JPH0245895B2 - - Google Patents
Info
- Publication number
- JPH0245895B2 JPH0245895B2 JP59092934A JP9293484A JPH0245895B2 JP H0245895 B2 JPH0245895 B2 JP H0245895B2 JP 59092934 A JP59092934 A JP 59092934A JP 9293484 A JP9293484 A JP 9293484A JP H0245895 B2 JPH0245895 B2 JP H0245895B2
- Authority
- JP
- Japan
- Prior art keywords
- blood collection
- collection tube
- reduced pressure
- manufacturing
- tubular member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000008280 blood Substances 0.000 claims description 109
- 210000004369 blood Anatomy 0.000 claims description 109
- 238000004519 manufacturing process Methods 0.000 claims description 68
- 238000000034 method Methods 0.000 claims description 62
- 239000007789 gas Substances 0.000 claims description 57
- 229920003002 synthetic resin Polymers 0.000 claims description 33
- 239000000057 synthetic resin Substances 0.000 claims description 33
- 150000003377 silicon compounds Chemical class 0.000 claims description 26
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 25
- 230000004888 barrier function Effects 0.000 claims description 19
- 125000000217 alkyl group Chemical group 0.000 claims description 18
- 125000004432 carbon atom Chemical group C* 0.000 claims description 18
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 17
- 238000009832 plasma treatment Methods 0.000 claims description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 14
- 239000001301 oxygen Substances 0.000 claims description 14
- 229910052760 oxygen Inorganic materials 0.000 claims description 14
- 238000004140 cleaning Methods 0.000 claims description 8
- 125000003545 alkoxy group Chemical group 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 7
- 238000005406 washing Methods 0.000 claims description 4
- 239000010408 film Substances 0.000 description 26
- 239000011259 mixed solution Substances 0.000 description 15
- 238000000576 coating method Methods 0.000 description 12
- 230000035699 permeability Effects 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 210000004204 blood vessel Anatomy 0.000 description 8
- 229920005549 butyl rubber Polymers 0.000 description 7
- 229920001971 elastomer Polymers 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 229910001882 dioxygen Inorganic materials 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 229920002367 Polyisobutene Polymers 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 229920002725 thermoplastic elastomer Polymers 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 238000002525 ultrasonication Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical class C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229960001730 nitrous oxide Drugs 0.000 description 1
- 235000013842 nitrous oxide Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 238000009461 vacuum packaging Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Description
【発明の詳細な説明】
発明の背景
技術分野
本発明は、減圧採血管の製造方法に関するもの
である。詳しく述べると、ガスバリヤー性が極め
て高くかつ透明性が良好で長期間にわたつて高い
減圧度を保持できる減圧採血管の製造方法に関す
るものである。
先行技術
減圧採血方式は溶血や凝血が小さく、また汚染
や水分蒸散が少ない検体が得られ、また効率面で
は採血準備や器具の管理が単純化できるので広く
使用されている。しかして、このような減圧採血
方式において使用される減圧採血管は、管状容器
と穿刺可能な密封用ゴム栓とからなり、その密封
容器内は減圧されており、採血針の一端を血管に
穿刺後、他端を前記ゴム栓に穿刺して密封容器内
部と連通させることにより該容器内の負圧により
血液が流入して採血されたものである。このよう
な減圧採血管としては、従来、管状容器としてガ
ス透過性がなくかつ透明性の良好なものとしてガ
ラス製管状容器、また密封用止栓としてガス透過
性が低くかつ穿刺可能なものとしてブチルゴム製
栓よりなるものが使用されていた。
しかしながら、ガラス製管状容器は、保存また
は運搬中、もしくは使用中に破損しやすく、また
重いという欠点があつた。このため、軽量で透明
な合成樹脂製管状容器の使用について検討を行な
つたが、合成樹脂は大なり小なりガス透過性があ
るので、長時間の保存中に周囲の雰囲気ガス、例
えば密封された減圧管内に空気が透過してしま
い、この結果、採血管内の圧力が上昇して所定の
減圧採血ができないことが判明した。このため、
合成樹脂製減圧採血管を使用しようとすれば、減
圧包装容器内に保存する必要があつた。しかる
に、減圧包装容器による保存は、包装容器が減圧
容器であるために、極めて高価であるうえに、密
封および開缶に著しく手間がかかるのでコスト高
となるという欠点があつた。
発明の目的
したがつて、本発明の目的は、新規な減圧採血
管の製造方法を提供することにある。本発明の他
の目的は、ガスバリヤー性が極めて高くかつ透明
性が良好で長期間にわたつて高い減圧度を保持で
きる減圧採血管の製造方法を提供することにあ
る。本発明のさらに他の目的は、破損の恐れがな
くかつガスバリヤー性の極めて高い透明合成樹脂
製の減圧採血管の製造方法を提供することにあ
る。
これらの諸目的は、一端が閉塞しかつ他端が開
口した合成樹脂製の管状部材と、該管状部材の開
口端を密閉しかつ穿刺可能な栓部材とからなり、
該管状部材と該栓部材とにより形成される内部空
間を減圧状態に保持してなる減圧採血管の製造方
法において、前記管状部材を内表面または外表面
の少なくとも一方の表面に、一般式
(ただし式中、mは1〜5の整数である。)を有
するケイ素化合物と一般式
(ただし、式中nは1〜5の整数であり、また
R1およびR2は炭素原子数1〜4のアルキルまた
はアルコキシ基または水酸基であるが、R1およ
びR2が同時に水酸基であることはない。)を有す
るケイ素化合物との混合溶液を塗布し、乾燥し、
ついで酸素原子含有分子のガスの存在下にプラズ
マ処理して前記管状部材の表面のガスバリヤー性
の連続した被膜を形成させることを特徴とする減
圧採血管の製造方法により達成される。
前記諸目的はまた、一端が閉塞しかつ他端が開
口した合成樹脂製の管状部材と、該管状部材の開
口端を密閉しかつ穿刺可能な栓部材とからなり、
該管状部材と該栓部材とにより形成される内部空
間を減圧状態に保持してなる減圧採血管の製造方
法において、前記管状部材内表面または外表面の
少なくとも一方の表面に、一般式を有するケイ
素化合物と一般式を有するケイ素化合物との混
合溶液を超音波の作用により塗布し、乾燥し、つ
いで酸素原子含有分子のガスの存在下にプラズマ
処理して前記管状部材の表面のガスバリヤー性の
連続した被膜を形成させることを特徴とする減圧
採血管の製造方法により達成される。
前記諸目的はさらに、一端が閉塞しかつ他端が
開口した合成樹脂製の管状部材と、該管状部材の
開口端を密閉しかつ穿刺可能な栓部材とからな
り、該管状部材と該栓部材とにより形成される内
部空間を減圧状態に保持してなる減圧採血管の製
造方法において、前記管状部材の表面を洗浄処理
したのち該管状部材の内表面または外表面の少な
くとも一方の表面に、一般式を有するケイ素化
合物と一般式を有するケイ素化合物との混合溶
液を塗布し、乾燥し、ついで酸素原子含有分子の
ガスの存在下にプラズマ処理して前記管状部材の
表面のガスバリヤー性の連続した被膜を形成させ
ることを特徴とする減圧採血管の製造方法により
達成される。
前記諸目的はまた、一端が閉塞しかつ他端が開
口した合成樹脂製の管状部材と、該管状部材の開
口端を密閉しかつ穿刺可能な栓部材とからなり、
該管状部材と該栓部材とにより形成される内部空
間を減圧状態に保持してなる減圧採血管の製造方
法において、前記管状部材の表面を洗浄処理した
のち該管状部材の内表面または外表面の少なくと
も一方の表面に、一般式を有するケイ素化合物
と一般式を有するケイ素化合物との混合溶液を
超音波の作用により塗布し、乾燥し、ついで酸素
原子含有分子のガスの存在下にプラズマ処理して
前記管状部材の表面にガスバリヤー性の連続した
被膜を形成させることを特徴とする減圧採血管の
製造方法により達成される。
前記諸目的はまた、一端が閉塞しかつ他端が開
口した合成樹脂製の管状部材と、該管状部材の開
口端を密閉しかつ穿刺可能な栓部材とからなり、
該管状部材と該栓部材とにより形成される内部空
間を減圧状態に保持してなる減圧採血管の製造方
法において、前記開口端を減圧状態において管状
部材を栓部材にて密閉し、一般式を有するケイ
素化合物と一般式を有するケイ素化合物との混
合溶液中に浸漬、乾燥し、ついで酸素原子含有分
子のガスの存在下にプラズマ処理して前記管状部
材の表面のガスバリヤー性の連続した被膜を形成
させることを特徴とする減圧採血管の製造方法に
より達成される。
また、本発明は、反応が0.01〜2Torrの減圧下
に行なわれてなる減圧採血管の製造方法である。
さらに、本発明は、酸素原子含有分子のガス中の
酸素含有率が20〜100%である減圧採血管の製造
方法である。本発明は、反応温度が0〜150℃で
ある減圧採血管の製造方法である。また、本発明
は、一般式におけるmが1〜5の整数であり、
かつ一般式におけるnが1〜5の整数であり、
またR1およびR2が炭素原子数1〜4のアルキル
基または水酸基である減圧採血管の製造方法であ
る。さらに、本発明は、一般式におけるR1が
炭素原子数1〜2のアルキル基であり、かつR2
が水酸基である減圧採血管の製造方法である。本
発明は、プラズマ処理が0.1〜60分間行なわれて
なる減圧採血管の製造方法である。さらに、本発
明は、合成樹脂が透明合成樹脂である減圧採血管
の製造方法である。本発明は、洗浄処理がアルカ
リ水溶液中で行なわれる減圧採血管の製造方法で
ある。また、本発明は、洗浄処理が超音波の作用
により行なわれる減圧採血管の製造方法である。
発明の具体的構成
つぎに、図面を参照しながら本発明を詳細に説
明する。すなわち、第1図に示すように、本発明
による減圧採血管1は、一端が閉塞しかつ他端が
開口した透明合成樹脂製の管状部材2と、該管状
部材2の開口端3を密閉した穿刺可能な栓部材4
とよりなるもので、該管状部材2と、該栓部材4
とにより形成される空間5を減圧状態に保つてな
るものである。しかして、この透明合成樹脂製の
管状部材2の内表面および外表面の少なくとも一
方の表面に前記一般式およびのケイ素化合物
をプラズマ処理により反応させ透明被膜が形成さ
れる。例えば、第2A図に示すように、管状部材
2の外表面全面に前記ケイ素化合物を反応させて
透明被膜2aが形成されている。また、第2B図
に示すように、管状部材2の内表面全面に前記透
明被膜2bが形成されている。さらに、第2C図
に示すように、管状部材2の外表面に前記透明被
膜2aが、またその内表面に前記透明被膜2bが
形成されている。なお、第2A〜C図において、
透明被膜2a,2bの膜厚は誇張して画かれてい
る。
本発明で使用される管状部材を構成する合成樹
脂は特に限定されるものではないが、透明合成樹
脂が好ましく、特に、スチレンの単独重合体また
は共重合体、メチルメタクリレートの単独重合体
または共重合体、ポリカーボネート等が好まし
い。
被膜形成成分の一つは一般式
(ただし式中、mは1〜5、好ましくは1〜2の
整数である。)を有するケイ素化合物である。
他方の被膜形成成分は、一般式
を有するケイ素化合物である。該一般式におい
て、nは1〜5、好ましくは1〜2の整数であ
る。またR1およびR2は炭素原子数1〜4のアル
キルまたはアルコキシ基、フエニル基または水酸
基であるが、両者が水酸基であることはなく、特
にR1が炭素原子数1〜2のアルキル基で、R2が
水酸基である場合が好ましい。
しかして、一般式のケイ素化合物1モルに対
する一般式のケイ素化合物の配合比は0.5〜3
モル、好ましくは1〜2である。このようなケイ
素化合物の混合物は、メタノール、エタノール、
イソプロパノール等の有機溶媒として使用され
る。その濃度は、3〜50重量%、好ましくは5〜
35重量%である。
前記透明被膜は、つぎのようにして形成され
る。例えば、管状部材の内表面に被膜を形成させ
る場合には、管状部材内に前記ケイ素化合物の混
合溶液を入れ、一方、外表面に被膜を形成させる
場合には開口部に密栓するかあるいは密栓せずに
外表面が充分液と接触するように浸漬するか、あ
るいは内外表面に被膜を形成させる場合には、管
状部材全体を浸漬する。またさらに開口部を減圧
状態において管状部材を栓部材にて密栓し浸漬す
ることも可能である。この浸漬時間は、通常0.01
〜10分、好ましくは1〜5分である。なお、この
場合、浸漬中に超音波を当てながら行なうと、合
成樹脂製管状部材表面の微細孔からの空気抜きと
該微細孔への溶質の侵入が促進されるので、生成
する被膜のガスバリヤー性が向上する。なお、前
記混合溶液の塗布は浸漬のみに限られるのではな
く、スプレーその他の方法で行なうこともでき
る。
浸漬処理の温度は、通常0〜50℃、好ましくは
10〜30℃である。また、超音波の作用下に行なう
場合には、0〜50℃、好ましくは10〜30℃の液温
で20〜200KHz、好ましくは25〜50KHzの周波数
で0.1〜10分間、好ましくは0.5〜5分間行なわれ
る。
このようにして前記混合溶液を塗布された管状
部材は、50〜120℃、好ましくは60〜70℃の温度
で3〜30分間、好ましくは5〜15分間乾燥された
のち、プラズマ処理に供される。
前記管状部材表面の塗膜をプラズマ処理して透
明被膜を形成させるには、例えば、つぎのように
して行なう。すなわち、第3図に示すように、ガ
ス導入口11およびガス排出口12を備えた反応
器13に、電極14および18を設け、該電極1
4には管状部材支持具15を設け、該管状部材支
持具15に前記混合溶液を塗布した管状部材2を
支持させる。例えば密栓除去後の管状部材2の内
部に管状部材支持具15を挿入して支持させる。
なお、電極14には、冷却装置16aを当接させ
るとともに該冷却装置16aは温度調節器16b
に連結されて冷却媒体、例えば水が循環される。
また、電極14にはアース17が連結される。一
方、電極14の対面には対極18が設けられ、該
対極18は整合器19を経て高周波電源20に連
結されている。ガス導入口11には、酸素容器2
1および流量計22が連結されている。一方、ガ
ス排出口12にはトラツプ23を経て油拡散ポン
プ24、油回転ポンプ25等の減圧装置が連結さ
れている。なお、第3図において、符号26は圧
力センサー、符号27は真空ゲージであり、また
符号28は温度計である。
しかして、油回転ポンプ等の減圧装置を作動さ
せてガス排気口12から反応器13内の雰囲気ガ
スを排気して所定の減圧度を保ちつつ前記酸素ガ
スを酸素容器21から流量計22を経てガス導入
口11より反応器13に供給しながら電極に通電
してプラズマを前記塗布面に照射して処理する。
この場合、塗面に一様にプラズマが照射されるよ
うに、例えば、管状部材本体を回転しながら照射
を行なうことが望ましい。
プラズマ処理時の反応器内の圧力は0.01〜
2Torr、好ましくは、0.1〜0.5Torrである。基盤
である電極14は冷却装置16aに循環される冷
却媒体により冷却されるが、反応器内の温度は0
〜150℃、好ましくは30〜70℃である。また、高
周波電極量は0.05〜2W/cm2、好ましくは0.2〜
1.5W/cm2である。さらに酸素原子含有分子のガ
スとしては分子状酸素、オゾン、一酸化炭素、炭
酸ガス、一酸化窒素、一酸化二窒素、及びこれら
と他のガス(例えばアルゴン、窒素、ヘリウムな
ど)との混合ガスあるが、好ましくは分子状酸素
(以下、酸素ガスという。)であり、酸素含有量は
20〜100%である。プラズマ照射は0.1〜60分間、
好ましくは0.3〜5分間照射する。よつて、基材
である管状部材のプラズマ照射による温度上昇が
防止できるので、好適である。
このような反応条件下に形成される透明被膜の
膜厚は、0.01〜2μm、好ましくは0.03〜0.2μmで
ある。
本発明方法は、ケイ素化合物の混合溶液塗布前
に、管状部材を洗浄処理に供すれば、さらに良好
な結果が得られる。洗浄は、水、酸水溶液、アル
カリ水溶液、アルコール、界面活性剤水溶液等を
用い行われるが、アルカリ水溶液が好ましい。ア
ルカリ水溶液としては、炭酸ナトリウム、炭酸カ
リウム、炭酸リチウム、炭酸水素ナトリウム、水
酸化ナトリウム、水酸化カリウム等があり、通常
0.1〜20重量%、好ましくは3〜10重量%の水溶
液として用いられる。その処理時間は、通常0.1
〜30分間、好ましくは5〜10分間であり、その液
温は、0〜150℃、好ましくは10〜40℃である。
また、前記洗浄処理は、超音波の作用により行な
えば、さらに良好な結果が得られる。超音波処理
は20〜200KHz、好ましくは25〜50KHzの周波数
で0.1〜10分間、好ましくは0.5〜5分間行なわれ
る。超音波により洗浄処理を行えば、アルカリ水
溶液以外の処理剤であつてもかなり良好な結果が
得られることはもちろんである。また、アルカリ
水溶液を用いて超音波洗浄を行なえば、最も良好
な結果が得られる。
栓部材4を構成する材料としては、ブチルゴム
以外に後述するように、使用時に採血針の穿刺が
可能でかつ該採血針の穿刺により採血針と栓部材
との間が緩まないだけの充分な弾性を有し、さら
に、ガス透過性の低いものが望ましい。その代表
的なものとしては、例えば熱可塑性エラストマー
とポリイソブチレンと部分架橋ブチルゴムとの配
合物等があり、好ましくは熱可塑性エラストマー
とポリイソブチレンと部分架橋ブチルゴムとの配
合物である。
該配合物における各成分の組成は、熱可塑性エ
ラストマー100重量部当りポリイソブチレン100〜
200重量部、好ましくは120〜150重量部であり、
部分架橋ブチルゴム100〜200重量部、好ましくは
120〜150重量部である。
熱可塑性エラストマーとしては、エチレン−ブ
ロピレンゴム系、ポリエステルエラストマー、ナ
イロンエラストマー系、スチレン−イソプロピレ
ンブロツク共重合体、スチレン−ブタジエンブロ
ツク共重合体、ポリブタジエン、熱可塑性ポリウ
レタン、水素添加スチレン−ブタジエンブロツク
共重合体等がある。ポリイソブチレンは、分子量
15000〜200000、好ましくは80000〜150000のもの
である。部分架橋ブチルゴムは、イソブチレンと
少量(例えば0.3〜3.0モル%)のイソプレンとを
共重合させて得られるブチルゴムを部分架橋して
なるものである。
このようにして得られる減圧採血管は、必要に
より密栓前あるいは密栓後に放射線滅菌に供され
る。使用される放射線としてはガンマ線、電子線
等の電磁放射線があり、好ましくはガンマ線であ
り、その照射強度は0.1〜4Mrad、好ましくは0.5
〜2.5Mradである。
発明の具体的作用
以上のごとき構成を有する減圧採血管は、つぎ
のようにして使用される。すなわち、第4図に示
すように、一端が閉塞しかつ他端が開口し、該閉
塞端6のねじ穴7内に前記開口部から嵌挿する。
この採血針は、例えば血管刺通部8aと栓穿刺部
8bとよりなり、該栓穿刺部8bにはゴム製のゴ
ムチツプ又はゴムざや10が被覆されている。つ
いで、採血針8の血管刺通部8aを血管、例えば
静脈に刺通し、さらに減圧採血管1を採血管ホル
ダー9の閉塞部6へ押圧挿入すると、第5図に示
すように採血管8の栓穿刺部8bがルアーアダプ
ター10および栓部材4を穿刺してその先端部が
採血管1の内部空間5に達するので、血管と該内
部空間5とが連通し、該内部空間5内の負圧によ
り血管内の血液は減圧度に相当するだけ採血管1
の内部空間5内に流入する。ついで、採血針8の
血管刺通部8aを血管により外すことにより採血
が終了する。
実施例 1
ポリエチレンテレフタレート製有底チユーブを
濃度2.5%NaCO3溶液中に5分間浸漬(超音波処
理を行なつた)したのち上述のケイ素化合物濃度
12重量%イソプロパノール溶液中に20℃、1分間
浸漬したのち、引き上げ速度16cm/分で引き上げ
た。次いで、70℃で30分間乾燥した。次いで、低
温プラズマ反応装置第3図13中に当該合成樹脂
製チユーブを挿入し、脱気(0.05Torr)し、次
いで、酸素ガスを装てんして約0.3Torr圧力下
で、プラズマ出力電力100W、2分間プラズマ処
理を平行平板電極(50mm×50m平板使用)、距離
約50mmで行なつたところ、このチユーブの片面に
膜厚0.1μmの透明被膜が被着した。この被覆チユ
ーブの酸素および炭酸ガスの透明性を測定するた
めの前記材質のフイルム(膜厚12μm、面積50cm2)
を用いて前記と同様の処理を行なつた。この被覆
フイルムのガス透過性をリツシー社製気体透過測
定装置で測定したところ50.6m/m2・day・
atmおよび204ml/m2・day・atmであつた。
以下、実施例のガス透過性は全て別途フイルム
を用意して同様に行なつた。
実施例 2
実施例1と同様な方法において、濃度5重量%
の混合溶液を用い、5分間超音波処理したものに
ついて、70℃で3分間乾燥し、直ちに同様な条件
下にプラズマ処理を行なつたところ、膜厚
0.04μmの透明被膜が形成された。酸素および炭
酸ガスの透過性は、それぞれ78および313ml/
m2・day・atmであつた。
比較例 1
実施例1で使用したポリエチレンテレフタレー
トの無処理物の酸素および炭酸ガスの透過性はそ
れぞれ231および939であつた。
比較例 2
実施例1の方法において超音波処理およびプラ
ズマ処理を行なわずに32重量%の混合溶液中に5
分間浸漬したのち、60℃で180分間乾燥したとこ
ろ、膜厚0.14μmの透明被膜が形成された。酸素
および炭酸ガスの透過性はそれぞれ213および854
であつた。
実施例 3〜12
実施例1と同様に膜厚12μm(ただし、実施例8
〜12においては、膜厚11.5μm)のポリエチレン
テレフタレートフイルム(面積50cm2)を、第1表
に示す処理剤を用いて超音波洗浄したのち、乾燥
処理を施した。ついで、実施例1と同様なケイ素
化合物の混合溶液を第1表に示す濃度で使用し、
該混合溶液中に5分間浸漬して、その間45KHzの
周波数で超音波処理を行なつたのち、70℃で5分
間乾燥を行なつた。ついで、第1表に示す出力数
および時間で0.18Torr条件下においてプラズマ
処理を行なつたところ、第1表の結果が得られ
た。BACKGROUND OF THE INVENTION Technical Field The present invention relates to a method for manufacturing a reduced pressure blood collection tube. More specifically, the present invention relates to a method for producing a reduced pressure blood collection tube that has extremely high gas barrier properties, good transparency, and can maintain a high degree of vacuum over a long period of time. Prior Art The reduced-pressure blood collection method is widely used because it produces samples with less hemolysis and coagulation, less contamination and water evaporation, and simplifies blood collection preparation and equipment management in terms of efficiency. Therefore, the vacuum blood collection tube used in such a vacuum blood collection method consists of a tubular container and a sealing rubber stopper that can be punctured.The pressure inside the sealed container is reduced, and one end of the blood collection needle is inserted into the blood vessel. Thereafter, the other end is punctured into the rubber stopper to communicate with the inside of the sealed container, and blood flows in due to the negative pressure inside the container and blood is collected. Conventionally, such vacuum blood collection tubes have been made of glass tubular containers, which have no gas permeability and good transparency, and butyl rubber, which has low gas permeability and can be punctured, as a sealing stopper. A bottle made of a stopper was used. However, glass tubular containers have the disadvantage that they are easily damaged during storage, transportation, or use, and are heavy. For this reason, we investigated the use of a lightweight and transparent tubular container made of synthetic resin, but since synthetic resin is more or less gas-permeable, it may be difficult to prevent atmospheric gas from surrounding it during long-term storage. It was found that air permeated into the reduced pressure tube, and as a result, the pressure inside the blood collection tube increased, making it impossible to perform blood collection under the specified reduced pressure. For this reason,
If synthetic resin vacuum blood collection tubes were to be used, they would need to be stored in vacuum packaging containers. However, storage in a reduced pressure packaging container has the disadvantage that it is extremely expensive because the packaging container is a reduced pressure container, and that it is extremely time consuming to seal and open the can, resulting in high costs. OBJECT OF THE INVENTION Accordingly, an object of the present invention is to provide a novel method for manufacturing a reduced pressure blood collection tube. Another object of the present invention is to provide a method for manufacturing a reduced pressure blood collection tube that has extremely high gas barrier properties, good transparency, and can maintain a high degree of vacuum over a long period of time. Still another object of the present invention is to provide a method for manufacturing a vacuum blood collection tube made of transparent synthetic resin that is free from breakage and has extremely high gas barrier properties. These objects consist of a tubular member made of synthetic resin with one end closed and the other end open, and a plug member that seals the open end of the tubular member and can be pierced.
In the method for manufacturing a reduced pressure blood collection tube in which an internal space formed by the tubular member and the plug member is maintained in a reduced pressure state, the tubular member is coated with a general formula on at least one of the inner surface and the outer surface. (However, in the formula, m is an integer of 1 to 5.) and a silicon compound having the general formula (However, in the formula, n is an integer from 1 to 5, and
R 1 and R 2 are alkyl or alkoxy groups having 1 to 4 carbon atoms, or hydroxyl groups, but R 1 and R 2 are never hydroxyl groups at the same time. ) is applied and dried,
This is achieved by a method for producing a reduced pressure blood collection tube, which is characterized in that a continuous film with gas barrier properties is formed on the surface of the tubular member by plasma treatment in the presence of a gas containing oxygen atoms. The above objects also include a tubular member made of synthetic resin with one end closed and the other end open, and a plug member that seals the open end of the tubular member and is pierceable,
In the method for manufacturing a reduced pressure blood collection tube in which an internal space formed by the tubular member and the plug member is maintained in a reduced pressure state, silicon having the general formula A mixed solution of the compound and a silicon compound having the general formula is applied by the action of ultrasonic waves, dried, and then plasma-treated in the presence of a gas of oxygen atom-containing molecules to maintain the gas barrier properties of the surface of the tubular member. This is achieved by a method for manufacturing a reduced pressure blood collection tube, which is characterized by forming a coat with a thin film. The above-mentioned objects further include a tubular member made of synthetic resin with one end closed and the other end open, and a plug member that seals the open end of the tubular member and is pierceable, the tubular member and the plug member. In the method for manufacturing a reduced pressure blood collection tube in which an internal space formed by A mixed solution of a silicon compound having the formula and a silicon compound having the general formula is applied, dried, and then plasma treated in the presence of a gas of oxygen atom-containing molecules to maintain continuous gas barrier properties on the surface of the tubular member. This is achieved by a method for manufacturing a vacuum blood collection tube characterized by forming a film. The above objects also include a tubular member made of synthetic resin with one end closed and the other end open, and a plug member that seals the open end of the tubular member and is pierceable,
In a method for manufacturing a reduced pressure blood collection tube in which an internal space formed by the tubular member and the plug member is maintained in a reduced pressure state, after the surface of the tubular member is cleaned, the inner or outer surface of the tubular member is cleaned. A mixed solution of a silicon compound having the general formula and a silicon compound having the general formula is applied to at least one surface by the action of ultrasonic waves, dried, and then plasma-treated in the presence of a gas of oxygen atom-containing molecules. This is achieved by a method for manufacturing a reduced pressure blood collection tube, which is characterized by forming a continuous film with gas barrier properties on the surface of the tubular member. The above objects also include a tubular member made of synthetic resin with one end closed and the other end open, and a plug member that seals the open end of the tubular member and is pierceable,
In the method for manufacturing a reduced pressure blood collection tube in which the internal space formed by the tubular member and the plug member is maintained in a reduced pressure state, the tubular member is sealed with a plug member while the open end is in a reduced pressure state, and the general formula is and a silicon compound having the general formula, and then dried, followed by plasma treatment in the presence of a gas of oxygen atom-containing molecules to form a continuous gas barrier coating on the surface of the tubular member. This is achieved by a method for manufacturing a vacuum blood collection tube characterized by forming the tube. Further, the present invention is a method for producing a reduced pressure blood collection tube in which the reaction is carried out under reduced pressure of 0.01 to 2 Torr.
Furthermore, the present invention is a method for manufacturing a vacuum blood collection tube in which the oxygen content of the oxygen atom-containing molecule gas is 20 to 100%. The present invention is a method for manufacturing a vacuum blood collection tube in which the reaction temperature is 0 to 150°C. Further, the present invention provides that m in the general formula is an integer of 1 to 5,
and n in the general formula is an integer of 1 to 5,
Further, there is a method for producing a vacuum blood collection tube in which R 1 and R 2 are an alkyl group or a hydroxyl group having 1 to 4 carbon atoms. Furthermore, in the present invention, R 1 in the general formula is an alkyl group having 1 to 2 carbon atoms, and R 2
is a method for manufacturing a vacuum blood collection tube in which is a hydroxyl group. The present invention is a method for manufacturing a reduced pressure blood collection tube in which plasma treatment is performed for 0.1 to 60 minutes. Furthermore, the present invention is a method for manufacturing a vacuum blood collection tube in which the synthetic resin is a transparent synthetic resin. The present invention is a method for manufacturing a vacuum blood collection tube in which washing treatment is performed in an alkaline aqueous solution. Further, the present invention is a method for manufacturing a reduced pressure blood collection tube in which cleaning treatment is performed by the action of ultrasonic waves. Specific Structure of the Invention Next, the present invention will be described in detail with reference to the drawings. That is, as shown in FIG. 1, the reduced pressure blood collection tube 1 according to the present invention includes a tubular member 2 made of transparent synthetic resin with one end closed and the other end open, and an open end 3 of the tubular member 2 sealed. Punctureable plug member 4
It consists of the tubular member 2 and the plug member 4.
The space 5 formed by the above is maintained in a reduced pressure state. A transparent coating is then formed on at least one of the inner and outer surfaces of the tubular member 2 made of transparent synthetic resin by reacting the silicon compound of the above general formula with plasma treatment. For example, as shown in FIG. 2A, a transparent coating 2a is formed on the entire outer surface of the tubular member 2 by reacting the silicon compound. Further, as shown in FIG. 2B, the transparent coating 2b is formed on the entire inner surface of the tubular member 2. Furthermore, as shown in FIG. 2C, the transparent coating 2a is formed on the outer surface of the tubular member 2, and the transparent coating 2b is formed on the inner surface thereof. In addition, in FIGS. 2A to 2C,
The thicknesses of the transparent coatings 2a and 2b are exaggerated. The synthetic resin constituting the tubular member used in the present invention is not particularly limited, but transparent synthetic resins are preferred, particularly styrene homopolymers or copolymers, methyl methacrylate homopolymers or copolymers. Coalescing, polycarbonate, etc. are preferred. One of the film-forming components is the general formula (In the formula, m is an integer of 1 to 5, preferably 1 to 2.) The other film-forming component has the general formula It is a silicon compound with In the general formula, n is an integer of 1 to 5, preferably 1 to 2. Furthermore, R 1 and R 2 are an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a phenyl group, or a hydroxyl group, but both are not hydroxyl groups, and in particular R 1 is an alkyl group having 1 to 2 carbon atoms. , R 2 is preferably a hydroxyl group. Therefore, the blending ratio of the silicon compound of the general formula to 1 mole of the silicon compound of the general formula is 0.5 to 3
mol, preferably 1-2. Mixtures of such silicon compounds include methanol, ethanol,
Used as an organic solvent such as isopropanol. Its concentration is between 3 and 50% by weight, preferably between 5 and 50% by weight.
It is 35% by weight. The transparent film is formed as follows. For example, when forming a film on the inner surface of a tubular member, the mixed solution of the silicon compound is placed inside the tubular member, while when forming a film on the outer surface, the opening is tightly plugged or sealed. The tubular member may be immersed so that the outer surface is fully in contact with the liquid, or the entire tubular member may be immersed if a coating is to be formed on the inner and outer surfaces. Furthermore, it is also possible to seal the tubular member with a plug member and immerse the tubular member in a reduced pressure state at the opening. This soaking time is typically 0.01
-10 minutes, preferably 1-5 minutes. In this case, applying ultrasonic waves during dipping will promote the removal of air from the micropores on the surface of the synthetic resin tubular member and the infiltration of solutes into the micropores, thereby improving the gas barrier properties of the resulting film. will improve. Note that the application of the mixed solution is not limited to dipping, but can also be performed by spraying or other methods. The temperature of the immersion treatment is usually 0 to 50°C, preferably
The temperature is 10-30℃. In addition, when conducting under the action of ultrasonic waves, the liquid temperature is 0 to 50 °C, preferably 10 to 30 °C, and the frequency is 20 to 200 KHz, preferably 25 to 50 KHz, for 0.1 to 10 minutes, preferably 0.5 to 5. It takes place for a minute. The tubular member coated with the mixed solution in this manner is dried at a temperature of 50 to 120°C, preferably 60 to 70°C, for 3 to 30 minutes, preferably 5 to 15 minutes, and then subjected to plasma treatment. Ru. The coating film on the surface of the tubular member is plasma-treated to form a transparent film, for example, in the following manner. That is, as shown in FIG. 3, a reactor 13 equipped with a gas inlet 11 and a gas outlet 12 is provided with electrodes 14 and 18.
4 is provided with a tubular member support 15, and the tubular member 2 coated with the mixed solution is supported on the tubular member support 15. For example, the tubular member support 15 is inserted and supported inside the tubular member 2 after the seal is removed.
Note that a cooling device 16a is brought into contact with the electrode 14, and the cooling device 16a is connected to a temperature controller 16b.
A cooling medium such as water is circulated through the cooling medium.
Further, the electrode 14 is connected to a ground 17 . On the other hand, a counter electrode 18 is provided on the opposite side of the electrode 14, and the counter electrode 18 is connected to a high frequency power source 20 via a matching box 19. An oxygen container 2 is connected to the gas inlet 11.
1 and a flow meter 22 are connected. On the other hand, pressure reducing devices such as an oil diffusion pump 24 and an oil rotary pump 25 are connected to the gas outlet 12 via a trap 23. In FIG. 3, reference numeral 26 is a pressure sensor, 27 is a vacuum gauge, and 28 is a thermometer. Then, a pressure reducing device such as an oil rotary pump is operated to exhaust the atmospheric gas in the reactor 13 from the gas exhaust port 12, and while maintaining a predetermined degree of pressure reduction, the oxygen gas is passed from the oxygen container 21 through the flow meter 22. While supplying the gas to the reactor 13 through the gas inlet 11, the electrodes are energized to irradiate the coating surface with plasma for treatment.
In this case, it is desirable to perform the irradiation while, for example, rotating the tubular member body so that the coated surface is uniformly irradiated with the plasma. The pressure inside the reactor during plasma treatment is 0.01~
2 Torr, preferably 0.1 to 0.5 Torr. The electrode 14, which is the base, is cooled by a cooling medium circulated in the cooling device 16a, but the temperature inside the reactor remains at 0.
-150°C, preferably 30-70°C. In addition, the amount of high frequency electrode is 0.05~2W/ cm2 , preferably 0.2~2W/cm2.
It is 1.5W/ cm2 . Furthermore, molecular gases containing oxygen atoms include molecular oxygen, ozone, carbon monoxide, carbon dioxide, nitrogen monoxide, dinitrogen monoxide, and mixed gases of these and other gases (e.g., argon, nitrogen, helium, etc.). However, molecular oxygen (hereinafter referred to as oxygen gas) is preferable, and the oxygen content is
It is 20-100%. Plasma irradiation is for 0.1 to 60 minutes,
Irradiation is preferably performed for 0.3 to 5 minutes. Therefore, it is possible to prevent the temperature of the tubular member, which is the base material, from increasing due to plasma irradiation, which is preferable. The thickness of the transparent film formed under such reaction conditions is 0.01 to 2 μm, preferably 0.03 to 0.2 μm. In the method of the present invention, even better results can be obtained if the tubular member is subjected to a cleaning treatment before applying the silicon compound mixed solution. Washing is performed using water, an aqueous acid solution, an aqueous alkali solution, alcohol, an aqueous surfactant solution, etc., and an aqueous alkaline solution is preferred. Alkaline aqueous solutions include sodium carbonate, potassium carbonate, lithium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, etc.
It is used as an aqueous solution of 0.1 to 20% by weight, preferably 3 to 10% by weight. Its processing time is usually 0.1
-30 minutes, preferably 5-10 minutes, and the liquid temperature is 0-150°C, preferably 10-40°C.
Moreover, even better results can be obtained if the cleaning treatment is performed using ultrasonic waves. Ultrasonication is carried out at a frequency of 20 to 200 KHz, preferably 25 to 50 KHz, for 0.1 to 10 minutes, preferably 0.5 to 5 minutes. It goes without saying that if the cleaning treatment is carried out using ultrasonic waves, very good results can be obtained even with a treatment agent other than an alkaline aqueous solution. Further, the best results can be obtained by performing ultrasonic cleaning using an alkaline aqueous solution. In addition to butyl rubber, the material constituting the plug member 4 may include materials with sufficient elasticity to allow the blood collection needle to be inserted during use and to prevent the gap between the blood collection needle and the plug member from loosening due to the puncture of the blood collection needle, as will be described later. In addition, it is desirable to have low gas permeability. Typical examples thereof include, for example, a blend of a thermoplastic elastomer, polyisobutylene, and partially crosslinked butyl rubber, and preferably a blend of a thermoplastic elastomer, polyisobutylene, and partially crosslinked butyl rubber. The composition of each component in the formulation ranges from 100 to 100 parts by weight of polyisobutylene per 100 parts by weight of thermoplastic elastomer.
200 parts by weight, preferably 120-150 parts by weight,
100 to 200 parts by weight of partially crosslinked butyl rubber, preferably
It is 120-150 parts by weight. Examples of thermoplastic elastomers include ethylene-propylene rubber, polyester elastomer, nylon elastomer, styrene-isopropylene block copolymer, styrene-butadiene block copolymer, polybutadiene, thermoplastic polyurethane, and hydrogenated styrene-butadiene block copolymer. etc. Polyisobutylene has a molecular weight
15,000 to 200,000, preferably 80,000 to 150,000. Partially crosslinked butyl rubber is obtained by partially crosslinking butyl rubber obtained by copolymerizing isobutylene and a small amount (for example, 0.3 to 3.0 mol%) of isoprene. The vacuum blood collection tube thus obtained is subjected to radiation sterilization before or after being sealed, if necessary. The radiation used includes electromagnetic radiation such as gamma rays and electron beams, preferably gamma rays, and the irradiation intensity is 0.1 to 4 Mrad, preferably 0.5
~2.5 Mrad. Specific Effects of the Invention The vacuum blood collection tube having the above configuration is used in the following manner. That is, as shown in FIG. 4, one end is closed and the other end is open, and it is inserted into the screw hole 7 of the closed end 6 from the opening.
This blood collection needle consists of, for example, a blood vessel piercing part 8a and a plug puncturing part 8b, and the plug puncturing part 8b is covered with a rubber tip or sheath 10 made of rubber. Next, when the blood vessel piercing part 8a of the blood collection needle 8 is pierced into a blood vessel, for example, a vein, and the vacuum blood collection tube 1 is further pressed and inserted into the occluded part 6 of the blood collection tube holder 9, the stopper of the blood collection tube 8 is removed as shown in FIG. The puncture part 8b punctures the luer adapter 10 and the stopper member 4, and the tip thereof reaches the internal space 5 of the blood collection tube 1, so that the blood vessel and the internal space 5 communicate with each other, and due to the negative pressure in the internal space 5, The amount of blood in the blood vessel that corresponds to the degree of decompression is collected in blood collection tube 1
into the internal space 5 of. Then, blood collection is completed by removing the blood vessel piercing portion 8a of the blood collection needle 8 from the blood vessel. Example 1 A bottomed tube made of polyethylene terephthalate was immersed in a 2.5% NaCO 3 solution for 5 minutes (with ultrasonication), and then the silicon compound concentration was reduced to the above-mentioned concentration.
After being immersed in a 12% by weight isopropanol solution at 20°C for 1 minute, it was pulled up at a pulling rate of 16 cm/min. Then, it was dried at 70°C for 30 minutes. Next, the synthetic resin tube was inserted into the low-temperature plasma reactor (Fig. 3, 13), degassed (0.05 Torr), and then oxygen gas was charged and the plasma output power was 100 W, 2 at a pressure of about 0.3 Torr. When plasma treatment was performed for 1 minute using parallel plate electrodes (50 mm x 50 m flat plates) at a distance of about 50 mm, a transparent film with a thickness of 0.1 μm was deposited on one side of the tube. A film of the above material (thickness: 12 μm, area: 50 cm 2 ) for measuring the transparency of oxygen and carbon dioxide gas in this coated tube.
The same treatment as above was carried out using . The gas permeability of this coating film was measured using a gas permeation measuring device manufactured by Ritsea and was found to be 50.6m/m 2・day・
atm and 204 ml/m 2 day atm. Hereinafter, all the gas permeability tests in the examples were conducted in the same manner using separate films. Example 2 In a method similar to Example 1, a concentration of 5% by weight
A mixed solution of
A transparent film of 0.04 μm was formed. Oxygen and carbon dioxide permeability are 78 and 313ml/respectively.
It was m 2 day ATM. Comparative Example 1 The oxygen and carbon dioxide gas permeabilities of the untreated polyethylene terephthalate used in Example 1 were 231 and 939, respectively. Comparative Example 2 In the method of Example 1, 5% was added to a 32% by weight mixed solution without ultrasonic treatment and plasma treatment.
After being immersed for a minute and then dried at 60°C for 180 minutes, a transparent film with a thickness of 0.14 μm was formed. Oxygen and carbon dioxide permeability is 213 and 854 respectively
It was hot. Examples 3 to 12 Film thickness 12 μm as in Example 1 (However, Example 8
In Examples 1 to 12, a polyethylene terephthalate film (area: 50 cm 2 ) with a film thickness of 11.5 μm was ultrasonically cleaned using the processing agent shown in Table 1, and then dried. Then, using the same mixed solution of silicon compounds as in Example 1 at the concentrations shown in Table 1,
The sample was immersed in the mixed solution for 5 minutes, subjected to ultrasonication at a frequency of 45 KHz, and then dried at 70°C for 5 minutes. Next, plasma treatment was performed under 0.18 Torr conditions using the output numbers and times shown in Table 1, and the results shown in Table 1 were obtained.
【表】
発明の具体的効果
以上述べたように、本発明は、一端が閉塞しか
つ他端が開口した合成樹脂製の管状部材と、該管
状部材の開口端を密閉しかつ穿刺可能な栓部材と
からなり、該管状部材と該栓部材とにより形成さ
れる内部空間を減圧状態に保持してなる減圧採血
管において、前記管状部材を一般式を有するケ
イ素化合物と一般式を有するケイ素化合物との
混合物を反応させてガスバリヤー性の連続した被
膜を形成してなる減圧管であるから、該減圧採血
管は、ガス透過性、特に酸素透過係数が極めて低
く、このため減圧採血管外から採血管内へのガス
透過は実質的になくなる。このため、長期間にわ
たつて減圧度が保たれ、また、この中に薬剤が収
納させている場合にはその変質もなくなる。しか
も、本発明による減圧採血管は合成樹脂製である
ので、運搬時、貯蔵時あるいは使用時に衝撃を受
けても破損の必配はない。
また、本発明による減圧採血管は放射線滅菌が
可能であるので、放射線滅菌された減圧採血管
は、変形や劣化の恐れがなく、しかも内部に薬剤
が収納されていても変質の恐れはない。
さらに、本発明は、一端が閉塞しかつ他端が開
口した合成樹脂製の管状部材と、該管状部材の開
口端を密閉しかつ穿刺可能な栓部材とからなり、
該管状部材と該栓部材とにより形成される内部空
間を減圧状態に保持してなる減圧採血管の製造方
法において、前記管状部材の内表面または外表面
の少なくとも一方の表面に、一般式を有するケ
イ素化合物と一般式を有するケイ素化合物との
混合溶液を塗布し、乾燥し、ついで酸素原子含有
分子のガスの存在下にプラズマ処理して前記管状
部材の表面にガスバリヤー性の連続した被膜を形
成させることを特徴とする減圧採血管の製造方法
であるからガス透過性、特に酸素透過係数が極め
て低い減圧採血管を容易に製造でき、さらに短時
間かつ比較的低温で減圧採血管の表面にガスバリ
ヤー性の連続被膜が形成できるので、採血管のゆ
がみ、材質中の添加剤の溶出等を起こすことなく
製造できる。
また、本発明はプラズマ法により被膜を形成さ
せているため、被膜が形成される樹脂基材の表面
を粗面化すると同時に被膜が形成されるので、剥
離しにくく、均一かつ薄い被膜が容易に形成され
るものである。
さらに、前記混合溶液の管状部材表面への塗布
を超音波の作用により行なえば、表面の微細孔か
らの脱気と被膜形成成分の該微細孔への侵入とが
促進されるので、生成する被膜は強固となり、ガ
スバリヤー性は向上する。また、前記混合溶液の
塗布前に管状部材の洗浄処理、特にアルカリ洗浄
および/または超音波洗浄を行なえば、ガスバリ
ヤー性はさらに向上する。[Table] Specific Effects of the Invention As described above, the present invention provides a tubular member made of synthetic resin with one end closed and the other end open, and a plug that seals the open end of the tubular member and is pierceable. A reduced pressure blood collection tube comprising a member, and an internal space formed by the tubular member and the plug member is maintained in a reduced pressure state, wherein the tubular member is made of a silicon compound having the general formula and a silicon compound having the general formula. The vacuum blood collection tube is made by reacting a mixture of the above to form a continuous film with gas barrier properties, so the vacuum blood collection tube has an extremely low gas permeability, especially an oxygen permeability coefficient, and therefore cannot be used to collect blood from outside the vacuum blood collection tube. Gas permeation into the tube is virtually eliminated. Therefore, the degree of reduced pressure is maintained over a long period of time, and if a drug is stored therein, there is no deterioration of the quality of the drug. Furthermore, since the vacuum blood collection tube according to the present invention is made of synthetic resin, there is no possibility of damage even if it is subjected to impact during transportation, storage, or use. Further, since the vacuum blood collection tube according to the present invention can be sterilized by radiation, the radiation sterilized vacuum blood collection tube is free from deformation or deterioration, and even if a drug is stored inside, there is no risk of deterioration. Furthermore, the present invention comprises a tubular member made of synthetic resin with one end closed and the other end open, and a plug member that seals the open end of the tubular member and is pierceable,
In the method for manufacturing a reduced pressure blood collection tube in which an internal space formed by the tubular member and the plug member is maintained in a reduced pressure state, at least one of the inner surface and the outer surface of the tubular member has a general formula. A mixed solution of a silicon compound and a silicon compound having the general formula is applied, dried, and then subjected to plasma treatment in the presence of a gas of oxygen atom-containing molecules to form a continuous film with gas barrier properties on the surface of the tubular member. This method of manufacturing vacuum blood collection tubes is characterized by the fact that gas permeability, especially oxygen permeability coefficient, is extremely low. Since a continuous film with barrier properties can be formed, it can be manufactured without causing distortion of the blood collection tube or elution of additives from the material. In addition, since the film is formed by a plasma method in the present invention, the film is formed at the same time as the surface of the resin base material on which the film is formed is roughened, so it is difficult to peel off and a uniform and thin film can be easily formed. It is something that is formed. Furthermore, if the mixed solution is applied to the surface of the tubular member by the action of ultrasonic waves, degassing from the micropores on the surface and penetration of film-forming components into the micropores will be promoted, so that the formed film will be becomes stronger and gas barrier properties are improved. Moreover, if the tubular member is subjected to cleaning treatment, particularly alkaline cleaning and/or ultrasonic cleaning, before application of the mixed solution, gas barrier properties can be further improved.
第1図は本発明方法により製造された減圧採血
管の一例を示す断面図、第2A〜2C図は第1図
に示す減圧採血管の部分拡大断面図、第3図は本
発明で示されるプラズマ処理装置の一例を示す概
略断面図、また第4〜5図は減圧採血管の使用状
態を示す断面図である。
1……減圧採血管、2……管状部材、2a,2
b……透明被膜、3……開口端、4……栓部材。
FIG. 1 is a sectional view showing an example of a vacuum blood collection tube manufactured by the method of the present invention, FIGS. 2A to 2C are partially enlarged sectional views of the vacuum blood collection tube shown in FIG. 1, and FIG. A schematic cross-sectional view showing an example of a plasma processing apparatus, and FIGS. 4 and 5 are cross-sectional views showing how a reduced pressure blood collection tube is used. 1...Reduced pressure blood collection tube, 2...Tubular member, 2a, 2
b...Transparent coating, 3...Open end, 4...Plug member.
Claims (1)
の管状部材と、該管状部材の開口端を密閉しかつ
穿刺可能な栓部材とからなり、該管状部材と該栓
部材とにより形成される内部空間を減圧状態に保
持してなる減圧採血管の製造方法において、前記
管状部材の内表面または外表面の少なくとも一方
の表面に、一般式 (ただし、式中、mは1〜5の整数である。)を
有するケイ素化合物と一般式 (ただし、式中nは1〜5の整数であり、また
R1およびR2は炭素原子数1〜4のアルキルまた
はアルコシキ来または水酸基であるが、R1およ
びR2が同時に水酸基であることはない。)を有す
るケイ素化合物との混合溶液を塗布し、乾燥し、
ついで酸素原子含有分子のガスの存在下にプラズ
マ処理して前記管状部材の表面にガスバリヤー性
の連続した被膜を形成させることを特徴とする減
圧採血管の製造方法。 2 反応が0.01〜2Torrの減圧下に行なわれてな
る特許請求の範囲第1項に記載の減圧採血管の製
造方法。 3 酸素原子含有分子のガス中の酸素含有量が20
〜100%である特許請求の範囲第1項または第2
項に記載の減圧採血管の製造方法。 4 反応温度が0〜150℃である特許請求の範囲
第1項ないし第3項のいずれか一つに記載の減圧
採血管の製造方法。 5 一般式におけるmが1〜5の整数であり、
かつ一般式におけるnが1〜5の整数であり、
またR1およびR2が炭素原子数1〜4のアルキル
基または水酸基である特許請求の範囲第1項に記
載の減圧採血管の製造方法。 6 一般式におけるR1が炭素原子数1〜2の
アルキル基であり、かつR2が水酸基である特許
請求の範囲第5項に記載の減圧採血管の製造方
法。 7 プラズマ処理が0.1〜60分間行なわれてなる
特許請求の範囲第1項に記載の減圧採血管の製造
方法。 8 合成樹脂が透明合成樹脂である特許請求の範
囲第1項ないし第1項のいずれか一つに記載の減
圧採血管の製造方法。 9 一端が閉塞しかつ他端が開口した合成樹脂製
の管状部材と、該管状部材の開口端を密閉しかつ
穿刺可能な栓部材とからなり、該管状部材と該栓
部材とにより形成される内部空間を減圧状態に保
持してなる減圧採血管の製造方法において、前記
管状部材の内表面または外表面の少なくとも一方
の表面に、一般式 (ただし式中、mは1〜5の整数である。)を有
するケイ素化合物と一般式 (ただし、式中nは1〜5の整数であり、また
R1およびR2は炭素原子数1〜4のアルキルまた
はアルコキシ基または水酸基であるが、R1およ
びR2が同時に水酸基であることはない。)を有す
るケイ素化合物との混合溶液を超音波の作用によ
り塗布し、乾燥し、ついで酸素原子含有分子のガ
スの存在下にプラズマ処理して前記管状部材の表
面のガスバリヤー性の連続した被膜を形成させる
ことを特徴とする減圧採血管の製造方法。 10 反応が0.01〜2Torrの減圧下に行なわれて
なる特許請求の範囲第9項に記載の減圧採血管の
製造方法。 11 酸素原子含有分子のガス中の酸素含有率が
20〜100%である特許請求の範囲第9項または第
10項に記載の減圧採血管の製造方法。 12 反応温度が0〜150℃である特許請求の範
囲第9項ないし第11項のいずれか一つに記載の
減圧採血管の製造方法。 13 一般式におけるmが1〜5の整数であ
り、かつ一般式におけるnが1〜5の整数であ
り、またR1およびR2が炭素原子数1〜4のアル
キル基または水酸基である特許請求の範囲第9項
に記載の減圧採血管の製造方法。 14 一般式におけるR1が炭素原子数1〜2
のアルキル基であり、かつR2が水酸基である特
許請求の範囲第13項に記載の減圧採血管の製造
方法。 15 プラズマ処理が0.1〜60分間行なわれてな
る特許請求の範囲第9項に記載の減圧採血管の製
造方法。 16 合成樹脂が透明合成樹脂である特許請求の
範囲第9項ないし第15項のいずれか一つにに記
載の減圧採血管の製造方法。 17 一端が閉塞しかつ他端が開口した合成樹脂
製の管状部材と、該管状部材の開口端を密閉しか
つ穿刺可能な栓部材とからなり、該管状部材と該
栓部材とにより形成される内部空間を減圧状態に
保持してなる減圧採血管の製造方法において、前
記管状部材の表面を洗浄処理したのち、該管状部
材の内表面または外表面の少なくとも一方の表面
に、一般式 (ただし式中、mは1〜5の整数である。)を有
するケイ素化合物と一般式 (ただし、式中nは1〜5の整数であり、また
R1およびR2は炭素原子数1〜4のアルキルまた
はアルコキシ基または水酸基であるが、R1およ
びR2が同時に水酸基であることはない。)を有す
るケイ素化合物との混合溶液を塗布し、乾燥し、
ついで酸素原子含有分子のガスの存在下にプラズ
マ処理して前記管状部材の表面のガスバリヤー性
の連続した被膜を形成させることを特徴とする減
圧採血管の製造方法。 18 反応が0.01〜2Torrの減圧下に行なわれて
なる特許請求の範囲第17項に記載の減圧採血管
の製造方法。 19 酸素原子含有分子のガス中の酸素含有率が
20〜100%である特許請求の範囲第17項または
第18項に記載の減圧採血管の製造方法。 20 反応温度が0〜150℃である特許請求の範
囲第17項ないし第19項にのいずれか一つに記
載の減圧採血管の製造方法。 21 一般式におけるmが1〜5の整数であ
り、かつ一般式におけるnが1〜5の整数であ
り、またR1およびR2が炭素原子数1〜4のアル
キル基または水酸基である特許請求の範囲第22
項に記載の減圧採血管の製造方法。 22 一般式におけるR1が炭素原子数1〜2
のアルキル基であり、かつR2が水酸基である特
許請求の範囲第21項に記載の減圧採血管の製造
方法。 23 プラズマ処理が0.1〜60分間行なわれてな
る特許請求の範囲第17項に記載の減圧採血管の
製造方法。 24 合成樹脂が透明合成樹脂である特許請求の
範囲第17項ないし第23項のいずれか一つにに
記載の減圧採血管の製造方法。 25 洗浄処理はアルカリ水溶液中で行なわれる
特許請求の範囲第17項ないし第24項のいずれ
か一つに記載の減圧採血管の製造方法。 26 洗浄処理は超音波の作用により行なわれる
特許請求の範囲第25項に記載の減圧採血管の製
造方法。 27 一端が閉塞しかつ他端が開口した合成樹脂
製の管状部材と、該管状部材の開口端を密閉しか
つ穿刺可能な栓部材とからなり、該管状部材と該
栓部材とにより形成される内部空間を減圧状態に
保持してなる減圧採血管の製造方法において、前
記管状部材の表面を洗浄処理したのち、該管状部
材の内表面または外表面の少なくとも一方の表面
に、一般式 (ただし式中、mは1〜5の整数である。)を有
するケイ素化合物と一般式 (ただし、式中nは1〜5の整数であり、また
R1およびR2は炭素原子数1〜4のアルキルまた
はアルコキシ基または水酸基であるが、R1およ
びR2が同時に水酸基であることはない。)を有す
るケイ素化合物との混合溶液を超音波の作用によ
り塗布し、乾燥し、ついで酸素原子含有分子のガ
スの存在下にプラズマ処理して前記管状部材の表
面のガスバリヤー性の連続した被膜を形成させる
ことを特徴とする減圧採血管の製造方法。 28 反応が0.01〜2Torrの減圧下に行なわれて
なる特許請求の範囲第27項に記載の減圧採血管
の製造方法。 29 酸素原子含有分子のガス中の酸素含有率が
20〜100%である特許請求の範囲第27項または
第28項に記載の減圧採血管の製造方法。 30 反応温度が0〜150℃である特許請求の範
囲第27項ないし第29項のいずれか一つに記載
の減圧採血管の製造方法。 31 一般式におけるmが1〜5の整数であ
り、かつ一般式におけるnが1〜5の整数であ
り、またR1およびR2が炭素原子数1〜4のアル
キル基または水酸基である特許請求の範囲第27
項に記載の減圧採血管の製造方法。 32 一般式におけるR1が炭素原子数1〜2
のアルキル基であり、かつR2が水酸基である特
許請求の範囲第31項に記載の減圧採血管の製造
方法。 33 プラズマ処理が0.1〜60分間行なわれてな
る特許請求の範囲第27項に記載の減圧採血管の
製造方法。 34 合成樹脂が透明合成樹脂である特許請求の
範囲第27項ないし第33項のいずれか一つに記
載の減圧採血管の製造方法。 35 洗浄処理はアルカリ水溶液中で行なわれる
特許請求の範囲第21項ないし第34項のいずれ
か一つに記載の減圧採血管の製造方法。 36 洗浄処理は超音波の作用により行なわれる
特許請求の範囲第35項に記載の減圧採血管の製
造方法。 37 一端が閉塞しかつ他端が開口した合成樹脂
製の管状部材と、該管状部材の開口端を密閉しか
つ穿刺可能な栓部材とからなり、該管状部材と該
栓部材とにより形成される内部空間を減圧状態に
保持してなる減圧採血管の製造方法において、前
記開口端を減圧状態において管状部材を栓部材に
より密閉し、一般式 (ただし式中、mは1〜5の整数である。)を有
するケイ素化合物と一般式 (ただし、式中nは1〜5の整数であり、また
R1およびR2は炭素原子数1〜4のアルキルまた
はアルコキシ基または水酸基であるが、R1およ
びR2が同時に水酸基であることはない。)を有す
るケイ素化合物との混合溶液中に浸漬し、乾燥
し、ついで酸素原子含有分子のガスの存在下にプ
ラズマ処理して前記管状部材の表面のガスバリヤ
ー性の連続した被膜を形成させることを特徴とす
る減圧採血管の製造方法。[Scope of Claims] 1. Consisting of a tubular member made of synthetic resin with one end closed and the other end open, and a plug member that seals the open end of the tubular member and is pierceable, the tubular member and the plug In the method for manufacturing a reduced pressure blood collection tube in which the internal space formed by the tubular member is maintained in a reduced pressure state, at least one of the inner surface and the outer surface of the tubular member has a general formula (However, in the formula, m is an integer of 1 to 5.) and a silicon compound having the general formula (However, in the formula, n is an integer from 1 to 5, and
R 1 and R 2 are alkyl or alkoxy groups having 1 to 4 carbon atoms, or hydroxyl groups, but R 1 and R 2 are never hydroxyl groups at the same time. ) is applied and dried,
A method for manufacturing a reduced pressure blood collection tube, which comprises: then performing plasma treatment in the presence of a gas containing oxygen atoms to form a continuous film with gas barrier properties on the surface of the tubular member. 2. The method for manufacturing a reduced pressure blood collection tube according to claim 1, wherein the reaction is carried out under reduced pressure of 0.01 to 2 Torr. 3 The oxygen content in the gas of oxygen atom-containing molecules is 20
~100% of claim 1 or 2
The method for manufacturing the reduced pressure blood collection tube described in 2. 4. The method for manufacturing a vacuum blood collection tube according to any one of claims 1 to 3, wherein the reaction temperature is 0 to 150°C. 5 m in the general formula is an integer of 1 to 5,
and n in the general formula is an integer of 1 to 5,
The method for producing a vacuum blood collection tube according to claim 1, wherein R 1 and R 2 are an alkyl group or a hydroxyl group having 1 to 4 carbon atoms. 6. The method for producing a vacuum blood collection tube according to claim 5, wherein R 1 in the general formula is an alkyl group having 1 to 2 carbon atoms, and R 2 is a hydroxyl group. 7. The method for manufacturing a vacuum blood collection tube according to claim 1, wherein the plasma treatment is performed for 0.1 to 60 minutes. 8. The method for manufacturing a vacuum blood collection tube according to any one of claims 1 to 1, wherein the synthetic resin is a transparent synthetic resin. 9 Consists of a tubular member made of synthetic resin with one end closed and the other end open, and a plug member that seals the open end of the tubular member and can be pierced, and is formed by the tubular member and the plug member. In the method for manufacturing a reduced pressure blood collection tube in which the internal space is maintained in a reduced pressure state, at least one of the inner surface and the outer surface of the tubular member has a general formula (However, in the formula, m is an integer of 1 to 5.) and a silicon compound having the general formula (However, in the formula, n is an integer from 1 to 5, and
R 1 and R 2 are alkyl or alkoxy groups having 1 to 4 carbon atoms, or hydroxyl groups, but R 1 and R 2 are never hydroxyl groups at the same time. ) is applied by the action of ultrasonic waves, dried, and then plasma treated in the presence of a gas containing oxygen atoms to form a continuous film with gas barrier properties on the surface of the tubular member. 1. A method for manufacturing a reduced pressure blood collection tube, which comprises forming a vacuum blood collection tube. 10. The method for producing a reduced pressure blood collection tube according to claim 9, wherein the reaction is carried out under reduced pressure of 0.01 to 2 Torr. 11 The oxygen content of oxygen atom-containing molecules in the gas is
11. The method for manufacturing a reduced pressure blood collection tube according to claim 9 or 10, which is 20 to 100%. 12. The method for manufacturing a vacuum blood collection tube according to any one of claims 9 to 11, wherein the reaction temperature is 0 to 150°C. 13 A claim in which m in the general formula is an integer of 1 to 5, n in the general formula is an integer of 1 to 5, and R 1 and R 2 are an alkyl group or a hydroxyl group having 1 to 4 carbon atoms. A method for manufacturing a vacuum blood collection tube according to item 9. 14 R 1 in the general formula has 1 to 2 carbon atoms
The method for producing a reduced pressure blood collection tube according to claim 13, wherein R 2 is an alkyl group and R 2 is a hydroxyl group. 15. The method for manufacturing a vacuum blood collection tube according to claim 9, wherein the plasma treatment is performed for 0.1 to 60 minutes. 16. The method for manufacturing a vacuum blood collection tube according to any one of claims 9 to 15, wherein the synthetic resin is a transparent synthetic resin. 17 Consists of a tubular member made of synthetic resin with one end closed and the other end open, and a plug member that seals the open end of the tubular member and can be pierced, and is formed by the tubular member and the plug member. In the method for manufacturing a reduced pressure blood collection tube in which the internal space is maintained in a reduced pressure state, after the surface of the tubular member is washed, a general formula is applied to at least one of the inner surface and the outer surface of the tubular member. (However, in the formula, m is an integer of 1 to 5.) and a silicon compound having the general formula (However, in the formula, n is an integer from 1 to 5, and
R 1 and R 2 are alkyl or alkoxy groups having 1 to 4 carbon atoms, or hydroxyl groups, but R 1 and R 2 are never hydroxyl groups at the same time. ) is applied and dried,
A method for producing a reduced pressure blood collection tube, which comprises then performing plasma treatment in the presence of a gas containing oxygen atoms to form a continuous film with gas barrier properties on the surface of the tubular member. 18. The method for producing a reduced pressure blood collection tube according to claim 17, wherein the reaction is carried out under reduced pressure of 0.01 to 2 Torr. 19 The oxygen content of oxygen atom-containing molecules in the gas is
The method for manufacturing a reduced pressure blood collection tube according to claim 17 or 18, wherein the rate is 20 to 100%. 20. The method for manufacturing a vacuum blood collection tube according to any one of claims 17 to 19, wherein the reaction temperature is 0 to 150°C. 21 A claim in which m in the general formula is an integer of 1 to 5, n in the general formula is an integer of 1 to 5, and R 1 and R 2 are an alkyl group or a hydroxyl group having 1 to 4 carbon atoms. range 22nd
The method for manufacturing the reduced pressure blood collection tube described in 2. 22 R 1 in the general formula has 1 to 2 carbon atoms
22. The method for producing a reduced pressure blood collection tube according to claim 21, wherein R 2 is an alkyl group and R 2 is a hydroxyl group. 23. The method for manufacturing a vacuum blood collection tube according to claim 17, wherein the plasma treatment is performed for 0.1 to 60 minutes. 24. The method for manufacturing a vacuum blood collection tube according to any one of claims 17 to 23, wherein the synthetic resin is a transparent synthetic resin. 25. The method for manufacturing a vacuum blood collection tube according to any one of claims 17 to 24, wherein the washing treatment is performed in an alkaline aqueous solution. 26. The method for manufacturing a vacuum blood collection tube according to claim 25, wherein the cleaning treatment is performed by the action of ultrasonic waves. 27 Consists of a tubular member made of synthetic resin with one end closed and the other end open, and a plug member that seals the open end of the tubular member and can be pierced, and is formed by the tubular member and the plug member. In the method for manufacturing a reduced pressure blood collection tube in which the internal space is maintained in a reduced pressure state, after the surface of the tubular member is washed, a general formula is applied to at least one of the inner surface and the outer surface of the tubular member. (However, in the formula, m is an integer of 1 to 5.) and a silicon compound having the general formula (However, in the formula, n is an integer from 1 to 5, and
R 1 and R 2 are alkyl or alkoxy groups having 1 to 4 carbon atoms, or hydroxyl groups, but R 1 and R 2 are never hydroxyl groups at the same time. ) is applied by the action of ultrasonic waves, dried, and then plasma treated in the presence of a gas containing oxygen atoms to form a continuous film with gas barrier properties on the surface of the tubular member. 1. A method for manufacturing a reduced pressure blood collection tube, which comprises forming a vacuum blood collection tube. 28. The method for producing a reduced pressure blood collection tube according to claim 27, wherein the reaction is carried out under reduced pressure of 0.01 to 2 Torr. 29 The oxygen content of oxygen atom-containing molecules in the gas is
The method for manufacturing a reduced pressure blood collection tube according to claim 27 or 28, which is 20 to 100%. 30. The method for manufacturing a vacuum blood collection tube according to any one of claims 27 to 29, wherein the reaction temperature is 0 to 150°C. 31 A claim in which m in the general formula is an integer of 1 to 5, n in the general formula is an integer of 1 to 5, and R 1 and R 2 are an alkyl group or a hydroxyl group having 1 to 4 carbon atoms. range 27th
The method for manufacturing the reduced pressure blood collection tube described in 2. 32 R 1 in the general formula has 1 to 2 carbon atoms
32. The method for producing a reduced pressure blood collection tube according to claim 31, wherein R 2 is an alkyl group and R 2 is a hydroxyl group. 33. The method for manufacturing a vacuum blood collection tube according to claim 27, wherein the plasma treatment is performed for 0.1 to 60 minutes. 34. The method for manufacturing a vacuum blood collection tube according to any one of claims 27 to 33, wherein the synthetic resin is a transparent synthetic resin. 35. The method for manufacturing a vacuum blood collection tube according to any one of claims 21 to 34, wherein the washing treatment is performed in an alkaline aqueous solution. 36. The method for manufacturing a vacuum blood collection tube according to claim 35, wherein the cleaning treatment is performed by the action of ultrasonic waves. 37 Consists of a tubular member made of synthetic resin with one end closed and the other end open, and a plug member that seals the open end of the tubular member and can be pierced, and is formed by the tubular member and the plug member. In a method for manufacturing a reduced pressure blood collection tube in which the internal space is maintained in a reduced pressure state, the tubular member is sealed with a plug member while the open end is in a reduced pressure state, and the general formula (However, in the formula, m is an integer of 1 to 5.) and a silicon compound having the general formula (However, in the formula, n is an integer from 1 to 5, and
R 1 and R 2 are alkyl or alkoxy groups having 1 to 4 carbon atoms, or hydroxyl groups, but R 1 and R 2 are never hydroxyl groups at the same time. ), dried, and then subjected to plasma treatment in the presence of a gas of oxygen atom-containing molecules to form a continuous film with gas barrier properties on the surface of the tubular member. A method for manufacturing a characterized vacuum blood collection tube.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59092934A JPS60236630A (en) | 1984-05-11 | 1984-05-11 | Vacuum blood sampling tube and its production |
EP19850105778 EP0164583B1 (en) | 1984-05-11 | 1985-05-10 | Method for manufacture a container made of synthetic resin |
DE8585105778T DE3584188D1 (en) | 1984-05-11 | 1985-05-10 | METHOD FOR PRODUCING A SYNTETIC RESIN CONTAINER. |
US07/018,051 US4735832A (en) | 1984-05-11 | 1987-02-24 | Container made of synthetic resin and method for manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59092934A JPS60236630A (en) | 1984-05-11 | 1984-05-11 | Vacuum blood sampling tube and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60236630A JPS60236630A (en) | 1985-11-25 |
JPH0245895B2 true JPH0245895B2 (en) | 1990-10-12 |
Family
ID=14068309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59092934A Granted JPS60236630A (en) | 1984-05-11 | 1984-05-11 | Vacuum blood sampling tube and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60236630A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4967763A (en) * | 1989-03-13 | 1990-11-06 | Becton, Dickinson And Company | Platelet stable blood collection assembly |
US5510155A (en) * | 1994-09-06 | 1996-04-23 | Becton, Dickinson And Company | Method to reduce gas transmission |
US9428287B2 (en) * | 2012-10-31 | 2016-08-30 | BIOMéRIEUX, INC. | Methods of fabricating test sample containers by applying barrier coatings after sealed container sterilization |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS525947A (en) * | 1975-07-02 | 1977-01-18 | Toshiba Corp | Pipe burst detecting method |
-
1984
- 1984-05-11 JP JP59092934A patent/JPS60236630A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS525947A (en) * | 1975-07-02 | 1977-01-18 | Toshiba Corp | Pipe burst detecting method |
Also Published As
Publication number | Publication date |
---|---|
JPS60236630A (en) | 1985-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0164583B1 (en) | Method for manufacture a container made of synthetic resin | |
EP2251455B1 (en) | PECVD coating using an organosilicon precursor | |
US4885077A (en) | Composite membrane, method for its preparation and electrolyte sensor including same | |
DE69714798T2 (en) | Blutentnahmröhrchen | |
DE69705557T2 (en) | Blood Collection tubes | |
RU2561759C2 (en) | Methods of inspection of gas emission vessels | |
EP1199104B1 (en) | Medical article having blood-contacting surface | |
Stamm | Density of wood substance, adsorption by wood, and permeability of wood | |
US5069926A (en) | Method for modifying the surface of a polymer article | |
Sheu et al. | Immobilization of polyethylene oxide surfactants for non-fouling biomaterial surfaces using an argon glow discharge treatment | |
JP2773231B2 (en) | Leak test method for hydrophobic hollow fiber type porous membrane | |
JPH0892397A (en) | Plastic article with lowered gas permeability and method of lowering gas permeability of plastic article | |
JPH0245895B2 (en) | ||
JP2003310720A (en) | Plasma sterilization apparatus | |
WO2001087359A1 (en) | Method for manufacturing sealing tool sterilized with gaseous hydrogen peroxide | |
Ward et al. | On the relation between platelet adhesion and the roughness of a synthetic biomaterial | |
US7252856B2 (en) | Blood gas syringe having improved blood barrier | |
Kravets et al. | Production and properties of polypropylene track membranes | |
JPS60236651A (en) | Drug container | |
Karakelle et al. | Membranes for biomedical applications: utilization of plasma polymerization for dimensionally stable hydrophilic membranes | |
JPS60240647A (en) | Vessel made of synthetic resin and manufacture thereof | |
JPH0561934B2 (en) | ||
JPS60225540A (en) | Vacuum blood sampler and its production | |
JP4203597B2 (en) | Blood filter | |
CN215114999U (en) | Device for manufacturing aseptic package tightness detection positive reference sample |