JPH0246106B2 - - Google Patents

Info

Publication number
JPH0246106B2
JPH0246106B2 JP57169391A JP16939182A JPH0246106B2 JP H0246106 B2 JPH0246106 B2 JP H0246106B2 JP 57169391 A JP57169391 A JP 57169391A JP 16939182 A JP16939182 A JP 16939182A JP H0246106 B2 JPH0246106 B2 JP H0246106B2
Authority
JP
Japan
Prior art keywords
seam
steel pipe
flaw detection
ust
carts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57169391A
Other languages
Japanese (ja)
Other versions
JPS5958359A (en
Inventor
Toshuki Matsumi
Seiichiro Murashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP57169391A priority Critical patent/JPS5958359A/en
Publication of JPS5958359A publication Critical patent/JPS5958359A/en
Publication of JPH0246106B2 publication Critical patent/JPH0246106B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4472Mathematical theories or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶接鋼管の超音波探傷方法に関するも
のである。 溶接鋼管例えば電縫鋼管は衆知のごとくその製
造方法に起因して溶接部(以後シームという)は
ゆるやかに捩れるのが通常であり、その上溶接部
にはフツククラツク、ペネトレータ、非金属介在
物、ラミネシヨン等の溶接欠陥が発生する。 これらの溶接欠陥は溶接の信頼性を著しく悪化
させ、その検出に超音波ビームを投射させ、欠陥
からはね返つてくる超音波を検知し、欠陥を検出
する超音波パルス反射法が有力な手段である。 ところが超音波探傷法で通常使用している1〜
5MHzの超音波ではその有効超音波ビーム幅は5
〜1mm程度しかないのが普通である。 従つてシームが捩れた場合にも、超音波探傷プ
ローブと被検査材である鋼管シーム位置との相対
的位置関係がくずれてはならない。 これに対して多数のプローブを配置するという
技術もあるが、1゜/管長1m程度捩れることも希
でなく、管長20m余りにおよぶ長尺管を探傷する
ためには非常に多くの超音波プローブを必要とし
好ましくない。 本願発明は上記の欠点を有利に解消するもので
あり、その要旨とするところは鋼管の両端に溶接
部検出器を設け、該鋼管を回転させながら鋼管両
端の溶接部を検出し、該検出信号に基づき溶接部
捩れ率を下記(1)式より求め、次いで該溶接部の捩
れ率に基づき捩れた溶接部に追従して探傷を行な
うことを特徴とする溶接鋼管の超音波探傷方法で
ある。 溶接部捩れ率=πD×dp/PT/L(mm/m)
……(1)式 次に本発明について第1図〜第7図により詳細
に説明する。 被検査材である電縫鋼管1が横送りスキツド2
に乗せられて超音波探傷装置まで送られる。 電縫鋼管1が超音波探傷台車3a,3b(以後
UST台車という)及び両管端の自動シーム検出
器台車4a,4a′,4b,4b′(以後シーム台車
という)の直下に達した時横送りスキツド2の下
に配置してある鋼管ターニング装置5が上昇して
きて、該ターニング装置5のローラー6で鋼管1
をもち上げ、該ローラー6を回転することにより
鋼管1を回転させる。 ターニング装置5の上昇と同期してシーム台車
4a,4a′,4b,4b′及びUST台車3a,3b
より各々センサーが下降してきて接管し、直ちに
シーム検出及び超音波探傷のための準備動作に入
る。 両管端でシームを自動検出するセンサー7,
7′として電磁超音波(横波)のシーム部での異
常伝播を検出してシームを検知する電磁センサー
を採用した。 該センサー7,7′は検出端と鋼管の距離(以
下単にギヤツプという)の変動許容代が非常に少
ないということはあるものの、電磁超音波を発生
させるための磁束(電磁吸着力)を利用した上下
可動磁極8とコンタクトベアリング9,9′によ
りギヤツプ変動を少なくすることで、すでに知ら
れている渦流式センサーや超音波肉厚計測法によ
るものより検出確度が高いという特徴を有してい
る。 ターニング装置5のローラー6を駆動している
モーターにはパルス発振器が直結されており、
時々刻々鋼管回転パルス10を出力している。 他方両管端より得られるシーム検出センサー
7,7′より得られるシーム信号11,11′のパ
ルス差及び鋼管1の外径、長さよりシーム捩れ量
を以下の式で求める。 シーム捩れ率=πD×dp/PT/L(mm/m)……(1) π:3.1415 D:鋼管外径(mm) L:鋼管長(m) PT:鋼管1回転中に発生するパルス数(ケ) dP:両管端シーム信号の出現パルス差数(ケ) 両管端シーム検出器7,7′で得られたシーム
信号をターニング装置5に送り、鋼管回転を制御
して鋼管のシームが規定の位置(例えばどちらか
一方の管端のシームが真上の位置)になるように
して鋼管の回転を停止する。 アライニングが完了したら両管端のシーム台車
4a,4a′,4b,4b′は一旦両管端より両サイ
ドへ検出端をはね上げながら退避する。 これに同期して探傷準備完了していたUST検
出端機構部12及びUST台車3a,3bは管端
末探傷ゾーンの減少のために一度管端を補足探傷
する。 管端補足を終えたUST台車3a,3bは一方
の管端から他方の管端に向つて徐々に移動を開始
し、UST検出端機構部12が完全に被検査材の
うえに乗つたら加速し、最高速度に達したらその
速度を維持して管端直前まで進み、管端直前から
減速する。 上述のUST台車3a,3bは(1)式により求め
たシーム捩れ率に基き、捩れ追従モーター13を
駆動制御して両管端シーム位置を直線で結んだ推
定シーム線14に追従させる。 この推定シーム線14は実際のシーム線15と
比して、高々1〜2mmの誤差である。 尚鋼管の大曲りや反りに対してはUST検出端
機構部12を構している上下、左右のジンバル機
構により追従するものである。 探傷完了により鋼管ターニング装置5は下降し
て、横送りスキツド2を起動して、鋼管の移送を
行なう。 この間にUST台車3a,3b、両管端シーム
台車4a,4a′,4b,4b′は各々探傷準備位置
及びシーム検出位置へ戻る。 次の鋼管の探傷も、探傷手順は同じであるが
UST台車3a,3bは前回の鋼管とは逆方向か
らの探傷となるがサイクルタイム的に余裕があれ
ば一定の側から探傷を行なつても何らさしつかえ
ない。 なお、本発明のシームを検出する動作について
詳細に説明すると、シーム台車4a,4a′,4
b,4b′からは電磁式シームセンサー部を下降さ
せ、接管する。該センサーが接管した後、ターニ
ング装置5のローラー6を駆動して鋼管をゆるや
かに回転させ始める。シーム検出センサーは接管
後直ちにシーム検出状態に入るが、該センサーは
その直下をシームが通過した時シーム検出パルス
を出力する。鋼管の回転を続ければ第6図に示す
ように鋼管1回転毎にシーム検出パルスを出力す
ることになる。鋼管が等速度で回転していない場
合のシーム捩れを正しく知るために、ローラー6
を駆動するモーターにはパルス発振器が直結され
ている。加減速中と等速度回転中ではパルスの間
隔が異なるが、ローラー6と鋼管とはほとんど滑
りを生じないように運転されるのでパルスの数は
鋼管外表面の外周長に比例する。したがつて、両
センサーの出現パルス差数dp(どちらかを基準に
して+の符号をつける)が分かればπD×dp/PTに より鋼管の両端部でのシーム捩れ量(mm)が求め
られる。シームがシーム検出センサーの直下を通
過したことが分かれば、通常は直ちに鋼管を減速
させて鋼管のシーム位置を規定位置(たとえば、
どちらか一方の鋼管のシームが真上になる位置)
になるようにローラー6を制御して回転を停止す
る。 続いて、シーム捩れ率に基づきシームに沿つて
探傷する動作について説明する。UST台車3a,
3bおよびシーム台車4a,4a′,4b,4b′は
門型フレームに上架されているが、管軸方向の位
置を知るために台車を駆動するモーターにパルス
発振器が装備されている。シーム台車4a,4
a′,4b,4b′のパルス発振器は規定の待機位置
のリミツトスイツチ信号に基づき零リセツトされ
て、台車位置が常に分かるようになつている。他
方、UST台車3a,3bは探傷時、鋼管に接続
されるUSTプローブを装備したブロツク(以後、
単にUST鞍部という)端に鋼管管端を検知する
センサーを有している。この管端信号により
UST台車3a,3bのパルス発振器は零リセツ
トされて台車が正確にどこにあるかを知ることが
できるようになつている。 上述のような管軸方向の位置確認機構を有して
いるUST台車3a,3bがシーム捩れに沿つて
探傷するには以下の手順をふむ。まず、シーム位
置が判明し、規定のシーム位置にシームが来るよ
うにゆつくりと鋼管が停止すると、UST台車3
a,3bよりUST鞍部が降りてきて鋼管に接管
する。探傷水を流し始めて探傷の準備に入る。次
に管端に向かつて徐々にUST鞍部を移動してい
く。この移動中に管端でのシーム捩れ量に見合つ
ただけシーム追従用のモーター13を駆動して
UST鞍部を捩る。管端センサーからの信号に基
づきUST台車3a,3bの信号位置を零リセツ
トし、管軸方向の位置の原点とする。UST台車
3a,3bは以降探傷に入るが、UST台車制御
系へは予め管長Lを入力してあるので管中央部で
は高速探傷し、管端では加減速中パターンを採
る。しかし、かかる速度パターン下にあつても、
上述の原点からxmの位置でのシーム捩れ量は前
述のシーム捩れ率τ(mm/m)からxτで容易に求
まるので、UST台車3a,3bからの位置信号
に基づきUST台車3a,3bのシーム追従用モ
ーター13を駆動すれば両管端で求めたシーム位
置の間を直線で補間した第5図の推定シーム線1
4で超音波探傷が可能となる。 以上はUST台車3a,3b及び両管端シーム
検出器4a,4a′,4b,4b′が各2式の例につ
いて述べたが各1式の場合でも全く変わるところ
はない。 以上の探傷各工程ごとに時間分析したものを第
7図に示す。又、第7図の〜に於ける所要時
間および動作内容を第1表に示す。
The present invention relates to an ultrasonic flaw detection method for welded steel pipes. Welded steel pipes, such as electric resistance welded steel pipes, are generally known to have a welded part (hereinafter referred to as a seam) that is gently twisted due to the manufacturing method.Furthermore, the welded part is prone to cracks, penetrators, non-metallic inclusions, etc. Welding defects such as lamination occur. These welding defects significantly deteriorate welding reliability, and an effective method for detecting them is the ultrasonic pulse reflection method, which projects an ultrasonic beam and detects the ultrasonic waves that bounce back from the defect. It is. However, 1~ which is usually used in ultrasonic flaw detection method.
For 5MHz ultrasound, the effective ultrasound beam width is 5
It is normal that it is only about ~1 mm. Therefore, even if the seam is twisted, the relative positional relationship between the ultrasonic flaw detection probe and the steel pipe seam position, which is the material to be inspected, must not be disrupted. To solve this problem, there is a technique of arranging a large number of probes, but it is not uncommon for the tube to twist by about 1°/1 meter of tube length, and in order to detect flaws in a long tube with a tube length of over 20 meters, a large number of ultrasonic probes are required. is necessary and undesirable. The present invention advantageously solves the above-mentioned drawbacks, and its gist is to provide weld detectors at both ends of a steel pipe, detect the welds at both ends of the steel pipe while rotating the steel pipe, and collect the detection signal. This is an ultrasonic flaw detection method for welded steel pipes, which is characterized in that the torsion rate of the welded part is determined from the following equation (1) based on the torsion rate of the welded part, and then flaw detection is performed by following the twisted welded part based on the torsion rate of the welded part. Welded part torsion rate = πD×dp/PT/L (mm/m)
...Formula (1) Next, the present invention will be explained in detail with reference to FIGS. 1 to 7. The electric resistance welded steel pipe 1, which is the material to be inspected, is transported horizontally to the skid 2.
and sent to an ultrasonic flaw detection device. The ERW steel pipe 1 is mounted on ultrasonic flaw detection carts 3a, 3b (hereinafter
When the automatic seam detector carts 4a, 4a', 4b, 4b' (hereinafter referred to as seam carts) at both ends of the pipe are reached directly below the steel pipe turning device 5 disposed under the cross-feeding skid 2; The steel pipe 1 is raised by the roller 6 of the turning device 5.
The steel pipe 1 is rotated by lifting it up and rotating the roller 6. In synchronization with the lifting of the turning device 5, the seam carts 4a, 4a', 4b, 4b' and the UST carts 3a, 3b
Each sensor descends and connects with the pipe, and immediately begins preparatory operations for seam detection and ultrasonic flaw detection. Sensor 7 that automatically detects seams at both pipe ends,
As 7', we adopted an electromagnetic sensor that detects the seam by detecting abnormal propagation of electromagnetic ultrasonic waves (transverse waves) at the seam. Although the sensors 7 and 7' have a very small tolerance for variation in the distance between the detection end and the steel pipe (hereinafter simply referred to as gap), they utilize magnetic flux (electromagnetic attraction) to generate electromagnetic ultrasonic waves. By reducing gap fluctuations using the vertically movable magnetic poles 8 and contact bearings 9, 9', the detection accuracy is higher than those using already known eddy current sensors or ultrasonic wall thickness measurement methods. A pulse oscillator is directly connected to the motor driving the roller 6 of the turning device 5.
A steel pipe rotation pulse 10 is outputted every moment. On the other hand, the seam twist amount is determined from the pulse difference between the seam signals 11 and 11' obtained from the seam detection sensors 7 and 7' obtained from both pipe ends and the outer diameter and length of the steel pipe 1 using the following formula. Seam torsion rate = πD×dp/PT/L (mm/m)……(1) π: 3.1415 D: Steel pipe outer diameter (mm) L: Steel pipe length (m) PT: Number of pulses generated during one rotation of the steel pipe (k) dP: Number of pulse differences between the seam signals at both pipe ends (k) The seam signals obtained by the seam detectors 7 and 7' at both pipe ends are sent to the turning device 5, which controls the rotation of the steel pipe and seams the steel pipe. The rotation of the steel pipe is stopped so that the steel pipe is at a specified position (for example, the seam at either end of the pipe is directly above the seam). When the alignment is completed, the seam carts 4a, 4a', 4b, 4b' at both ends of the tube are temporarily retracted from both ends while flipping up the detection ends to both sides. In synchronization with this, the UST detection end mechanism section 12 and the UST carts 3a and 3b, which have completed preparations for flaw detection, perform supplementary flaw detection on the tube end once in order to reduce the tube end flaw detection zone. After completing the tube end capture, the UST carts 3a and 3b gradually start moving from one tube end to the other, and accelerate when the UST detection end mechanism 12 is completely on top of the material to be inspected. Once it reaches the maximum speed, it maintains that speed until it reaches just before the end of the tube, and then decelerates from just before the end of the tube. The above-mentioned UST carts 3a and 3b drive and control the torsion following motor 13 based on the seam torsion rate determined by equation (1) to follow the estimated seam line 14 connecting the seam positions of both pipe ends with a straight line. This estimated seam line 14 has an error of 1 to 2 mm at most compared to the actual seam line 15. Incidentally, large bends and warps in the steel pipe are tracked by the vertical and horizontal gimbal mechanisms that make up the UST detection end mechanism section 12. When the flaw detection is completed, the steel pipe turning device 5 descends, starts the traverse skid 2, and transfers the steel pipe. During this time, the UST carts 3a, 3b and both tube end seam carts 4a, 4a', 4b, 4b' return to the flaw detection preparation position and seam detection position, respectively. The flaw detection procedure for the next steel pipe is the same, but
UST carts 3a and 3b will be tested for flaws from the opposite direction from the previous steel pipe, but if there is enough cycle time, there is no problem in performing flaw detection from a fixed side. In addition, to explain in detail the seam detecting operation of the present invention, the seam carts 4a, 4a', 4
From b and 4b', the electromagnetic seam sensor section is lowered and connected to the pipe. After the sensor contacts the pipe, the rollers 6 of the turning device 5 are driven to start gently rotating the steel pipe. The seam detection sensor enters the seam detection state immediately after the pipe is connected, and outputs a seam detection pulse when the seam passes directly below it. If the steel pipe continues to rotate, a seam detection pulse will be output every time the steel pipe rotates, as shown in FIG. In order to accurately understand seam twist when the steel pipe is not rotating at a constant speed, roller 6
A pulse oscillator is directly connected to the motor that drives the. Although the pulse intervals are different during acceleration/deceleration and constant speed rotation, the number of pulses is proportional to the outer circumferential length of the outer surface of the steel pipe because the rollers 6 and the steel pipe are operated so as to hardly cause slippage. Therefore, if the number of pulse differences dp between both sensors (append a + sign based on one of them) is known, the amount of seam twist (mm) at both ends of the steel pipe can be determined from πD×dp/PT. If it is determined that the seam has passed directly under the seam detection sensor, the steel pipe is usually decelerated immediately and the seam position of the steel pipe is moved to a specified position (for example,
(Position where the seam of either steel pipe is directly above)
The roller 6 is controlled so that the rotation is stopped. Next, the operation of detecting flaws along the seam based on the seam torsion rate will be explained. UST trolley 3a,
3b and seam carts 4a, 4a', 4b, and 4b' are mounted on a portal frame, and the motor that drives the carts is equipped with a pulse oscillator in order to know the position in the tube axis direction. Seam trolley 4a, 4
The pulse oscillators a', 4b, and 4b' are reset to zero based on the limit switch signal of the specified standby position, so that the position of the truck can be known at all times. On the other hand, the UST carts 3a and 3b are blocks (hereinafter referred to as
It has a sensor at the end (simply called the UST saddle) that detects the end of the steel pipe. This tube end signal
The pulse oscillators of the UST trucks 3a, 3b are reset to zero so that it is possible to know exactly where the trucks are. In order for the UST carts 3a and 3b, which have the above-described position confirmation mechanism in the tube axis direction, to perform flaw detection along the seam twist, the following procedure is performed. First, the seam position is determined, and when the steel pipe slowly stops so that the seam is at the specified seam position, the UST trolley 3
The UST saddle comes down from a and 3b and connects to the steel pipe. Start pouring the flaw detection water and prepare for flaw detection. Next, gradually move through the UST saddle toward the end of the tube. During this movement, the seam following motor 13 is driven to match the amount of seam twist at the tube end.
Twist the UST saddle. Based on the signal from the tube end sensor, the signal position of the UST carts 3a, 3b is reset to zero, and is set as the origin of the position in the tube axis direction. The UST carts 3a and 3b then begin flaw detection, but since the pipe length L has been input into the UST cart control system in advance, high-speed flaw detection is performed at the center of the tube, and a pattern during acceleration and deceleration is adopted at the tube ends. However, even under such a speed pattern,
Since the amount of seam twist at the position xm from the above-mentioned origin can be easily determined by xτ from the seam twist rate τ (mm/m) described above, the seam of the UST carts 3a and 3b is determined based on the position signals from the UST carts 3a and 3b. If the tracking motor 13 is driven, the estimated seam line 1 in Fig. 5 is obtained by interpolating a straight line between the seam positions determined at both pipe ends.
4 enables ultrasonic flaw detection. The above example has been described with two sets each of the UST carts 3a, 3b and both pipe end seam detectors 4a, 4a', 4b, 4b', but there is no difference even if there is only one set each. Figure 7 shows a time analysis for each of the above flaw detection steps. Further, Table 1 shows the required time and operation contents in steps .about. in FIG. 7.

【表】【table】

【表】 本発明によれば、従来オペレータがシームマー
キングを行い、これを遠隔ITV等を利用してア
ライニングし、更にUST検出端又は被検査材が
走行中に、シーム捩れに目視追従していた場合
や、特開昭54−54691号公報に開示されているよ
うにロツトの最初にシーム捩れを測定しておき、
一率この値をロツト内の全数に適用し、自動追従
する技術に比べ、非常に高い生産性と、信頼性を
持つて溶接部及びその近傍の超音波探傷が可能と
なつた。 ところで本発明では、センサー部に超音波探傷
プローブを採用したが、センサー部に漏洩磁束探
傷法、磁気探傷法、渦流探傷法及び光学探傷法等
の各センサーを配備した場合でも夫々高い信頼性
と、生産性が得られることは明らかである。
[Table] According to the present invention, conventionally, an operator marks the seam, aligns it using a remote ITV, etc., and visually follows the seam twist while the UST detection end or the material to be inspected is traveling. In some cases, the seam twist is measured at the beginning of the lot as disclosed in Japanese Patent Application Laid-Open No. 54-54691.
Compared to technology that applies this value to all parts in a lot and automatically follows it, it has become possible to perform ultrasonic flaw detection in and around welds with much higher productivity and reliability. By the way, in the present invention, an ultrasonic flaw detection probe is used in the sensor section, but even if sensors such as leakage magnetic flux flaw detection method, magnetic flaw detection method, eddy current flaw detection method, and optical flaw detection method are installed in the sensor section, high reliability can be achieved. , it is clear that productivity can be gained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を行なう装置説明図、第2
図はターニング装置の部分拡大図、第3図、第4
図は電磁超音波センサーの拡大図、第5図は本発
明のシーム検出している概念図、第6図は本発明
のシーム捩れ率を求める説明図、第7図は本発明
の超音波探傷サイクルの説明図である。 1:電縫鋼管、2:横送りスキツド、3a,3
b:超音波探傷台車、4a,4a′,4b,4b′:
シーム台車、5:鋼管ターニング装置、6:ロー
ラー、7,7′:センサー、8:上下可動磁極、
9,9′:コンタクトベアリング、10:鋼管回
転パルス、11,11′:シーム信号。
Fig. 1 is an explanatory diagram of an apparatus for carrying out the method of the present invention;
The figures are partially enlarged views of the turning device, Figures 3 and 4.
The figure is an enlarged view of the electromagnetic ultrasonic sensor, Figure 5 is a conceptual diagram of seam detection according to the present invention, Figure 6 is an explanatory diagram for determining the seam torsion rate according to the present invention, and Figure 7 is the ultrasonic flaw detection according to the present invention. It is an explanatory diagram of a cycle. 1: ERW steel pipe, 2: Cross feed skid, 3a, 3
b: Ultrasonic flaw detection trolley, 4a, 4a', 4b, 4b':
Seam truck, 5: Steel pipe turning device, 6: Roller, 7, 7': Sensor, 8: Vertical movable magnetic pole,
9, 9': contact bearing, 10: steel pipe rotation pulse, 11, 11': seam signal.

Claims (1)

【特許請求の範囲】 1 鋼管の両端に溶接部検出器を設け、該鋼管を
回転させながら鋼管両端の溶接部を検出し、該検
出信号に基づき溶接部捩れ率を下記(1)式より求
め、次いで該溶接部の捩れ率に基づき捩れた溶接
部に追従して探傷を行なうことを特徴とする溶接
鋼管の超音波探傷方法。 溶接部捩れ率=πD×dp/PT/L(mm/m)
……(1)式 π:3.1415 D:鋼管外径(mm) L:鋼管長さ(m) PT:鋼管1回転中に発生するパルス数(ケ) dp:両管端溶接信号の出現パルス差数(ケ)
[Scope of Claims] 1 Weld detectors are provided at both ends of the steel pipe, the welds at both ends of the steel pipe are detected while the steel pipe is rotated, and the torsion rate of the weld is determined from the following equation (1) based on the detection signal. 1. An ultrasonic flaw detection method for welded steel pipes, characterized in that flaw detection is then performed following a twisted weld based on the torsion rate of the weld. Welded part torsion rate = πD×dp/PT/L (mm/m)
...(1) Equation π: 3.1415 D: Steel pipe outer diameter (mm) L: Steel pipe length (m) PT: Number of pulses generated during one rotation of the steel pipe (ke) dp: Appearance pulse difference between welding signals at both ends of the pipe Number (ke)
JP57169391A 1982-09-28 1982-09-28 Supersonic flaw detecting method for welded steel pipe Granted JPS5958359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57169391A JPS5958359A (en) 1982-09-28 1982-09-28 Supersonic flaw detecting method for welded steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57169391A JPS5958359A (en) 1982-09-28 1982-09-28 Supersonic flaw detecting method for welded steel pipe

Publications (2)

Publication Number Publication Date
JPS5958359A JPS5958359A (en) 1984-04-04
JPH0246106B2 true JPH0246106B2 (en) 1990-10-12

Family

ID=15885724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57169391A Granted JPS5958359A (en) 1982-09-28 1982-09-28 Supersonic flaw detecting method for welded steel pipe

Country Status (1)

Country Link
JP (1) JPS5958359A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454691A (en) * 1977-10-11 1979-05-01 Nippon Kokan Kk Method of and device for automatically tracing welded portion of ultrasonic defectoscope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454691A (en) * 1977-10-11 1979-05-01 Nippon Kokan Kk Method of and device for automatically tracing welded portion of ultrasonic defectoscope

Also Published As

Publication number Publication date
JPS5958359A (en) 1984-04-04

Similar Documents

Publication Publication Date Title
US5474225A (en) Automated method for butt weld inspection and defect diagnosis
JPH02225702A (en) Method and device for positioning transversing direction of member moving along railroad rail
CN102818842A (en) Ultrasonic automatic detection system of tubing with variable wall thickness and step
US4487070A (en) Automatic production control of extended work pieces
KR870001581B1 (en) Method and installation for selective detection of defects in a workpiece by controller
JP3079485B2 (en) Automatic welding equipment for square steel pipes
JPH0246106B2 (en)
EP0029070B1 (en) Apparatus for surface inspection and treatment of steel members
JPH06160358A (en) Automatic ultrasonic flaw detector
JP2985740B2 (en) Pipe end detector for automatic flaw detector
JP3473404B2 (en) Weld bead center position detector
US4336923A (en) Steel surface inspection apparatus
JP3612392B2 (en) Ultrasonic flaw detection scanner
JP2598398B2 (en) Strip welding strength measuring device
CN110887896A (en) Stainless steel argon arc welding circular welding pipe weld defect eddy current on-line tracking detection device
SU1663536A1 (en) Device fro automated ultrasonic testing of welded seam
JPH0687081A (en) Method and device for controlling seam welding quality
EP4130731A1 (en) Machine for inspecting a railway vehicle axle using eddy currents
JPH0647171B2 (en) Welding controller
JPH05333010A (en) Method and apparatus for automatic ultrasonic flaw detection
JPS6342744B2 (en)
JPS6396551A (en) Ultrasonic flaw detector
CN107271552A (en) A kind of self-priming Small-diameter Tube Seams ultrasound detection automatic scanning device
JPS58186517A (en) Positioning method in running cutter of spiral steel pipe
JPH05149933A (en) Unmanned running type flaw detecting apparatus