ Controller of dc arc furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112289A (en) * 1983-10-31 1985-06-18 アセア アクチーボラグ Controller of dc arc furnace

Also Published As

Publication number Publication date
JPS61271004A (en) 1986-12-01

Similar Documents

Publication Publication Date Title
Huang et al. Organosilica functionalized zeolitic imidazolate framework ZIF-90 membrane for CO2/CH4 separation
US9975092B2 (en) Gas separation membrane and gas separation membrane module
JP5972774B2 (en) Gas separation composite membrane and method for producing the same
Zhu et al. Highly hydrogen-permselective zeolitic imidazolate framework ZIF-8 membranes prepared on coarse and macroporous tubes through repeated synthesis
US5229465A (en) Oxygen-permeable polymeric membranes
US4985053A (en) Gas separation membrane
US4758251A (en) Separation of gases through gas enrichment membrane composites
JPH04341330A (en) Oxygen permeable polymer film
US10537859B2 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
US5411580A (en) Oxygen-separating porous membranes
EP0475053B1 (en) Oxygen-separating porous membranes
JPH0246251B2 (en)
JPH0246252B2 (en)
JPS631422A (en) Composite membrane having selective permeable molecular orienting film
Bellobono et al. Transport of oxygen facilitated by peroxo-bis [N, N′-ethylene bis-(salicylideneiminato)-dimethylformamide-cobalt (III)] embedded in liquid membranes immobilized by photografting onto cellulose
KR960004618B1 (en) Oxygen-permeable polymeric membranes
KR102043348B1 (en) Gas separation membrane comprising thin layer containing metal-organic polyhedra and preparation method thereof
JPS6393789A (en) Schiff base based metal complex compound and oxygen adsorbent and oxygen-separating membrane consisting of said compound
US20190176081A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
JPH0518612B2 (en)
JPH01119324A (en) Preparation of gas separation membrane
JPH01203003A (en) Selective permeation membrane
JPS61146320A (en) Gas permeable membrane
JPS6380826A (en) Selective gas-permeable composite membrane
JPH0352631A (en) Polymer membrane for oxygen enrichment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term