JPH0245737A - Transmissivity measuring instrument - Google Patents

Transmissivity measuring instrument

Info

Publication number
JPH0245737A
JPH0245737A JP19652288A JP19652288A JPH0245737A JP H0245737 A JPH0245737 A JP H0245737A JP 19652288 A JP19652288 A JP 19652288A JP 19652288 A JP19652288 A JP 19652288A JP H0245737 A JPH0245737 A JP H0245737A
Authority
JP
Japan
Prior art keywords
lens
light
transparent glass
optical fiber
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19652288A
Other languages
Japanese (ja)
Inventor
Yasuhito Okawa
大川 康仁
Shuichiro Kishi
岸 修一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19652288A priority Critical patent/JPH0245737A/en
Publication of JPH0245737A publication Critical patent/JPH0245737A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the size of the instrument by constituting so as to measure the transmissivity of gas at the part sandwiched between a couple of transparent glass plates from the ratio of the quantities of reflected light and transmitted light. CONSTITUTION:When a reflecting mirror 31 is positioned on the optical axis of parallel luminous flux generated by a light emitting element 1, the parallel luminous flux from the element 1 is reflected by the mirror 31, passed through a lens 22 and a 2nd optical fiber, and converted by a photoelectric converting element 72 into an electric signal VR. Then when the mirror 31 is put off the optical axis of the parallel luminous flux from the element 1, the parallel luminous flux from the element 1 is transmitted through transparent glass 51 and 52, passed through a lens 23 and a 1st optical fiber, and converted by a photoelectric converting element 71 into an electric signal VS. Here, the signal VS varies in transmission quantity with the transparency of the gas at the part sandwiched between the glass plates 51 and 52. The transmissivity of the gas is therefore measured from the relative value between the signals VR and VS and the instrument is reduced in size.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、気体中の透過率を測定する装置に関する。[Detailed description of the invention] Industrial applications The present invention relates to an apparatus for measuring permeability in gas.

従来の技術 トンネル内においては、排気ガスや塵あいなどによって
視界が悪くなるために、空気中の透過率を測定して、透
過率が規定値を下回った場合に通風して換気をする。
Conventional technology Inside a tunnel, visibility is poor due to exhaust gas and dust, so the transmittance in the air is measured and if the transmittance falls below a specified value, ventilation is provided by ventilating the tunnel.

透過率を測定する装置としては、例えば、第5図に示す
ような測定装置を用いている。構成の大略は密閉ケース
91に収容した投光部と、密閉ケース92に収容した受
光部と、光スィッチ11から成る。投光部は光源11と
、光源11の発光出力を平行光束にするレンズ25と、
平行光束の一部を集光して第1の光ファイバに入射結合
するレンズ27と、平行光束を遮閉する光路遮断板81
と、透明ガラス板54と、防塵フード101から成る。
As a device for measuring transmittance, for example, a measuring device as shown in FIG. 5 is used. The general structure consists of a light projecting section housed in a sealed case 91, a light receiving section housed in a sealed case 92, and an optical switch 11. The light projecting unit includes a light source 11, a lens 25 that converts the light emission output of the light source 11 into a parallel light beam,
A lens 27 that condenses a part of the parallel light beam and couples it into the first optical fiber, and an optical path blocking plate 81 that blocks the parallel light beam.
, a transparent glass plate 54 , and a dustproof hood 101 .

光スィッチ11は第1の光ファイバの出射光をシャッタ
ー111によって通過または遮断して、通過した光を再
び第2の光フアイバ入射結合する。受光部は防塵フード
102と、透明ガラス板54と、光路遮断板82と、平
行光束を集束させるレンズ26と、第2の光ファイバの
出射光を平行光束にするレンズ28と、レンズ26の集
束位置に設けた光電変換素子7から成る。
The optical switch 11 allows the light emitted from the first optical fiber to pass through or is blocked by the shutter 111, and couples the passed light into the second optical fiber again. The light receiving section includes a dustproof hood 102, a transparent glass plate 54, an optical path blocking plate 82, a lens 26 that converges a parallel light beam, a lens 28 that converts the light emitted from the second optical fiber into a parallel light beam, and a convergence member of the lens 26. It consists of a photoelectric conversion element 7 provided at a certain position.

次に、この測定装置の動作について述べる。光源11を
発光させて、光遮断板81と82をそれぞれ破線の位置
に移動させて光を遮閉させておき、同時に光スィッチ1
1のシャッター111を破線の位置に移動させておく。
Next, the operation of this measuring device will be described. The light source 11 is made to emit light, the light shielding plates 81 and 82 are moved to the positions indicated by the broken lines to block the light, and at the same time the light switch 1 is turned on.
The shutter 111 of No. 1 is moved to the position indicated by the broken line.

この状態ではレンズ25によって平行光束にされた光の
一部がレンズ27を介してレンズ28に出射されてレン
ズ26に入射され、光電変換素子7に導かれる。この時
の光電変換値を基準値とする。
In this state, a part of the light that has been made into a parallel beam by the lens 25 is output to the lens 28 via the lens 27, enters the lens 26, and is guided to the photoelectric conversion element 7. The photoelectric conversion value at this time is taken as the reference value.

次に、光遮断板81と82をそれぞれ実線の位置に移動
させて光を通過させておき、同時に光スィッチ11のシ
ャッター111を実線の位置に移動させる。この状態で
はレンズ25によって平行光束にされた光は透明ガラス
板を透過して外部に出力され、空気中を伝搬して受光部
に到達する。
Next, the light blocking plates 81 and 82 are moved to the positions indicated by solid lines to allow light to pass therethrough, and at the same time, the shutter 111 of the optical switch 11 is moved to the position indicated by solid lines. In this state, the light that is made into a parallel beam by the lens 25 passes through the transparent glass plate, is output to the outside, propagates through the air, and reaches the light receiving section.

空気が澄んでいる時の光電変換値を第1の測定値とする
Let the photoelectric conversion value when the air is clear be the first measurement value.

ここで、基準値と第1の測定値との相対関係を求めてお
き、これを測定条件の最適値とする。
Here, the relative relationship between the reference value and the first measured value is determined, and this is determined as the optimum value of the measurement conditions.

空気中に排気ガスや塵あいなどが充滴すると、空気中を
伝搬する光はその微粒子に衝突して散乱するために受光
部へ到達する光量は減衰して、光電変換値は小さくなる
。これを第2の測定値として基準値との相対関係を求め
、設定条件を下回ると通風して換気をする。
When the air is filled with droplets of exhaust gas or dust particles, the light propagating through the air collides with the particles and is scattered, so the amount of light reaching the light receiving section is attenuated and the photoelectric conversion value becomes small. This is used as the second measurement value to determine the relative relationship with the reference value, and if it falls below the set condition, ventilation is performed.

発明が解決しようとする課題 この種の測定装置は、投光部と受光部を数100メ一ト
ル隔てて設置することから投光部と受光部の光軸調整が
非常に困難であるとともに、設置場所としては見通しの
よい直線部に限られている。
Problems to be Solved by the Invention In this type of measuring device, the light emitting part and the light receiving part are installed separated by several hundred meters, so it is very difficult to adjust the optical axis of the light emitting part and the light receiving part. Installation locations are limited to straight areas with good visibility.

本発明は、上記の問題点に鑑みて、光軸調整が極めて簡
単で、小型構成の測定装置を提供することを目的とした
ものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a measuring device with a compact configuration and an extremely simple optical axis adjustment.

課題を解決するための手段 (第1の手段) 本発明は、上記問題点を解決するために、発光出力を平
行光束にする手段と、平行光束を集束して第1の光ファ
イバに結合する手段と、平行光束の光軸上に可動部材に
固定した反射ミラーを光軸に対して斜めに挿入または離
脱する手段と、反射ミラーの挿入に因って得た反射光を
集束して第2の光ファイバに結合する手段と、平行光束
の光軸上に設けた1対の透明ガラス板とを密閉ケース内
に収容し、1対の透明ガラス板で挟む部分のみが露出す
るように構成し、反射ミラーが光軸上に位置する時に基
準光量を、反射ミラーが光軸上に無い時に気体中の透過
光量をそれぞれ得て2本の光ファイバによって伝送し、
基準光量と透過光量の比でもって気体中の透過率を測定
するものである。
Means for Solving the Problems (First Means) In order to solve the above problems, the present invention provides a means for converting the light emission output into a parallel light beam, and a means for converging the parallel light beam and coupling it to a first optical fiber. means for inserting or removing a reflecting mirror fixed to a movable member on the optical axis of the parallel light flux obliquely to the optical axis; A means for coupling to an optical fiber and a pair of transparent glass plates provided on the optical axis of the parallel light beam are housed in a sealed case, and only the portion sandwiched between the pair of transparent glass plates is exposed. , when the reflecting mirror is located on the optical axis, the reference light quantity is obtained, and when the reflecting mirror is not on the optical axis, the transmitted light quantity in the gas is obtained, and transmitted through two optical fibers,
The transmittance in gas is measured by the ratio between the reference light amount and the transmitted light amount.

(第2の手段) 本発明は、上記問題点を解決するために、発光出力を平
行光束にする手段と、平行光束を集束して第1の光ファ
イバに結合する手段と、平行光束の光軸上に挿入固定し
た分岐フィルタと、平行光束の光軸上に可動部材に固定
した反射ミラーを光軸に対して斜めに挿入または離脱す
るする手段と、分岐フィルタの反射光を1対のレンズと
第2の光ファイバを用いて反射ミラーへ導く手段と、平
行光束の光軸上に設けた1対の透明ガラス板とを密閉ケ
ース内に収容し、1対の透明ガラス板で挟む部分のみが
露出するように構成し、反射ミラーが光軸上に位置する
時に基準光量を、反射ミラーが光軸上に無い時に気体中
の透過光量をそれぞれ得て1本の光ファイバによって伝
送し、基準光量と透過光量の比でもって気体中の透過率
を測定するものである。
(Second Means) In order to solve the above-mentioned problems, the present invention provides a means for converting the light emission output into a parallel light beam, a means for converging the parallel light beam and coupling it to a first optical fiber, and a means for converting the light emission output into a parallel light beam. A branching filter inserted and fixed on the axis, a means for inserting or removing a reflecting mirror fixed to a movable member on the optical axis of the parallel light beam obliquely to the optical axis, and a pair of lenses that collect the reflected light from the branching filter. A means for guiding the parallel light beam to a reflecting mirror using a second optical fiber, and a pair of transparent glass plates provided on the optical axis of the parallel light beam are housed in a sealed case, and only the portion sandwiched between the pair of transparent glass plates is housed. When the reflecting mirror is located on the optical axis, the reference light amount is obtained, and when the reflecting mirror is not on the optical axis, the transmitted light amount in the gas is obtained and transmitted through one optical fiber, and the reference light amount is obtained. The transmittance in gas is measured by the ratio of the amount of light to the amount of transmitted light.

(第3の手段) 本発明は、上記問題点を解決するために、発光出力を平
行光束にする手段と、平行光束を集束して光ファイバに
結合する手段と、平行光束の光軸上に挿入固定した分岐
フィルタと、平行光束の光軸上に可動部材に固定した第
1の反射ミラーを光軸に対して斜めに挿入するまたは離
脱するする手段と、分岐フィルタの反射光を第2゛およ
び第3の反射ミラーを用いて第1の反射ミラーへ導(手
段と、平行光束の光軸上に設けた1対の透明ガラス板と
を密閉ケース内に収容し、1対の透明ガラス板で挟む部
分のみが露出するように構成し、第1の反射ミラーが光
軸上に位置する時に基準光量を、第1の反射ミラーが光
軸上に無い時に気体中の透過光量をそれぞれ得て1本の
光ファイバによって伝送し、基準光量と透過光量の比で
もって気体中の透過率を測定するものである。
(Third Means) In order to solve the above-mentioned problems, the present invention provides a means for converting the light emission output into a parallel light beam, a means for converging the parallel light beam and coupling it to an optical fiber, and a means for converting the light emission output into a parallel light beam, and a means for converging the parallel light beam and coupling it to an optical fiber. A branching filter inserted and fixed, a means for inserting or removing a first reflection mirror fixed to a movable member on the optical axis of the parallel light beam obliquely to the optical axis, and a means for inserting or removing the first reflection mirror fixed to a movable member on the optical axis of the parallel light beam, and a third reflecting mirror to guide the parallel beam to the first reflecting mirror (the means and a pair of transparent glass plates provided on the optical axis of the parallel light beam are housed in a sealed case, and the pair of transparent glass plates When the first reflecting mirror is located on the optical axis, the reference light amount is obtained, and when the first reflecting mirror is not on the optical axis, the amount of light transmitted through the gas is obtained. It is transmitted through a single optical fiber, and the transmittance in the gas is measured by the ratio of the reference amount of light to the amount of transmitted light.

(第4の手段) 本発明は、上記問題点を解決するために、回転体の円周
上に複数のスリットを設け、このスリットの内側に透明
ガラス板を固定した光学部材を上記第1、第2、第3の
手段の1対の透明ガラス板に代えて配置し、スリットの
位置を変えるように構成するものである。
(Fourth Means) In order to solve the above problems, the present invention provides a plurality of slits on the circumference of a rotating body, and an optical member having a transparent glass plate fixed inside the slits. It is arranged in place of the pair of transparent glass plates of the second and third means, and is configured to change the position of the slit.

作用 上記構成によれば微小光学構成によって、測定精度の高
い装置が実現できる。
Effect: According to the above configuration, an apparatus with high measurement accuracy can be realized by the micro-optical configuration.

実施例 本発明の実施例を図面とともに説明する。Example Embodiments of the present invention will be described with reference to the drawings.

(実施例1) 第1図は本発明の第1の実施例である透過率測定装置の
光学構成を示すブロック図である。
(Example 1) FIG. 1 is a block diagram showing the optical configuration of a transmittance measuring device that is a first example of the present invention.

1は発光素子、21と22と23は例えば集束性ロッド
レンズ、31は可動部材に固定された反射ミラー 51
と52は透明ガラス板、9は密閉ケース、71と72は
充電変換素子である。
1 is a light emitting element; 21, 22, and 23 are, for example, focusing rod lenses; 31 is a reflecting mirror fixed to a movable member; 51
and 52 are transparent glass plates, 9 is a sealed case, and 71 and 72 are charging conversion elements.

反射ミラー31を破線部に移動すると平行光束は反射し
てレンズ22に導かれ、レンズ22で集束して第2の光
ファイバによって伝送され、光電変換素子72で電気信
号VRに変換される。次に、反射ミラー31を実線部に
移動すると平行光束は透明ガラス板51および52を透
過してレンズ23に導かれ、レンズ23で集束して第1
の光ファイバによって伝送され、光電変換素子71で電
気信号Vsに変換される。電気信号Vsは透明ガラス板
51および52で挟まれた部分の気体中の透明度によっ
て透過光量が変化する。したがって、電気信号VRと電
気信号Vsの相対値によって気体中の透過率を測定する
ことができる。
When the reflection mirror 31 is moved to the broken line part, the parallel light beam is reflected and guided to the lens 22, focused by the lens 22, transmitted by the second optical fiber, and converted into an electric signal VR by the photoelectric conversion element 72. Next, when the reflecting mirror 31 is moved to the solid line part, the parallel light beam passes through the transparent glass plates 51 and 52 and is guided to the lens 23, where it is converged and the first
The signal is transmitted through an optical fiber and converted into an electrical signal Vs by a photoelectric conversion element 71. The amount of transmitted light of the electric signal Vs changes depending on the transparency of the gas in the portion sandwiched between the transparent glass plates 51 and 52. Therefore, the transmittance in the gas can be measured based on the relative values of the electrical signal VR and the electrical signal Vs.

(実施例2) 第2図は本発明の第2の実施例である透過率測定装置の
光学構成を示すブロック図である。1は発光素子、21
と22と23と24は例えば集束性ロッドレンズ、4は
分岐フィルタ、32は可動部材に固定された反射ミラー
 51と52は透明ガラス板、9は密閉ケース、7は光
電変換素子である。
(Embodiment 2) FIG. 2 is a block diagram showing the optical configuration of a transmittance measuring device according to a second embodiment of the present invention. 1 is a light emitting element, 21
22, 23, and 24 are, for example, focusing rod lenses, 4 is a branching filter, 32 is a reflecting mirror fixed to a movable member, 51 and 52 are transparent glass plates, 9 is a sealed case, and 7 is a photoelectric conversion element.

反射ミラー32を破線部に移動すると分岐フィルタ4の
反射光がレンズ22に導かれ、レンズ22と第2の光フ
ァイバとレンズ24を介して反射ミラー32で反射して
レンズ23に導かれ、集束して第1の光ファイバで伝送
され、光電変換素子7で電気信号に変換されVRを得る
。次に、反射ミラー32を実線部に移動すると分岐フィ
ルタの透過光は透明ガラス板51および52を透過して
レンズ23に導かれ、レンズ23で集束して第1の光フ
ァイバによって伝送され、光電変換素子7で電気信号に
変換されVsを得る。電気信号Vsは透明ガラス板51
および52で挟まれた部分の気体中の透明度によって透
過光量が変化する。したがって、電気信号VRと電気信
号Vsの相対値によって気体中の透過率を測定すること
ができる。
When the reflection mirror 32 is moved to the broken line part, the reflected light from the branching filter 4 is guided to the lens 22, reflected by the reflection mirror 32 via the lens 22, the second optical fiber, and the lens 24, and guided to the lens 23, where it is focused. The signal is transmitted through the first optical fiber, and converted into an electrical signal by the photoelectric conversion element 7 to obtain VR. Next, when the reflecting mirror 32 is moved to the solid line part, the transmitted light of the branching filter passes through the transparent glass plates 51 and 52, is guided to the lens 23, is focused by the lens 23, is transmitted by the first optical fiber, and is photoelectrically transmitted. The conversion element 7 converts it into an electrical signal to obtain Vs. Electric signal Vs is transmitted through transparent glass plate 51
The amount of transmitted light changes depending on the transparency of the gas in the portion sandwiched between Therefore, the transmittance in the gas can be measured based on the relative values of the electrical signal VR and the electrical signal Vs.

(実施例3) 第3図は本発明の第3の実施例である透過率測定装置の
光学構成を示すブロック図である。
(Embodiment 3) FIG. 3 is a block diagram showing the optical configuration of a transmittance measuring device according to a third embodiment of the present invention.

1は発光素子、21と23は例えば集束性ロッドレンズ
、4は分岐フィルタ、32は可動部材に固定された反射
ミラー 33と34は反射ミラー、51と52は透明ガ
ラス板、9は密閉ケース、7は光電変換素子である。
1 is a light emitting element, 21 and 23 are focusing rod lenses, 4 is a branching filter, 32 is a reflection mirror fixed to a movable member, 33 and 34 are reflection mirrors, 51 and 52 are transparent glass plates, 9 is a sealed case, 7 is a photoelectric conversion element.

反射ミラー32を破線部に移動すると分岐フィルタ4反
射光は反射ミラー33と34および反射ミラー32で反
射してレンズ23に導かれ、集束・して光ファイバで伝
送され、光電変換素子7で電気信号に変換されVRを得
る。次に、反射ミラー32を実線部に移動すると分岐フ
ィルタの透過光は透明ガラス板51および52を透過し
てレンズ23に導かれ、レンズ23で集束しての光ファ
イバによって伝送され、光電変換素子7で電気信号に変
換されVsを得る。電気信号Vsは透明ガラス板51お
よび52で挟まれた部分の気体中の透明度によって透過
光量が変化する。したがって、電気信号vRと電気信号
Vsの相対値によって気体中の透過率を測定することが
できる。
When the reflection mirror 32 is moved to the broken line part, the light reflected by the branching filter 4 is reflected by the reflection mirrors 33 and 34 and the reflection mirror 32, guided to the lens 23, focused, transmitted through an optical fiber, and converted into electricity by the photoelectric conversion element 7. It is converted into a signal to obtain VR. Next, when the reflection mirror 32 is moved to the solid line part, the transmitted light of the branching filter passes through the transparent glass plates 51 and 52, is guided to the lens 23, is focused by the lens 23, is transmitted by the optical fiber, and is transmitted to the photoelectric conversion element. 7, it is converted into an electrical signal to obtain Vs. The amount of transmitted light of the electric signal Vs changes depending on the transparency of the gas in the portion sandwiched between the transparent glass plates 51 and 52. Therefore, the transmittance in the gas can be measured based on the relative values of the electric signal vR and the electric signal Vs.

(実施例4) 第4図は本発明の第1〜第3の実施例において、透明ガ
ラスブロック板を露出しておくと、その表面に排気ガス
や塵あいなどの微粒子が付着して透明度が低下し測定誤
差が生ずることを防ぐためのもので、透明ガラスブロッ
ク板51および52に代る回転ガラスブロック体である
。62はスリット、53は透明ガラス板、61は回転軸
である。
(Embodiment 4) Figure 4 shows the first to third embodiments of the present invention, in which when the transparent glass block plate is exposed, fine particles such as exhaust gas and dust particles adhere to the surface and the transparency deteriorates. This is a rotating glass block body that replaces the transparent glass block plates 51 and 52 to prevent measurement errors from occurring. 62 is a slit, 53 is a transparent glass plate, and 61 is a rotating shaft.

回転制御によってスリット部を定期的に移動させて透明
ガラス板の透明度を維持するためのものである。
This is to maintain the transparency of the transparent glass plate by periodically moving the slit section through rotational control.

発明の効果 本発明によれば、光軸調整が極めて簡単な透過率測定装
置が実現でき、装置の小型化が可能となる。
Effects of the Invention According to the present invention, a transmittance measuring device in which optical axis adjustment is extremely simple can be realized, and the device can be downsized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図はそれぞれ本発明の実施例の透
過率測定装置の構成を示すブロック図、第4図は本発明
の透過率測定装置の透過部に用いる回転ガラスブロック
体の構成を示す構成図、第5図は従来例の構成を示すブ
ロック図である。 1・・・発光素子、11・・・光源、21〜28・・・
レンズ、31〜34・・・反射ミラー 4・・・分岐フ
ィルたー 5・・・透明ガラス板、6・・・回転ガラス
ブロック体、61・・・スリット、7と71と72・・
・光電変換素子、81と82・・・光路遮断板、9と9
1と92・・・密閉ケース、10・・・防塵フード、1
1・・・光スィッチ。 代理人の氏名 弁理士 粟野重孝 ほか1名第 図
1, 2, and 3 are block diagrams showing the configuration of a transmittance measuring device according to an embodiment of the present invention, and FIG. 4 is a rotating glass block body used in the transmitting part of the transmittance measuring device of the present invention. FIG. 5 is a block diagram showing the structure of a conventional example. 1... Light emitting element, 11... Light source, 21-28...
Lenses, 31-34...Reflection mirror 4...Branch filter 5...Transparent glass plate, 6...Rotating glass block body, 61...Slit, 7, 71, and 72...
・Photoelectric conversion elements, 81 and 82... Optical path blocking plates, 9 and 9
1 and 92... sealed case, 10... dustproof hood, 1
1...Light switch. Name of agent: Patent attorney Shigetaka Awano and one other person

Claims (5)

【特許請求の範囲】[Claims] (1)発光素子と、前記発光素子の発光出力を平行光束
にする第1のレンズと、前記第1のレンズの光軸上に位
置し平行光束を集束して第1の光ファイバに入射結合す
る第2のレンズと、前記第1のレンズの出力端に位置し
光軸に対して斜めに挿入することにより光路を変える反
射ミラーと、前記反射ミラーの反射光軸上に位置し平行
光束を集束して第2の光ファイバに入射結合する第3の
レンズと、前記反射ミラーと第2のレンズの間の光軸上
に配置した1対の透明ガラス板と、前記第1および第2
の光ファイバの出射光を電気信号に変換する光電変換素
子によって構成し、反射光量と透過光量の比でもって1
対の透明ガラス板で挟まれた部分の気体中の透過率を測
定することを特徴とする透過率測定装置。
(1) A light emitting element, a first lens that converts the light emitting output of the light emitting element into a parallel light beam, and a first lens located on the optical axis of the first lens to focus the parallel light beam and couple it into a first optical fiber. a second lens located at the output end of the first lens and changing the optical path by being inserted diagonally with respect to the optical axis; a third lens that focuses and couples into the second optical fiber; a pair of transparent glass plates disposed on the optical axis between the reflective mirror and the second lens;
It is composed of a photoelectric conversion element that converts the emitted light of the optical fiber into an electrical signal, and the ratio of the amount of reflected light to the amount of transmitted light is 1.
A transmittance measuring device characterized by measuring transmittance in gas at a portion sandwiched between a pair of transparent glass plates.
(2)発光素子と、前記発光素子の発光出力を平行光束
にする第1のレンズと、前記第1のレンズの光軸上に位
置し平行光束を集束して第1の光ファイバに入射結合す
る第2のレンズと、前記第1のレンズの出力端に位置し
光軸に対して斜めに挿入固定した分岐フィルタと、前記
分岐フィルタの反射光を集束して第2の光ファイバに入
射結合する第3のレンズと、前記第2の光ファイバの出
射光を平行光束にする第4のレンズと、前記第2のレン
ズの入力端に配置され光軸に対して斜めに挿入すること
により第1のレンズの出力光を遮断して第4のレンズの
出力光を前記第2のレンズに導く反射ミラーと、前記第
1の光ファイバの出射光を電気信号に変換する光電変換
素子によって構成し、分岐光量と透過光量の比でもって
1対の透明ガラス板で挟まれた部分の気体の透過率を測
定することを特徴とする透過率測定装置。
(2) a light emitting element, a first lens that converts the light emitting output of the light emitting element into a parallel light beam, and a first lens located on the optical axis of the first lens that focuses the parallel light beam and couples it into a first optical fiber; a branching filter positioned at the output end of the first lens and inserted and fixed obliquely to the optical axis; and a branching filter that focuses reflected light from the branching filter and couples it into a second optical fiber. a third lens that converts the output light of the second optical fiber into a parallel beam; and a fourth lens that is arranged at the input end of the second lens and inserted obliquely to the optical axis. A reflective mirror that blocks the output light of the first lens and guides the output light of the fourth lens to the second lens, and a photoelectric conversion element that converts the output light of the first optical fiber into an electrical signal. A transmittance measuring device characterized in that the transmittance of a gas in a portion sandwiched between a pair of transparent glass plates is measured based on the ratio of the amount of branched light and the amount of transmitted light.
(3)第3および第4のレンズと第2の光ファイバに代
えて、1対の反射ミラーによって分岐フィルターの反射
光を反射ミラーに導くように構成したことを特徴とする
特許請求の範囲第2項記載の透過率測定装置。
(3) Instead of the third and fourth lenses and the second optical fiber, a pair of reflecting mirrors is used to guide the reflected light from the branching filter to the reflecting mirror. Transmittance measuring device according to item 2.
(4)1対の透明ガラス板に挟まれた部分のみが露出す
るように構成したことをを特徴とする特許請求の範囲第
1項、第2項または第3項記載の透過率測定装置。
(4) The transmittance measuring device according to claim 1, 2, or 3, characterized in that it is configured so that only the portion sandwiched between a pair of transparent glass plates is exposed.
(5)1対の透明ガラス板に代えて、回転体の円周上に
設けた複数のスリットと、前記複数のスリットの内側に
取り付けた透明ガラス板を有する光学部材を1対配置し
、この光学部材を遠隔操作により回転するように構成し
、透明ガラス板の鮮明度を維持することを特徴とする特
許請求の範囲第1項、第2項または第3項記載の透過率
測定装置。
(5) Instead of a pair of transparent glass plates, a pair of optical members each having a plurality of slits provided on the circumference of the rotating body and a transparent glass plate attached inside the plurality of slits is arranged; 4. The transmittance measuring device according to claim 1, 2 or 3, wherein the optical member is configured to be rotated by remote control to maintain the clarity of the transparent glass plate.
JP19652288A 1988-08-05 1988-08-05 Transmissivity measuring instrument Pending JPH0245737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19652288A JPH0245737A (en) 1988-08-05 1988-08-05 Transmissivity measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19652288A JPH0245737A (en) 1988-08-05 1988-08-05 Transmissivity measuring instrument

Publications (1)

Publication Number Publication Date
JPH0245737A true JPH0245737A (en) 1990-02-15

Family

ID=16359139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19652288A Pending JPH0245737A (en) 1988-08-05 1988-08-05 Transmissivity measuring instrument

Country Status (1)

Country Link
JP (1) JPH0245737A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518255A (en) * 1999-12-22 2003-06-03 スキャン メステヒニーク ゲゼルシャフト エムベーハー Miniaturized spectrometer
JP2011196727A (en) * 2010-03-17 2011-10-06 Nohmi Bosai Ltd Extinction type smoke sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518255A (en) * 1999-12-22 2003-06-03 スキャン メステヒニーク ゲゼルシャフト エムベーハー Miniaturized spectrometer
JP2011196727A (en) * 2010-03-17 2011-10-06 Nohmi Bosai Ltd Extinction type smoke sensor

Similar Documents

Publication Publication Date Title
US4412720A (en) Optical system coupling a rectangular light source to a circular light receiver
US4447118A (en) Optical information transfer system
EP0183240A2 (en) Surface position sensor
US5760905A (en) Distance measuring apparatus
US5131741A (en) Refractive velocimeter apparatus
JPH0245737A (en) Transmissivity measuring instrument
US4439029A (en) Camera with information transmitting elements
JPH068724B2 (en) Optical detector
US4729655A (en) Device for shaping the angular response of a light meter or the angular emission of a light source
US4726684A (en) Measurement apparatus for optical transmission factor
GB2144557A (en) Optical coupler
JPH0843305A (en) Smoke density measuring device
JPH07280625A (en) Electro-optical level indicator
JPH04175643A (en) Method of measuring air current device for measuring air current
JPH0248960B2 (en)
CN210071649U (en) Quadruple optical path air chamber and gas detection equipment
SU1296834A1 (en) Lightguide transducer of angular position
JPS642888B2 (en)
SU1753259A1 (en) Linear movement optical converter
SU1114909A1 (en) Device for determination of cine-photo camera defocusing (its versions)
JP2005181452A (en) Optical device
JPH11305054A (en) Optical waveguide type signal light monitor device
Glazer Taper Measurement Techniques
JP3884533B2 (en) Fiber optic device, light receiving component, and pattern acquisition device
SU1539711A1 (en) Exposure assembly