JPH0245995A - Semiconductor laser device of quantum well structure - Google Patents

Semiconductor laser device of quantum well structure

Info

Publication number
JPH0245995A
JPH0245995A JP19748388A JP19748388A JPH0245995A JP H0245995 A JPH0245995 A JP H0245995A JP 19748388 A JP19748388 A JP 19748388A JP 19748388 A JP19748388 A JP 19748388A JP H0245995 A JPH0245995 A JP H0245995A
Authority
JP
Japan
Prior art keywords
quantum well
layer
semiconductor laser
laser device
energy gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19748388A
Other languages
Japanese (ja)
Other versions
JP2708799B2 (en
Inventor
Koji Yamaguchi
浩司 山口
Yoshiharu Horikoshi
佳治 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63197483A priority Critical patent/JP2708799B2/en
Publication of JPH0245995A publication Critical patent/JPH0245995A/en
Application granted granted Critical
Publication of JP2708799B2 publication Critical patent/JP2708799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make a narrow distribution of a light emitting wavelength by constituting a well layer in a grated layer whose composition rate varies gradually. CONSTITUTION:A well layer 2 which is formed between nondoped AlGaAs barrier layers 1, 3 is made in a grated layer whose composition rate of Al varies gradually. Then a quantum well whose potential shape changes smoothly is formed. Since fluctuation of a composition distribution of each atomic layer due to imperfect control of a film thickness is statistically independent, effect of fluctuation of different atomic layers compensate for each other, thus reducing a distribution width of laser light emitting wavelength and improving light emitting characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信用、民生機器用光源として用いられる
半導体レーザー装置に関し、特に量子井戸構造型半導体
レーザー装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser device used as a light source for optical communication and consumer equipment, and particularly to a quantum well structure type semiconductor laser device.

〔従来技術〕[Prior art]

第2A図は、従来の量子井戸構造を用いた半導体レーザ
ー装置の活性層の一例を示す構造図、構造を示すグラフ
である。
FIG. 2A is a structural diagram showing an example of an active layer of a semiconductor laser device using a conventional quantum well structure, and a graph showing the structure.

戸層、13はノンドープAlGaAs障壁層である。The barrier layer 13 is a non-doped AlGaAs barrier layer.

前記ノンドープGaAs井戸層12の膜厚を電子のドブ
ロイ波長と同程度、もしくはより小さくとることにより
、活性層には量子準位が形成され、その準位に対応して
レーザーの発光波長は決まる。
By making the thickness of the non-doped GaAs well layer 12 comparable to or smaller than the de Broglie wavelength of electrons, a quantum level is formed in the active layer, and the emission wavelength of the laser is determined in accordance with the level.

この準位は、このノンドープGaAs井戸層12の膜厚
に大きく依存する。
This level largely depends on the thickness of the non-doped GaAs well layer 12.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記ノンドープGaAs井戸層12の膜厚が数10人程
度の典型的な量子井戸構造においては、その値がわずか
−原子層厚具なるだけで、発光波長は数10人も変化す
る。一方、通常のM B E (MolecularB
 eam E pitaxy)法やM OCV D (
MetalorganjcChemical Vapo
r Deposition)法などの薄膜成長技術では
、成長表面に1〜数原子程度の凹凸が生じるため、この
成長技術により作製した量子井戸の井戸層厚も同程度の
ゆらぎを持つ。これらの結果、レーザーの発光波長もあ
るゆらぎを持って分布し、成長表面の非平坦性により、
レーザーの発光特性は劣化することになる。
In a typical quantum well structure in which the thickness of the non-doped GaAs well layer 12 is on the order of several tens of nanometers, the emission wavelength changes by several tens of nanometers even if this value becomes only -1 atomic layer thick. On the other hand, ordinary M B E (Molecular B
eam E pitaxy) method and M OCV D (
MetalorganjcChemical Vapo
In a thin film growth technique such as a deposition method, irregularities of one to several atoms are generated on the growth surface, and therefore the well layer thickness of a quantum well fabricated by this growth technique also has fluctuations of the same degree. As a result, the emission wavelength of the laser is also distributed with some fluctuation, and due to the non-flatness of the growth surface,
The emission characteristics of the laser will deteriorate.

結晶成長法の進歩により膜厚制御性は向上し、この量子
井戸構造を用いたレーザーの特性は大きな改善を得たが
、依然として井戸層厚には一原子層厚程度のゆらぎが存
在し、発光特性に悪影響を与えている。
Advances in crystal growth methods have improved controllability of film thickness, and the characteristics of lasers using this quantum well structure have been greatly improved. However, fluctuations in the well layer thickness of about one atomic layer still exist, making it difficult to emit light. It has a negative effect on the characteristics.

本発明は、前記問題点を解決するためになされたもので
ある。
The present invention has been made to solve the above problems.

本発明の目的は、前述の膜厚制御の不完全性が、量子井
戸のエネルギー準位に与える影響を減少させ、半導体レ
ーザーの発光特性を向上することができる技術を提供す
ることにある。
An object of the present invention is to provide a technique that can reduce the influence of the imperfection in film thickness control on the energy level of a quantum well and improve the light emission characteristics of a semiconductor laser.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述及び添付図面によって明らかになるであろ
う。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔課題を解決するための手段〕[Means to solve the problem]

本願において開示される発明のうち、代表的なものの概
要を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

本発明は、第1のエネルギーギャップEg工を持つ半導
体薄層を第2のエネルギーギャップEgzを持つ半導体
薄層(但しEgz < Egz )で挟んだ単一量子井
戸またはこれを複数個重ねた多重量子井戸を活性領域に
含む量子井戸構造型半導体レーザー装置において、障壁
層として第1のエネルギーギャップEg工を持つ材料と
第2のエネルギーギャップEgzを持つ材料の混晶層を
用い、この混晶層は、構成する元素の組成比を原子層毎
または数原子層毎にゆっくり変化させて伝導電子または
価゛電子帯止孔の感じるポテンシャル形状がなめらかに
変化する量子井戸を構成したことを最も主要な特徴とす
る。
The present invention provides a single quantum well in which a semiconductor thin layer having a first energy gap Eg is sandwiched between semiconductor thin layers having a second energy gap Egz (where Egz < Egz) or a multiple quantum well in which a plurality of these are stacked. In a quantum well structure type semiconductor laser device including a well in the active region, a mixed crystal layer of a material having a first energy gap Egz and a material having a second energy gap Egz is used as a barrier layer. The most important feature is that the composition ratio of the constituent elements is slowly changed atomic layer by atomic layer or every few atomic layers to create a quantum well in which the potential shape felt by conduction electrons or valence band holes changes smoothly. shall be.

すなわち、半導体レーザーに用いる量子井戸として、伝
導電子または価電子帯正孔の感じるポテンシャルの形状
がなめらかに変化するものを用いることを最も主要な特
徴とする。
That is, the most important feature of the quantum well used in a semiconductor laser is that the shape of the potential felt by conduction electrons or holes in the valence band changes smoothly.

〔作用〕[Effect]

前述のようなポテンシャルの形状を得るには、組成比が
連続的に変化するグレーデツド層を用いる。従来のへテ
ロ界面を用いた量子井戸の場合、エネルギー準位は量子
井戸の膜厚のみによって決定されるのに対し、本発明の
構造では、グレーデツド層全体の組成比分布によって決
定される点が大きく異なる。膜厚制御の不完全性による
組成比分布のゆらぎは、本発明の構造においても生じる
が、前述の特徴により、各原子層のゆらぎを平均化した
影響のみが量子準位にあられれる。一般にこれらのゆら
ぎは、各原子層で統計的に独立であるため、異なる原子
層におけるゆらぎからくる影響同志が打ち消しあい、従
来の量子井戸のように界面の一原子層だけにゆらぎが生
じる場合より、膜厚制御の不完全性からくるレーザー発
光波長の分布幅はずっと小さなものとなる。
To obtain the potential shape described above, a graded layer whose composition ratio changes continuously is used. In the case of a conventional quantum well using a heterointerface, the energy level is determined only by the thickness of the quantum well, whereas in the structure of the present invention, the energy level is determined by the composition ratio distribution of the entire graded layer. to differ greatly. Fluctuations in the composition ratio distribution due to imperfection in film thickness control also occur in the structure of the present invention, but due to the above-mentioned characteristics, only the effect of averaging the fluctuations of each atomic layer is exerted on the quantum level. In general, these fluctuations are statistically independent in each atomic layer, so the effects of fluctuations in different atomic layers cancel each other out, making it much more difficult than when fluctuations occur only in one atomic layer at the interface, as in conventional quantum wells. , the distribution width of the laser emission wavelength due to imperfection in film thickness control becomes much smaller.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面を用いて具体的に説明す
る。
Hereinafter, one embodiment of the present invention will be specifically described using the drawings.

なお、実施例を説明するための全図において、同一機能
を有するものは同一符号を付け、その繰り返しの説明は
省略する。
In addition, in all the figures for explaining the embodiment, parts having the same functions are given the same reference numerals, and repeated explanations thereof will be omitted.

第1A図は、本発明の量子井戸構造を用いた半導体レー
ザー装置の活性層の一実施例を示す構造バンド構造を示
すグラフである。
FIG. 1A is a graph showing a structural band structure of an example of an active layer of a semiconductor laser device using a quantum well structure of the present invention.

ノンドープAlGaAs障壁層であり、A1組成比が0
.5のAlGaAs層である。2はノンドープグレーデ
ッド井戸層であり、A1組成比が0.5からいったんO
までなめらかに減少し、再び0.5の値まで増加する構
造の量子井戸層で、その半値幅aは17人である。
It is a non-doped AlGaAs barrier layer, and the A1 composition ratio is 0.
.. 5 AlGaAs layer. 2 is a non-doped graded well layer in which the A1 composition ratio is changed from 0.5 to O.
The quantum well layer has a structure in which the value decreases smoothly to 0.5 and then increases again to the value of 0.5, and its half-width a is 17.

3はノンドープAlGaAs障壁層であり、A1組成比
が0.5のAlGaAs層である。
3 is a non-doped AlGaAs barrier layer, which is an AlGaAs layer with an A1 composition ratio of 0.5.

前述のように、このノンドープグレーデッド井戸層2の
エネルギー準位は、10数原子層にわたる組成比分布全
体に依って決定される。このため、膜厚制御の不完全性
から生じる組成比分布のゆらぎの影響は、10数個の原
子層間で打ち消し合う。
As described above, the energy level of this non-doped graded well layer 2 is determined by the entire composition ratio distribution over ten or more atomic layers. Therefore, the influence of fluctuations in the composition ratio distribution caused by imperfect control of the film thickness is canceled out among the ten or so atomic layers.

その効果として、この量子井戸構造を用いた半導体レー
ザー装置では、同じ発光波長を持つ従来の同装置に比べ
、発光波長の分布幅が1/2以下の小さなものとするこ
とができる。
As a result, in a semiconductor laser device using this quantum well structure, the distribution width of the emission wavelength can be reduced to 1/2 or less compared to a conventional device having the same emission wavelength.

なお、前記実施例では、量子井戸全体をなめらかにA1
組成比が変化するグレーデツド層としたが、従来の量子
井戸構造において、エネルギー準位を決定するヘテロ界
面付近の数原子層のみをグレーデツド層にすることもで
きる。
In addition, in the above embodiment, the entire quantum well is smoothed by A1.
Although a graded layer is used in which the composition ratio changes, in a conventional quantum well structure, only a few atomic layers near the hetero interface that determines the energy level can be made into a graded layer.

また、前記実施例ではAlAs/GaAs系という格子
不整合の小さな場合を扱ったが、他の格子不整合の比較
的大きな化合物半導体系においても、グレーデツド層が
格子不整合からくる応力を緩和するため、優れた発光特
性を得ることができる。
Furthermore, although the above embodiment deals with the AlAs/GaAs system with a small lattice mismatch, it is also possible to use other compound semiconductor systems with a relatively large lattice mismatch because the graded layer alleviates the stress caused by the lattice mismatch. , excellent luminescent properties can be obtained.

また、前記実施例ではガウス(Gauss)関数タイプ
の組成比変化を量子井戸層に与えたが、三角型または2
次関数など、量子準位が複数の原子層にわたる組成比分
布全体で決まるものならば、どのような組成比変化を与
えてもよい。
In addition, in the above embodiment, a Gaussian function type composition ratio change was given to the quantum well layer, but a triangular or two-dimensional composition ratio change was given to the quantum well layer.
Any composition ratio change may be given as long as the quantum level is determined by the entire composition ratio distribution over a plurality of atomic layers, such as the following function.

以上、本発明を実施例にもとづき具体的に説明したが、
本発明は、前記実施例に限定されるものではなく、その
要旨を逸脱しない範囲において種々変更可能であること
は言うまでもない。
The present invention has been specifically explained above based on examples, but
It goes without saying that the present invention is not limited to the embodiments described above, and can be modified in various ways without departing from the spirit thereof.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、本発明によれば、半導体レーザ
ー装置において、膜厚制御の不完全性がレーザー発光波
長に与える影響は、量子井戸を構成する各原子層間で打
ち消し合って低減し、発光波長の分布幅が著しく減少す
るので、半導体レーザーの発光特性を向上することがで
きる。
As described above, according to the present invention, in a semiconductor laser device, the influence that imperfection in film thickness control has on the laser emission wavelength is reduced by canceling each other between the atomic layers constituting the quantum well, and the emission of light is reduced. Since the wavelength distribution width is significantly reduced, the light emission characteristics of the semiconductor laser can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図は、本発明の量子井戸構造を用いた半導体レー
ザー装置の活性層の一実施例を示す構造図、 第1)r、第1A図の活性層のA1組成比分布図、 第1C図は、第1A図の活性層のエネルギーバンド構造
を示すグラフ、 第2A図は、従来の量子井戸構造を用いた半導体レーザ
ー装装置の活性層の一例を示す構造図、第1A図 第2C図は、第2A図の活性層のエネルギーバンド構造
を示すグラフである。 図中、1・・・ノンドープAlGaAs障壁層、2・・
・ノンドープグレーデッド井戸層、3・・ノンドープA
lGaAs障壁層。 A1組五九 ↑
FIG. 1A is a structural diagram showing an example of the active layer of a semiconductor laser device using the quantum well structure of the present invention; FIG. 1) r; A1 composition ratio distribution diagram of the active layer in FIG. 1A; FIG. 1C is a graph showing the energy band structure of the active layer in FIG. 1A, FIG. 2A is a structural diagram showing an example of the active layer of a semiconductor laser device using a conventional quantum well structure, and FIG. 1A and FIG. 2C are , is a graph showing the energy band structure of the active layer of FIG. 2A. In the figure, 1... non-doped AlGaAs barrier layer, 2...
・Non-doped graded well layer, 3...Non-doped A
lGaAs barrier layer. A1 group 59↑

Claims (1)

【特許請求の範囲】[Claims] (1)第1のエネルギーギャップEg_1を持つ半導体
薄層を第2のエネルギーギャップEg_2を持つ半導体
薄層(但しEg_1<Eg_2)で挟んだ単一量子井戸
またはこれを複数個重ねた多重量子井戸を活性領域に含
む量子井戸構造型半導体レーザー装置において、障壁層
として第1のエネルギーギャップEg_1を持つ材料と
第2のエネルギーギャップEg_2を持つ材料の混晶層
を用い、この混晶層は、構成する元素の組成比を原子層
毎または数原子層毎にゆっくり変化させて伝導電子また
は価電子帯正孔の感じるポテンシャル形状がなめらかに
変化する量子井戸を構成したことを特徴とする量子井戸
構造型半導体レーザー装置。
(1) A single quantum well in which a semiconductor thin layer with a first energy gap Eg_1 is sandwiched between semiconductor thin layers with a second energy gap Eg_2 (however, Eg_1<Eg_2) or a multiple quantum well in which multiple quantum wells are stacked. In a quantum well structure type semiconductor laser device included in an active region, a mixed crystal layer of a material having a first energy gap Eg_1 and a material having a second energy gap Eg_2 is used as a barrier layer, and this mixed crystal layer is composed of A quantum well structure semiconductor characterized by configuring a quantum well in which the potential shape felt by conduction electrons or holes in the valence band changes smoothly by slowly changing the composition ratio of elements every atomic layer or every few atomic layers. Laser equipment.
JP63197483A 1988-08-08 1988-08-08 Quantum well structure type semiconductor laser device Expired - Fee Related JP2708799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63197483A JP2708799B2 (en) 1988-08-08 1988-08-08 Quantum well structure type semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63197483A JP2708799B2 (en) 1988-08-08 1988-08-08 Quantum well structure type semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH0245995A true JPH0245995A (en) 1990-02-15
JP2708799B2 JP2708799B2 (en) 1998-02-04

Family

ID=16375227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63197483A Expired - Fee Related JP2708799B2 (en) 1988-08-08 1988-08-08 Quantum well structure type semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2708799B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157285A (en) * 1983-09-02 1985-08-17 ゼロツクス コ−ポレ−シヨン Quantum well laser structure and method of matching radiatedwavelength
JPS63161690A (en) * 1986-12-25 1988-07-05 Nec Corp Quantum well type semiconductor laser
JPS6459978A (en) * 1987-08-31 1989-03-07 Fujitsu Ltd Method of controlling forbidden band width of semiconductor superlattice

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157285A (en) * 1983-09-02 1985-08-17 ゼロツクス コ−ポレ−シヨン Quantum well laser structure and method of matching radiatedwavelength
JPS63161690A (en) * 1986-12-25 1988-07-05 Nec Corp Quantum well type semiconductor laser
JPS6459978A (en) * 1987-08-31 1989-03-07 Fujitsu Ltd Method of controlling forbidden band width of semiconductor superlattice

Also Published As

Publication number Publication date
JP2708799B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
US4794611A (en) Semiconductor laser having superlattice structure
JPS6254489A (en) Semiconductor light emitting element
JPH05102604A (en) Semiconductor laser device
JPH0575214A (en) Semiconductor device
EP0157602B1 (en) A visible double heterostructure-semiconductor laser
JPS61242093A (en) Improved simiconductor laser device
JPH0669109B2 (en) Optical semiconductor device
JPS63299186A (en) Light emitting element
US5737353A (en) Multiquantum-well semiconductor laser
JPH01246891A (en) Distributed feedback type semiconductor laser
JPH11112102A (en) Fabrication of optical semiconductor device
JPH08274295A (en) Manufacture of optical semiconductor device
JPH0245995A (en) Semiconductor laser device of quantum well structure
US4759030A (en) Semiconductor laser
JP2819160B2 (en) Multi-wavelength semiconductor laser diode
JP3582021B2 (en) Optical semiconductor device
CA2139141C (en) Quantum-well type semiconductor laser device having multi-layered quantum-well layer
US5192711A (en) Method for producing a semiconductor laser device
JPH01264287A (en) Semiconductor light emitting device
JPH1187764A (en) Semiconductor light-emitting device and its manufacture
JPS61202487A (en) Distributed feedback type semiconductor laser
JPH04100292A (en) Semiconductor laser
JPS61236185A (en) Preparation of semiconductor laser element
JP3185239B2 (en) Semiconductor laser device
JP3316958B2 (en) Polarized electron beam generator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees