JPH0245938B2 - BERUTOSHIKIRENZOKUCHUZONIOKERUBERUTOHENOYOKOCHOKUGEKIBOSHIHOHO - Google Patents

BERUTOSHIKIRENZOKUCHUZONIOKERUBERUTOHENOYOKOCHOKUGEKIBOSHIHOHO

Info

Publication number
JPH0245938B2
JPH0245938B2 JP27958384A JP27958384A JPH0245938B2 JP H0245938 B2 JPH0245938 B2 JP H0245938B2 JP 27958384 A JP27958384 A JP 27958384A JP 27958384 A JP27958384 A JP 27958384A JP H0245938 B2 JPH0245938 B2 JP H0245938B2
Authority
JP
Japan
Prior art keywords
molten steel
belt
casting
direct hit
injection nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27958384A
Other languages
Japanese (ja)
Other versions
JPS61154745A (en
Inventor
Nagayasu Betsusho
Koichi Tozawa
Tsutomu Nozaki
Yasuhiro Kakio
Noboru Yasukawa
Yoshihisa Kitano
Genpei Yaji
Tomoaki Kimura
Tadashi Nishino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Hitachi Ltd
Original Assignee
Hitachi Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Kawasaki Steel Corp filed Critical Hitachi Ltd
Priority to JP27958384A priority Critical patent/JPH0245938B2/en
Publication of JPS61154745A publication Critical patent/JPS61154745A/en
Publication of JPH0245938B2 publication Critical patent/JPH0245938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/08Accessories for starting the casting procedure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、ベルト式連続鋳造機の鋳込み開始時
における金属ベルト保護方法に関し、特に鋳込み
開始より注入ノズル吐出口が溶鋼中に浸漬状態と
なつて定常なメニスカスが形成されるまでの間に
適用される技術であり、金属ベルトへの溶鋼の直
撃防止を図つて保護する技術について提案する。 (従来の技術) 溶鋼から直接シートバーの如き鋼板を連続的に
製造する連続鋳造機すなわち“ベルトキヤスタ
ー”としては種々の形成のものがあるが、第1図
はそのうちの代表的なものの1つである。この同
期式ベルトキヤスターは、絞り込み方式のもの
で、所定の距離にわたつて溶鋼や凝固シエル等の
鋳造材料を保持するための間隙を維持しつつ、そ
れぞれ複数個のガイドロール3a,3b,3c,
3a′,3b′,3c′を介して輪回移動する対向配置
した一対の長辺面を支持する金属ベルト1,2
と、それら両金属ベルト相互間にあつて各々の側
縁近傍で緊密に接している短辺面用の固定式短辺
壁4,5とで4方を限局して鋳造空間とした構成
を有する。そしてかかる鋳造空間には注入ノズル
(イマージヨンノズル)6を通じて溶鋼の注入を
行う。 上記ベルトキヤスターにあつては、鋳込みの開
始時、ダミーバー7を鋳造空間内に迫り上げた後
溶鋼を注入ノズル吐出口6aから供給し、必要な
メニスカスが形成されるのを待つて、定常運転に
移る。このとき、吐出する溶鋼流が金属ベルト
1,2を直撃して溶損させ寿命を短くするという
問題点があつた。 これに対し上記問題点を克服して鋳込みの開始
を行う幾つかの提案がなされている。すなわち、 (1) ZrO2等の被膜を金属ベルトの溶鋼接触面側
にコーテイングする方法、 (2) 厚さ1.2mm程度の鋼板を金属ベルト表面に重
ねる方法、 (3) 厚さ0.5mm程度の薄鋼板2枚を金属ベルトの
一部領域にわたつて重ね合わせる方法、 などがある。 とくに上記(2)、(3)の従来技術は、(1)にくらべ鋳
込み開始時の金属ベルト溶損が著しく減少し有効
であつた。しかしながら鋳込も条件:主として鋳
込み速度の変化、注入ノズル6浸漬高さ、あるい
は注入ノズル吐出口が浸漬されるに至るまでに移
動する金属ベルト移動距離等に影響されてベルト
溶損が発生するので、ベルト溶損を減少させるま
でに至らなかつた。 また、溶鋼直撃を防止する上記薄鋼板の形状に
よつては、鋳片熱変形、バルジング、直撃防止用
鋼板部からの湯もれ、鋳片引抜きの不良あるいは
鋳片形状の不良を招くといつた問題点があつた。
すなわち、直撃防止用の薄鋼板が大きすぎたりま
た厚すぎたりすると、直撃防止の鋼板と金属ベル
間に溶鋼がまわらず、溶鋼と金属ベルト間の接触
が悪くなつて、鋳造空間内で冷却が遅れるととも
に不均一となり、未凝固鋳片が生成する。 そのために、鋳造空間の領域外に出てから溶鋼
の湯もれ、局部バルジング、熱変形を生じ、鋳片
のロール引抜きが困難になつたり、鋳片の性状不
良を招く結果となつていた。 (発明が解決しようとする問題点) 本発明は上述した各種の問題点に対し、 (イ) 鋳込みの開始時に注入ノズル吐出口部が完全
に浸漬状態になるまでノズルからの溶鋼吐出流
の金属ベルトへの直撃を防止すること、 (ロ) 注入溶鋼の直撃を防止する薄鋼板を設置した
場合においてもモールド外で未凝固によるバル
ジングや熱変形が生じないようにすること、そ
して、 そのために、直撃溶鋼の2次流を金属ベルト
と直撃防止板の間隙に充分流入させ、モールド
内での冷却が充分に達せられて強固な凝固シエ
ルが生成するような技術の開発を目指す。 この点上記従来法(2)、(3)は、いずれも前記(イ)に
重点を置いたものであり、正常な鋳込み操業を実
施するには(ロ)の機能をも満足させる必要がある。 (問題点を解決するための手段) 本発明は、上述の問題点を克服する有効な手段
として、 同期して輪回移動する互いに対向配置した一対
の長辺面用の金属ベルトと、これら金属ベルト相
互間にて該金属ベルトの両側縁近傍に緊密に接し
ている先細り状一対の固定式短辺壁とで4方を限
局してなるベルト式連続鋳造機の鋳造空間内に、
挿入、保持したダミーバー上方の鋳造空間内に吐
出口を有する注入ノズルから溶鋼をこの鋳造空間
内に注入して溶鋼の鋳込みを開始するに先立ち、 下記に示す幅(W)、長さ(L)、厚さ(H)の
関係を満たす溶鋼直撃防止用薄鋼板を、注入ノズ
ル吐出口からの溶鋼流を受けようとする金属ベル
ト表面に添わしめておくことを特徴とするベルト
式連続鋳造におけるベルトへの溶鋼直撃防止方
法。 記 0.35B≦W≦0.90B 0.5(l0+lt)≦L≦2(l0+lt) 0.1≦H≦1.5 式中; l0:ダミーバー上端〜注入ノズル吐出口までの鋳
込み開始時における設定距離(mm) lt:鋳込み開始から注入ノズル吐出口が浸漬状態
になるまでの間におけるベルト移動距離(mm) B:鋳片幅(mm) W:溶鋼直撃防止用薄鋼板の幅(mm) L:溶鋼直撃防止用薄鋼板の長さ(mm) H:溶鋼直撃防止用薄鋼板の厚さ(mm) (作用) 本発明者らは、種々の鋳込み実験を行つた結
果、以下に示すような形状の薄鋼板を準備して鋳
込みを開始するという溶鋼直撃防止策が有効であ
ることを確認した。 使用する溶鋼直撃防止用薄鋼板は次のような形
状を用いる。 巾(W)について、 0.35B≦W≦0.90B 厚さ(H)について、 0.1≦H≦1.5 長さ(L)について、 0.5(l0+lt)≦L≦2(l0+lt) ここで、 B:鋳片幅(mm) l0:ダミーバー上端〜注入ノズル吐出口までの鋳
込み開始時における設定距離(mm) lt:鋳込み開始から注入ノズル吐出口が浸漬状態
になるまでの間におけるベルト移動距離(mm) W:溶鋼直撃防止用薄鋼板の幅(mm) L:溶鋼直撃防止用薄鋼板の長さ(mm) H:溶鋼直撃防止用薄鋼板の厚さ(mm) この溶鋼直撃防止用薄鋼板は、方形状でも良い
が、該薄鋼板と金属ベルト間への溶鋼のまわり込
み性を良くするために、第2図及び第3図に示す
ように0.35B≦W≦0.90Bを満足する範囲で該薄
鋼板の幅の一部(溶鋼がまわり込みにくい部分)
を狭くしても良い。 また溶鋼直撃防止用薄鋼板の設置位置について
は、注入ノズルの鋳幅方向中心と溶鋼直撃防止用
薄鋼板の幅方向中心とが合い、かつダミーバー上
端に溶鋼直撃防止用薄鋼板の下端が接するように
配置する。 かかる薄鋼板が上記のように限定される理由に
ついて以下説明する。 式に関して、 W<0.35B;注入ノズル直下流の拡がりを完全に
幅方向に防止することが不可能で、ベルトの溶
損が生じるおそれがある。 W>0.90B;直撃防止用薄鋼板と金属ベルトとの
間への溶鋼のまわりが悪く、モールド外で未凝
固徴片となるおそれがある。 式に関して、 H<0.1mm;注入ノズル直下流で直撃防止板が瞬
時に溶解し、ベルトの溶損を生じるおそれがあ
る。 H>1.5mm;直撃防止板を金属ベルトの曲率に合
わせて整形することが煩雑であり、厚みが厚い
ために熱変形せず金属ベルトと直撃防止板間へ
の湯まわりが悪く未凝固鋳片を生成しやすい。 式に関して、 L<0.5(l0+lt);直撃防止板長さが足らず金属ベ
ルトの溶損を生じるおそれがある。 L>2(l0+lt);直撃防止板長さが不必要に長す
ぎ、未凝固鋳片長さが長くなる。 式について、より詳細に説明する。 注入ノズル吐出口からの溶鋼流が金属ベルトに
与えるダメージは、鋳造空間内へ溶鋼を注入し始
めてから該溶鋼の湯面が上昇し注入ノズル吐出口
が湯だまりに浸漬するまでの間が大きく(特に湯
だまりの形成されていない注入初期で大きい)、
それ以後は、湯面のレベル(吐出口の浸漬深さ)
に応じてダメージが減少する。 ところで鋳造空間内に挿入、保持したダミーバ
ーは、金属ベルトと緊密に接し、該金属ベルトの
回転と同期して移動を行うわけであるが、かかる
ダミーバーと金属ベルトの移動は、溶鋼の注入開
始後、ある程度の湯だまりが鋳造空間内に形成さ
れてから始める。 そこで注入ノズル吐出口が湯だまりに浸漬した
時にこの注入ノズル吐出口からダミーバー上端ま
での距離は、l0に、鋳込み開始から注入ノズル吐
出口が浸漬状態になるまでの間におけるベルト移
動距離ltを加えた(l0+lt)となる。 第4図に、鋳込み開始時からの溶鋼湯面レベ
ル、ダミーバー並びに直撃防止用薄鋼板の位置の
経時変化の例を示す。 ltは、湯面レベルの上昇曲線のパターン、金属
ベルト移動速度あるいはそれらの複合により変化
する。同図では金属ベルト移動速度を一定とし
て、湯面レベルの上昇曲線が(イ)、(ロ)及び(ハ)の3パ
ターンの場合について示し、(イ)の場合はlt=0、
(ロ)及び(ハ)の場合はそれぞれlt1、lt2となる。 また溶鋼直撃防止用薄鋼板の長さが0.5×(l0
lt)の場合における該薄鋼板の上端の位置を湯面
レベルの上昇曲線の各場合について、一点鎖線で
示し、溶鋼直撃防止用薄鋼板の長さが、2×(l0
+lt)の場合における該薄鋼板の上端の位置を湯
面レベルの上昇曲線の(ロ)の場合について、二点鎖
線で示した。 図中ハツチング域で、溶鋼流の直撃ゾーンの一
例を示したが、かかる直撃ゾーンは、注入ノズル
の形状や鋳造空間の絞り込み形状によつて拡大す
るとはいえ、図中に示されたゾーンは、これらの
条件に関係なく注入始期には常に溶鋼が直撃する
領域である。したがつて溶鋼直撃防止用薄鋼板の
長さLは、L≧0.5×(l0+lt)以上となる。 第4図の(イ)及び(ハ)のそれぞれの場合における
(l0+lt)の係数について説明する。(イ)の場合は、
金属ベルトが移動する以前に湯面が注入ノズル吐
出口に達するので直撃ゾーン上端より長い溶鋼直
撃防止用薄鋼板すなわち0.5l0で良く、係数は0.5
となる(∵lt=0)が、(ハ)の場合は、0.5(l0+lt
の長さの溶鋼直撃防止用薄鋼板を使用すると、湯
面が注入ノズル吐出口を浸漬する以前に、溶鋼直
撃防止用薄鋼板の上端が直激ゾーン上端a点を通
過するので、それより上方のベルトに溶鋼が直撃
することになる。これを防止するためには、溶鋼
直撃防止用薄鋼板の上端がb点を通過するだけの
溶鋼直撃防止用薄鋼板の長さが必要である。この
時の係数は、ダミーバー先端位置の経時変化を示
す実線に平行でb点を通過する直線と引き抜きス
タート時を示す垂線との交点cからダミーバー先
端位置dまでの距離cdと(l0+lt2)との比であり
例えば0.73となる。 また上記溶鋼の直撃ゾーンは前述のように注入
ノズルの形状、鋳造空間の絞り込み形状、さらに
はベルト移動速度や湯面レベル上昇速度によつて
も変化する。例えば吐出角度が上向きになつてい
る場合は、吐出口位置近傍より下方が溶鋼の直撃
を受ける。また溶鋼流の飛沫が上方に飛散したり
鋳造条件によつては溶鋼直撃防止用薄鋼板が溶損
することもあつて、金属ベルトの保護を十分安全
に確保するためには、係数が2を超える長さは不
必要であるが、溶鋼直撃防止用薄鋼板の長さLは
2(l0+lt)以下とする。 さらに直撃防止板裏への溶鋼の湯まわりを促進
する方法として、直撃防止板を金属ベルト面上に
密に接して重ね合わせるのではなく、第4図に示
すように両側縁部の一部を折り曲げて形成する折
起し片9を設けると湯まわりが改善され本発明の
目指す所望の効果がより確実に達せられる。 (実施例) 第1図に示した鋳片幅1000mmのベルト式連続鋳
造機により、低炭素アルミキルド鋼を、表・1に
示す鋳込み条件で鋳込んだ場合の鋳込み開始時の
金属ベルト溶損率と直撃防止板部の鋳片熱変形お
よびバルジングの程度を、表・2に示す各鋳込み
方法について実験したので、その結果を表・3に
示す。
(Industrial Application Field) The present invention relates to a method for protecting a metal belt in a belt-type continuous casting machine at the start of casting, and in particular, from the start of casting, the injection nozzle outlet is immersed in molten steel and a steady meniscus is formed. This is a technology that can be applied until the metal belt is exposed to steel, and we propose a technology that protects the metal belt by preventing it from being directly hit by molten steel. (Prior Art) Continuous casting machines, or "belt casters", that continuously produce steel plates such as sheet bars directly from molten steel have various configurations, and Figure 1 shows one of the typical ones. It is one. This synchronous belt caster is of a narrowing type, and while maintaining a gap for holding cast materials such as molten steel and solidified shell over a predetermined distance, each of a plurality of guide rolls 3a, 3b, 3c ,
Metal belts 1 and 2 supporting a pair of long side surfaces arranged oppositely and moving circularly via 3a', 3b' and 3c'
and fixed short side walls 4 and 5 for the short sides that are in close contact with each other near the side edges between both metal belts, and have a configuration in which four sides are confined to form a casting space. . Molten steel is injected into the casting space through an injection nozzle (immersion nozzle) 6. In the case of the above-mentioned belt caster, at the start of casting, after pushing the dummy bar 7 up into the casting space, molten steel is supplied from the injection nozzle outlet 6a, and after waiting for the necessary meniscus to be formed, steady operation is performed. Move to. At this time, there was a problem in that the discharged molten steel flow directly hit the metal belts 1 and 2, causing them to melt and shorten their service life. In response to this, several proposals have been made to overcome the above problems and start casting. In other words, (1) a method in which a film such as ZrO 2 is coated on the molten steel contact side of the metal belt, (2) a method in which a steel plate with a thickness of approximately 1.2 mm is placed on the surface of the metal belt, and (3) a method in which a film of approximately 0.5 mm in thickness is applied. There is a method in which two thin steel plates are overlapped over a portion of a metal belt. In particular, the conventional techniques (2) and (3) above were effective in that the metal belt melting damage at the start of casting was significantly reduced compared to (1). However, casting is also affected by conditions: belt melting occurs mainly due to changes in casting speed, the height of the injection nozzle 6 immersion, or the distance the metal belt travels until the injection nozzle discharge port is immersed. However, it was not possible to reduce belt melting loss. In addition, depending on the shape of the thin steel plate mentioned above, which prevents direct impact from molten steel, thermal deformation of the slab, bulging, leakage from the steel plate for preventing direct impact, poor drawing of the slab, or defective slab shape may occur. A problem arose.
In other words, if the thin steel plate for direct hit prevention is too large or too thick, the molten steel will not circulate between the direct hit prevention steel plate and the metal bell, and the contact between the molten steel and the metal belt will be poor, resulting in insufficient cooling in the casting space. As the process is delayed, it becomes uneven and unsolidified slabs are produced. As a result, leakage, local bulging, and thermal deformation of the molten steel occur after the molten steel leaves the area of the casting space, making it difficult to pull out the slab with rolls and resulting in poor properties of the slab. (Problems to be Solved by the Invention) The present invention solves the above-mentioned various problems. (b) To prevent bulging or thermal deformation due to non-solidification outside the mold even when a thin steel plate is installed to prevent direct impact from injected molten steel; We aim to develop a technology that allows the secondary flow of directly hit molten steel to sufficiently flow into the gap between the metal belt and the direct hit prevention plate, thereby achieving sufficient cooling within the mold and producing a strong solidified shell. In this respect, the conventional methods (2) and (3) above both focus on the above (a), and in order to carry out normal casting operations, it is necessary to also satisfy the function (b). . (Means for Solving the Problems) The present invention provides, as an effective means for overcoming the above-mentioned problems, a pair of long-side metal belts that rotate in synchronization and are arranged opposite to each other, and these metal belts. In a casting space of a belt-type continuous casting machine, which is confined on four sides by a pair of tapered fixed short side walls that are in close contact with each other near both side edges of the metal belt,
Before starting casting of molten steel by injecting molten steel into the casting space from an injection nozzle having a discharge port in the casting space above the inserted and held dummy bar, the width (W) and length (L) shown below are determined. , a thin steel plate for preventing direct hit of molten steel that satisfies the relationship of thickness (H) is attached to the surface of the metal belt that is to receive the molten steel flow from the injection nozzle discharge port. How to prevent direct hit from molten steel. Note: 0.35B≦W≦0.90B 0.5 (l 0 +l t )≦L≦2 (l 0 +l t ) 0.1≦H≦1.5 In the formula; l 0 : Setting at the start of casting from the upper end of the dummy bar to the injection nozzle discharge port Distance (mm) l t : Belt movement distance (mm) from the start of casting until the injection nozzle discharge port becomes immersed B: Width of slab (mm) W: Width of thin steel plate to prevent direct hit of molten steel (mm) L: Length of thin steel plate for preventing direct hit of molten steel (mm) H: Thickness of thin steel plate for preventing direct hit of molten steel (mm) (Function) As a result of various casting experiments, the present inventors found that the following results were obtained. It was confirmed that the method to prevent direct hit of molten steel by preparing a thin steel plate with a similar shape and starting casting was effective. The thin steel plate used to prevent direct hits from molten steel has the following shape. Width (W): 0.35B≦W≦0.90B Thickness (H): 0.1≦H≦1.5 Length (L): 0.5 (l 0 + l t ) ≦L≦2 (l 0 + l t ) Here B: Slab width (mm) l 0 : Set distance from the top of the dummy bar to the injection nozzle outlet at the start of casting (mm) l t : From the start of casting until the injection nozzle outlet becomes immersed Belt movement distance (mm) W: Width of thin steel plate to prevent direct hit of molten steel (mm) L: Length of thin steel plate to prevent direct hit of molten steel (mm) H: Thickness of thin steel plate to prevent direct hit of molten steel (mm) Direct hit of this molten steel The thin steel plate for prevention may have a rectangular shape, but in order to improve the ability of molten steel to wrap around between the thin steel plate and the metal belt, the shape should be 0.35B≦W≦0.90B as shown in Figs. 2 and 3. A part of the width of the thin steel plate within the range that satisfies (the part where molten steel is difficult to wrap around)
You can narrow it down. In addition, the installation position of the thin steel plate for preventing direct hit of molten steel should be such that the center of the injection nozzle in the casting width direction is aligned with the center of the thin steel plate for preventing direct hit of molten steel, and the lower end of the thin steel plate for preventing direct hit of molten steel is in contact with the upper end of the dummy bar. Place it in The reason why such thin steel sheets are limited as described above will be explained below. Regarding the formula, W<0.35B: It is impossible to completely prevent the spread immediately downstream of the injection nozzle in the width direction, and there is a possibility that the belt will be melted and damaged. W>0.90B: The molten steel does not flow well between the thin steel plate for direct hit prevention and the metal belt, and there is a possibility that unsolidified pieces will form outside the mold. Regarding the formula: H < 0.1 mm; the direct hit prevention plate immediately downstream of the injection nozzle may melt instantly, resulting in belt melting and damage. H > 1.5mm: It is complicated to shape the direct hit prevention plate to match the curvature of the metal belt, and because it is thick, it does not deform due to heat, and the flow of hot water between the metal belt and the direct hit prevention plate is poor, resulting in unsolidified slabs. Easy to generate. Regarding the formula, L<0.5 (l 0 +l t ); the length of the direct hit prevention plate is insufficient and there is a risk of melting and damage of the metal belt. L>2(l 0 +l t ): The length of the direct hit prevention plate is unnecessarily long, and the length of the unsolidified slab becomes long. The formula will be explained in more detail. The damage caused to the metal belt by the flow of molten steel from the injection nozzle outlet is significant during the period from when the molten steel begins to be injected into the casting space until the level of the molten steel rises and the injection nozzle outlet is immersed in the pool ( It is especially large at the beginning of injection when no pool is formed),
After that, the level of the hot water surface (the immersion depth of the discharge port)
Damage will be reduced accordingly. By the way, the dummy bar inserted and held in the casting space comes into close contact with the metal belt and moves in synchronization with the rotation of the metal belt, but the movement of the dummy bar and metal belt takes place after the injection of molten steel starts. , after a certain amount of molten water has formed in the casting space. Therefore, when the injection nozzle outlet is immersed in the pool of hot water, the distance from the injection nozzle outlet to the top of the dummy bar is l 0 , and the belt movement distance from the start of casting until the injection nozzle outlet becomes immersed is l t The result is (l 0 +l t ). FIG. 4 shows an example of changes over time in the molten steel level and the positions of the dummy bar and the thin steel plate for preventing direct impact from the start of pouring. l t changes depending on the pattern of the rising curve of the hot water level, the moving speed of the metal belt, or a combination thereof. The same figure shows the cases where the metal belt moving speed is constant and the rising curve of the hot water level has three patterns (a), (b), and (c). In the case of (a), l t = 0,
In the case of (b) and (c), it becomes l t1 and l t2 , respectively. In addition, the length of the thin steel plate to prevent direct hit of molten steel is 0.5×(l 0 +
The position of the upper end of the thin steel plate in the case of (l t ) is shown by a dashed line for each case of the rise curve of the hot water level, and the length of the thin steel plate for preventing direct hit of molten steel is 2×(l 0
The position of the upper end of the thin steel plate in the case of +l t ) is shown by a chain double-dashed line in the case of (b) of the rise curve of the hot water level. The hatched area in the figure shows an example of the direct hit zone of the molten steel flow. Although the direct hit zone expands depending on the shape of the injection nozzle and the narrowed shape of the casting space, the zone shown in the figure Regardless of these conditions, this area is always directly hit by molten steel at the beginning of injection. Therefore, the length L of the thin steel plate for preventing direct hit of molten steel is L≧0.5×(l 0 +l t ) or more. The coefficient of (l 0 +l t ) in each case of (a) and (c) in FIG. 4 will be explained. In the case of (b),
Since the molten metal surface reaches the injection nozzle discharge port before the metal belt moves, a thin steel plate for preventing direct hit of molten steel that is longer than the upper end of the direct hit zone, i.e. 0.5l 0 , is sufficient, and the coefficient is 0.5
(∵l t = 0), but in the case of (c), it becomes 0.5(l 0 +l t )
When using a thin steel plate for preventing direct impact on molten steel with a length of The molten steel will directly hit the belt. In order to prevent this, the thin steel plate for preventing a direct hit of molten steel must be long enough for the upper end of the thin steel plate for preventing a direct hit of molten steel to pass through point b. The coefficient at this time is the distance cd from the intersection point c of the straight line that is parallel to the solid line that indicates the change in the dummy bar tip position over time and passes through point b, and the perpendicular line that indicates the start of pulling out to the dummy bar tip position d, and (l 0 + l t2 ), for example, 0.73. Further, as described above, the direct impact zone of the molten steel changes depending on the shape of the injection nozzle, the constriction shape of the casting space, the belt movement speed, and the rate of rise in the molten metal level. For example, when the discharge angle is upward, the area below the vicinity of the discharge port is directly hit by the molten steel. In addition, the thin steel plate for preventing direct hit of molten steel may be damaged by melting due to splashes of molten steel flowing upward or depending on the casting conditions, so in order to ensure sufficient safety of protection of the metal belt, the coefficient must exceed 2. Although the length is not necessary, the length L of the thin steel plate for preventing direct hit of molten steel is 2(l 0 +l t ) or less. Furthermore, as a method of promoting the flow of molten steel to the back of the direct hit prevention plate, instead of stacking the direct hit prevention plate in close contact with the metal belt surface, a part of both side edges is Providing the folded piece 9 formed by bending improves hot water circulation and more reliably achieves the desired effect aimed at by the present invention. (Example) Metal belt erosion rate at the start of casting when low carbon aluminum killed steel is cast under the casting conditions shown in Table 1 using a belt-type continuous casting machine with a slab width of 1000 mm shown in Figure 1. The degree of thermal deformation and bulging of the slab in the direct hit prevention plate was tested using each casting method shown in Table 2, and the results are shown in Table 3.

【表】【table】

【表】【table】

【表】 * 最もベルト溶損、鋳片熱変形とバルジン
グの激しいものを1とした場合の指数表示
上記表から明らかなように方法a(比較例)の
場合は、鋳込み開始前にZrO2粉末を並走するベ
ルトの内面にほぼ400g/m2塗布してから鋳込み
を開始したものであるが、ZrO2粉末の塗布だけ
では鋳込み開始の溶鋼直撃に耐えられず、ベルト
は溶損で開孔し、鋳込み不能となつた。 方法c(比較例)の場合は、直撃防止板を1枚
使用した例であるが、鋳込み方向に対する長さが
短かかつたため、鋳込み開始後のベルト移動によ
り直撃流が防止板を外れベルトを直撃した。その
結果上記の方法aよりは少ないがベルト溶損し
て、開孔し、鋳込み不能となつた。 方法b(比較例)は、本発明の直撃防止板の寸
法限定の内、幅(W)と長(L)は範囲内であるが、
厚み(H)が厚いことと、2枚重ねて使用したことが
本発明の範囲外である。この方法では、ベルト溶
損はほとんどなかつたが、モールド内での冷却が
遅く不均一で未凝固部が生成したため、モールド
外に出てから鋳片の熱変形あるいはバルジングを
生じ、鋳片の引抜きができなくなつた。 方法d′(比較例)は、本発明で限定した板幅
(W)よりも大きい直撃防止板を使つた例であり、
直撃流によるベルト溶損はほとんどないが、板幅
(W)がモールド幅に等しいので、溶鋼が直撃防
止板と金属ベルト間、特に防止板幅中央部にまで
にまわらず、溶鋼と金属ベルトの接触が悪くな
り、方法bと同様の理由でモールド外に出て、鋳
片バルジングを生じた。 以上のように比較例a〜d′は、ベルトの溶損、
穿孔またはモールド外に出てからの熱変形バルジ
ングで、鋳込みを中止しなければならなかつた。 これに対し方法d(実施例)は、本発明の範囲
内にある形状の直撃防止板1枚を使用した例であ
る。直撃流によるベルト溶損はほとんどなかつ
た。ただ直撃防止板と金属ベルトとの間の溶鋼侵
入が完全でなかつたため、溶鋼と金属ベルトの接
触が悪くなり、上述したと同じ理由で極く微小の
熱変形を生じ、それでも鋳片の引抜きにきは全く
影響なく完全に鋳造できた。 方法e(実施例)は、本発明の直撃防止板1枚
を第5図に示すように両側縁部を5mm折り曲げて
折起し片を形成し、金属ベルトと直撃防止板とに
間隙が生じるようにした結果、溶鋼の侵入が改善
された。これにより溶鋼とベルトの接触が良好と
なり、鋳片の熱変形やバルジングがほとんどな
く、また直撃流によるベルト溶損もなく、良質な
鋳片を鋳造できた。 なお、上記の実施例は、いすれも直撃防止板の
たおれ込みを防止するのに、あらかじめ直撃防止
板を小形マグネツトで金属ベルトに付着させてか
ら鋳造を開始した。 (発明の効果) 以上説明したように本発明によれば、鋳造開始
時にベルト溶損や鋳片熱変形による鋳造不能が少
なくかつ良質な鋳片を得るのに有効である。
[Table] * Index display where 1 indicates the most severe belt melting, slab thermal deformation, and bulging.As is clear from the table above, in the case of method a (comparative example), ZrO 2 is added before the start of pouring. Casting was started after approximately 400g/ m2 of powder was applied to the inner surface of the belt running in parallel, but the application of ZrO2 powder alone was not able to withstand the direct hit of molten steel at the start of casting, and the belt opened due to melting damage. Holes formed and casting became impossible. In the case of method c (comparative example), one direct impact prevention plate was used, but since the length in the casting direction was short, the direct impact flow could come off the prevention plate and cause the belt to move due to the belt movement after the start of casting. It hit me directly. As a result, the belt was melted and damaged, and holes were formed, although this was less than in method a above, making it impossible to cast. In method b (comparative example), the width (W) and length (L) are within the range of the dimensional limitations of the direct hit prevention plate of the present invention, but
The fact that the thickness (H) is large and that two sheets are used in a stacked manner is outside the scope of the present invention. With this method, there was almost no belt melting damage, but because the cooling inside the mold was slow and uneven, and an unsolidified part was formed, the slab was thermally deformed or bulged after it came out of the mold, and the slab was pulled out. I couldn't do it anymore. Method d' (comparative example) is an example of using a direct hit prevention plate larger than the plate width (W) limited in the present invention,
There is almost no belt erosion due to direct impact flow, but since the plate width (W) is equal to the mold width, molten steel does not spread between the direct impact prevention plate and the metal belt, especially the center of the prevention plate width, and the molten steel and metal belt are The contact deteriorated, and for the same reason as method b, it came out of the mold, resulting in slab bulging. As mentioned above, comparative examples a to d' are characterized by belt melting,
Pouring had to be stopped due to perforation or thermal deformation bulging after exiting the mold. On the other hand, method d (embodiment) is an example in which one direct hit prevention plate having a shape within the scope of the present invention is used. There was almost no belt melting due to direct current. However, since the penetration of the molten steel between the direct hit prevention plate and the metal belt was not complete, the contact between the molten steel and the metal belt was poor, resulting in extremely small thermal deformation for the same reason as mentioned above, and even then, it was difficult to pull out the slab. I was able to cast it completely without any problems. Method e (Example) involves bending one direct hit prevention plate of the present invention by 5 mm on both side edges to form a folded piece as shown in FIG. 5, and creating a gap between the metal belt and the direct hit prevention plate. As a result, the penetration of molten steel was improved. This resulted in good contact between the molten steel and the belt, and it was possible to cast high-quality slabs with almost no thermal deformation or bulging of the slabs, and no belt melting due to direct impact flow. In all of the above embodiments, in order to prevent the direct hit prevention plate from collapsing, the direct hit prevention plate was attached to the metal belt using a small magnet before casting was started. (Effects of the Invention) As described above, the present invention is effective in obtaining high-quality slabs with less occurrence of belt melting and failure to cast due to thermal deformation of slabs at the start of casting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の実施態様の一例を示す
ベルト式連続鋳造機の概略を示す斜視図、第2図
は、鋳込み開始時の直撃防止板使用状態を説明す
るための斜視図、第3図は、直撃防止板形状の正
面図、第4図は鋳込み開始時からの溶鋼湯面レベ
ル、ダミーバー並びに直撃防止用薄鋼板の位置の
経時変化の例を示すグラフ、第5図は、折起し片
を有する直撃防止板の斜視図である。 1,2……金属ベルト、3,3′……ガイドロ
ール、4,5……短辺壁、6……注入ノズル、6
a……吐出口、7……ダミーバー、8……直撃防
止板、9……折起し片。
FIG. 1 is a perspective view schematically showing a belt-type continuous casting machine showing an example of an embodiment of the method of the present invention, FIG. Figure 3 is a front view of the shape of the direct hit prevention plate, Figure 4 is a graph showing an example of changes over time in the molten steel level from the start of pouring, the position of the dummy bar and the thin steel plate for direct hit prevention, and Figure 5 is a folding diagram. FIG. 3 is a perspective view of a direct hit prevention plate having a raised piece. 1, 2... Metal belt, 3, 3'... Guide roll, 4, 5... Short side wall, 6... Injection nozzle, 6
a...Discharge port, 7...Dummy bar, 8...Direct hit prevention plate, 9...Folded piece.

Claims (1)

【特許請求の範囲】 1 同期して輪回移動する互いに対向配置した一
対の長辺面用の金属ベルトと、これら金属ベルト
相互間にて該金属ベルトの両側縁近傍に緊密に接
している先細り状一対の固定式短辺壁とで4方を
限局してなるベルト式連続鋳造機の鋳造空間内
に、挿入、保持したダミーバー上方の鋳造空間内
に吐出口を有する注入ノズルから溶鋼をこの鋳造
空間内に注入して溶鋼の鋳込みを開始するに先立
ち、 下記に示す幅(W)、長さ(L)、厚さ(H)の関係を
満たす溶鋼直撃防止用薄鋼板を、注入ノズル吐出
口からの溶鋼流を受けようとする金属ベルト表面
に添わしめておくことを特徴とするベルト式連続
鋳造におけるベルトへの溶鋼直撃防止方法。 記 0.35B≦W≦0.90B 0.5(l0+lt)≦L≦2(l0+lt) 0.1≦H≦1.5 式中; l0:ダミーバー上端〜注入ノズル吐出口までの鋳
込み開始時における設定距離(mm) lt:鋳込み開始から注入ノズル吐出口が浸漬状態
になるまでの間におけるベルト移動距離(mm) B:鋳片幅(mm) W:溶鋼直撃防止用薄鋼板の幅(mm) L:溶鋼直撃防止用薄鋼板の長さ(mm) H:溶鋼直撃防止用薄鋼板の厚さ(mm)
[Scope of Claims] 1. A pair of long side metal belts that rotate in synchronization and are arranged opposite to each other, and a tapered shape that is in close contact with the vicinity of both side edges of the metal belt between these metal belts. Molten steel is injected into the casting space of a belt-type continuous casting machine, which is confined on four sides by a pair of fixed short side walls, from an injection nozzle having a discharge port in the casting space above a dummy bar inserted and held. Before starting pouring of molten steel, insert a thin steel plate to prevent direct hit of molten steel that satisfies the width (W), length (L), and thickness (H) relationships shown below from the injection nozzle outlet. A method for preventing direct impact of molten steel on a belt in belt-type continuous casting, characterized in that the metal belt is attached to the surface of the metal belt that is about to receive the molten steel flow. Note: 0.35B≦W≦0.90B 0.5 (l 0 +l t )≦L≦2 (l 0 +l t ) 0.1≦H≦1.5 In the formula; l 0 : Setting at the start of casting from the upper end of the dummy bar to the injection nozzle discharge port Distance (mm) l t : Belt movement distance (mm) from the start of casting until the injection nozzle discharge port becomes immersed B: Width of slab (mm) W: Width of thin steel plate to prevent direct hit of molten steel (mm) L: Length of thin steel plate to prevent direct hit from molten steel (mm) H: Thickness of thin steel plate to prevent direct hit from molten steel (mm)
JP27958384A 1984-12-26 1984-12-26 BERUTOSHIKIRENZOKUCHUZONIOKERUBERUTOHENOYOKOCHOKUGEKIBOSHIHOHO Expired - Lifetime JPH0245938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27958384A JPH0245938B2 (en) 1984-12-26 1984-12-26 BERUTOSHIKIRENZOKUCHUZONIOKERUBERUTOHENOYOKOCHOKUGEKIBOSHIHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27958384A JPH0245938B2 (en) 1984-12-26 1984-12-26 BERUTOSHIKIRENZOKUCHUZONIOKERUBERUTOHENOYOKOCHOKUGEKIBOSHIHOHO

Publications (2)

Publication Number Publication Date
JPS61154745A JPS61154745A (en) 1986-07-14
JPH0245938B2 true JPH0245938B2 (en) 1990-10-12

Family

ID=17613001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27958384A Expired - Lifetime JPH0245938B2 (en) 1984-12-26 1984-12-26 BERUTOSHIKIRENZOKUCHUZONIOKERUBERUTOHENOYOKOCHOKUGEKIBOSHIHOHO

Country Status (1)

Country Link
JP (1) JPH0245938B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138852A (en) * 1990-09-28 1992-05-13 Nippon Steel Corp Method for protecting mold at initial stage of pouring in twin belt continuous casting

Also Published As

Publication number Publication date
JPS61154745A (en) 1986-07-14

Similar Documents

Publication Publication Date Title
JPH0245938B2 (en) BERUTOSHIKIRENZOKUCHUZONIOKERUBERUTOHENOYOKOCHOKUGEKIBOSHIHOHO
JP3089608B2 (en) Continuous casting method of beam blank
JP6790843B2 (en) Double roll casting equipment and double roll casting method
JP2820365B2 (en) Dummy sheet for twin-drum continuous casting machine
JPS609553A (en) Stopping down type continuous casting machine
JPH03193245A (en) Method for continuously casting strip
JP3023299B2 (en) Nozzle processing method for metal ribbon production
JPH0761526B2 (en) Thin plate continuous casting equipment
JPS60121051A (en) Continuous casting device for thin billet
JPS63126651A (en) Belt type continuous casting method
KR100605705B1 (en) Method of Melt Feeding Control for Submerged Entry Nozzle in Twin Roll Strip Caster
JP2990554B2 (en) Contact limiting plate for twin roll continuous casting machine
JPH07232245A (en) Dummy sheet for twin roll system continuous casting machine
JP2022174996A (en) Steel continuous casting method and continuous casting mold
KR101543842B1 (en) Submerged nozzle and twin roll type continuous caster having the same
JPH08243696A (en) Continuous casting method
JPS61219449A (en) Continuous casting method for thin sheet
JPS5838641A (en) Continuous casting device for thin steel sheet
JP2020006408A (en) Pull-out method for cast slab
JPH07232243A (en) Dummy sheet for twin roll system continuous casting machine
JPH0899155A (en) Continuous casting method
JPS6030555A (en) Continuous casting device for steel plate
JPS63317239A (en) Twin roll type continuous casting machine
JPS63149044A (en) Short side plate for continuous casting machine for cast strip
JPS63235054A (en) Method for preventing longitudinal crack in continuously cast slab at high speed casting