JPH0245685B2 - - Google Patents

Info

Publication number
JPH0245685B2
JPH0245685B2 JP57002919A JP291982A JPH0245685B2 JP H0245685 B2 JPH0245685 B2 JP H0245685B2 JP 57002919 A JP57002919 A JP 57002919A JP 291982 A JP291982 A JP 291982A JP H0245685 B2 JPH0245685 B2 JP H0245685B2
Authority
JP
Japan
Prior art keywords
manufacturing
density
component
particle size
dissolution rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57002919A
Other languages
Japanese (ja)
Other versions
JPS57140635A (en
Inventor
Korufuoijiiru Peetaa
Shutadeii Deiitaa
Morugenshuterun Manfureeto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUEAKAUFUSU G FUYUA TEERUEATSUOIGUNITSUSE FUAU EFU TEE MBH
Original Assignee
FUEAKAUFUSU G FUYUA TEERUEATSUOIGUNITSUSE FUAU EFU TEE MBH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUEAKAUFUSU G FUYUA TEERUEATSUOIGUNITSUSE FUAU EFU TEE MBH filed Critical FUEAKAUFUSU G FUYUA TEERUEATSUOIGUNITSUSE FUAU EFU TEE MBH
Publication of JPS57140635A publication Critical patent/JPS57140635A/en
Publication of JPH0245685B2 publication Critical patent/JPH0245685B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0025Adding carbon material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/10Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Metallurgy (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Ceramic Products (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Glanulating (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【発明の詳細な説明】 本発明は高い溶解速度を有し、したがつて高い
炭素歩留りを有する、炭素粉を結合剤とともに圧
縮する加炭剤の製法に関する。 加炭剤は溶鋼および溶鉄の炭素量を上昇するた
め使用される。性質としては高い純度すなわちイ
オウ、水素、チツ素等のような有害同伴物質の低
い含量のほかに高い溶解速度が要求される。 溶解速度は4つのパラメータ: 1 最適の粒度 2 低い灰分量 3 かさ密度の上昇 4 できるだけ高い黒鉛化度または良好な黒鉛化
性によつて改善することができる(A.
Mihajlvoic/B.Marincek:Auflo¨sungkinetik
von techni−schen Graphiten in
Eisenschmelgen、Arch.Eisenhu¨ttenwesen44、
No.7 507ページ以下参照)。 粒度は4〜5mmの粒径が有利なことが明らかに
なつた。高い粉末割合は溶解速度とくに不利に作
用した(B.Marincek:Beurteilung
verschiedener Aufkohlingsmittel、Schweizer
Archiv、1968年3月89ページ以後参照)。 高純度黒鉛の最大溶解速度を不活性ガス雰囲気
中で炭素含量99.9%および粒度4〜5mmの場合に
得られた。この粒度の黒鉛のかさ密度は約800
Kg/m2である。同じ粒度構成の場合かさ密度は浸
漬深さ、したがつて溶鉄と加炭剤の間の接触面積
の大きさの尺度である。それゆえかさ密度の増大
は溶鋼または溶鉄中の加炭剤の溶解速度の上昇に
作用する。 したがつて本発明の目的は公知の比較しうる加
炭剤に比して溶鋼および溶鉄中で高い溶解速度を
有する、かさ密度の高い加炭剤の製法を開発する
ことである。 この目的は本発明により炭素粉を結合剤ととも
に圧縮する加炭剤の製法において、成形体の密度
を上昇するため混合物に粒度2mm未満の密度の高
い成分を添加することによつて解決される。 密度の高い、製鉄および製鋼の際に常用の合金
成分およびスラグを形成しない添加剤としてはそ
のつど製造する鋼の合金成分たとえばFe、Cr、
Ni、W、Co、Mo、Mn、Vまたは銅の金属粉末
を個々にまたは混合物として使用することができ
る。同様たとえばねずみ鋳鉄切粉のような金属切
粉またはスラグを形成しない添加剤たとえばフエ
ロマンガンおよびフエロシリコンの粉末を使用す
ることができる。 炭素粉としては高い炭素量とともに有害な同伴
物質たとえばイオウ、水素、チツ素および灰分を
少量しか含まないすべての常用加炭剤の粉末を使
用することができる。しかしプレミヤムコークス
(premiumkoks)または電気黒鉛のような明らか
な石ぼく構造を有する炭素材料の粉末がとくに有
利である。 結合剤としては常用の結合剤のうち、オキシエ
チルセルロースのほかに、殿粉、ピツチおよび歴
青が適当である。 圧縮は押出成形、ブリケツト化またはペレツト
化によつて行われ、次に揮発分または水素の含量
を低下するため、結合剤の種類に応じて成形体を
乾燥またはカ焼しなければならない。結合剤は加
炭剤中の有害同伴元素の割合を上昇してはならな
い。 この方法のとくに有利な実施例によれば粒度2
mm以下の黒鉛粉末を高い密度の成分と1:10〜
10:1の比で、オキシエチルセルロース1%を添
加して乾式混合し、固体成分の微粒度に応じて水
10〜25%およびアルカリ金属もしくはアルカリ土
類金属の塩基またはアンモニア水を乾燥混合物に
対して1%混合する。この混合物を次に公知法で
3〜15mmのサイズの成形体に圧縮し、これを次に
80〜180℃で5〜20時間乾燥する。 次に本発明を例により説明する。 例 1 粒度<2mmのねずみ鋳鉄切粉129重量部を粒度
0〜2mmの黒鉛粉末(分析値は表)69重量部お
よびオキシエチルセルロース2重量部と5分間乾
式混合する。水40重量部を添加した後、混合物を
さらに5分均質化する。次に10%カセイソーダ
0.06重量部を添加する。さらに2分間混合した
後、得られた混合物を直径5mmの円筒形の孔を有
する厚さ35mmのダイを有する押出機で成形体に加
工し、これを次に残留水分<0.5%まで乾燥する。
乾燥した成形体のかさ密度は1600Kg/m3、炭素量
は37重量%である。 例 2 ねずみ鋳鉄切粉69重量部および黒鉛粉末129重
量部から例1のように成形体を製造する。乾燥し
た成形体のかさ密度は1100Kg/m3、炭素含量は70
重量%である。 表に示す加炭剤について同様の条件下に溶鋼
によつて吸収された炭素量を溶解速度の尺度とし
て測定した。実験は5トン誘導炉で実施した。そ
のつど同じ炭素量30Kgを添加した。試料はそれぞ
れ、5、10および15分後に採取した。溶湯の全量
に対して吸収された炭素量(炭素歩留り)を図面
に示す。+は例1、×は例2の加炭剤、0は黒鉛、
□は石油コークス、△はピツチコークスの場合の
反応時間(分)と炭素歩留りの関係を示す曲線で
ある。 図の曲線から明らかなように本発明により製造
した加炭剤の溶解速度はその15分後の炭素歩留り
と同様公知の最善の加炭剤である黒鉛の場合より
高い。 表 微粒黒鉛の分析 炭 素 99.2重量% 水 素 0.013 〃 チツ素 0.05 〃 イオウ 0.02 〃 揮発分 0.57重量% 灰 分 0.15 〃 水 分 0.2 〃 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for making a carburizing agent that has a high dissolution rate and therefore a high carbon yield, in which carbon powder is compacted with a binder. Recarburizers are used to increase the carbon content of molten steel and iron. The properties require high purity, ie low content of harmful entraining substances such as sulfur, hydrogen, nitrogen, etc., as well as high dissolution rates. The dissolution rate can be improved by four parameters: 1. Optimal particle size. 2. Low ash content. 3. Increased bulk density. 4. As high a degree of graphitization as possible or good graphitizability (A.
Mihajlvoic/B.Marincek: Auflo¨sungkinetik
von techni-schen graphite in
Eisenschmelgen, Arch.Eisenhu¨ttenwesen44,
No. 7 (see page 507 et seq.). It has been found that a particle size of 4 to 5 mm is advantageous. The high powder proportion had a particularly unfavorable effect on the dissolution rate (B.Marincek: Beurteilung
verschiedener Aufkohlingsmittel, Schweizer
Archiv, March 1968, pages 89 et seq.). The maximum dissolution rate of high purity graphite was obtained in an inert gas atmosphere with a carbon content of 99.9% and a particle size of 4-5 mm. The bulk density of graphite with this particle size is approximately 800
Kg/ m2 . For the same particle size configuration, bulk density is a measure of the depth of immersion and thus the amount of contact area between the molten iron and the recarburizer. An increase in bulk density therefore has the effect of increasing the dissolution rate of the recarburizer in molten steel or iron. It is therefore an object of the present invention to develop a process for the preparation of high bulk density recarburizers which have a higher dissolution rate in molten steel and iron than comparable known recarburizers. This object is solved according to the invention in a process for producing a carburizing agent in which carbon powder is compressed with a binder, by adding to the mixture a dense component with a particle size of less than 2 mm in order to increase the density of the compact. As alloying components and non-slag-forming additives commonly used in the production of dense iron and steel, the alloying components of the steel produced in each case, such as Fe, Cr,
Metal powders of Ni, W, Co, Mo, Mn, V or copper can be used individually or in mixtures. It is likewise possible to use metal chips, such as gray cast iron chips, or additives which do not form slags, such as ferromanganese and ferrosilicon powders. As carbon powders it is possible to use powders of all customary carburizers which contain a high carbon content and only small amounts of harmful entrained substances such as sulfur, hydrogen, nitrogen and ash. Particularly advantageous, however, are powders of carbon materials with a distinct stone structure, such as premium cokes or electrolytic graphite. Among the commonly used binders, in addition to oxyethylcellulose, starch, pitch and bitumen are suitable as binders. Compaction is carried out by extrusion, briquetting or pelletizing, and the shaped body must then be dried or calcined, depending on the type of binder, in order to reduce the volatile content or hydrogen content. The binder must not increase the proportion of harmful entrained elements in the recarburizer. According to a particularly advantageous embodiment of the method, particle size 2
1:10~ of graphite powder of less than mm and high density component
Add 1% oxyethylcellulose and dry mix in a 10:1 ratio, add water depending on the fineness of the solid components.
10-25% and alkali metal or alkaline earth metal base or aqueous ammonia are mixed at 1% to the dry mixture. This mixture is then compressed by known methods into compacts with a size of 3 to 15 mm, which are then
Dry at 80-180°C for 5-20 hours. The invention will now be explained by way of example. Example 1 129 parts by weight of gray cast iron chips with a particle size of <2 mm are dry mixed for 5 minutes with 69 parts by weight of graphite powder with a particle size of 0 to 2 mm (analytical values are shown in the table) and 2 parts by weight of oxyethyl cellulose. After adding 40 parts by weight of water, the mixture is homogenized for a further 5 minutes. Then 10% caustic soda
Add 0.06 parts by weight. After mixing for a further 2 minutes, the mixture obtained is processed into shaped bodies in an extruder with a die 35 mm thick with cylindrical holes 5 mm in diameter, which are then dried to a residual moisture content of <0.5%.
The bulk density of the dried compact was 1600 Kg/m 3 and the carbon content was 37% by weight. Example 2 A molded body is produced as in Example 1 from 69 parts by weight of gray cast iron chips and 129 parts by weight of graphite powder. The bulk density of the dried compact is 1100Kg/m 3 and the carbon content is 70
Weight%. The amount of carbon absorbed by the molten steel was measured as a measure of dissolution rate under similar conditions for the recarburizers shown in the table. The experiment was conducted in a 5-ton induction furnace. The same amount of carbon, 30 kg, was added each time. Samples were taken after 5, 10 and 15 minutes, respectively. The figure shows the amount of carbon absorbed (carbon yield) relative to the total amount of molten metal. + means Example 1, × means recarburizing agent of Example 2, 0 means graphite,
□ is a curve showing the relationship between reaction time (minutes) and carbon yield in the case of petroleum coke and △ is pitch coke. As is clear from the curves in the figure, the dissolution rate of the recarburizer prepared according to the invention, as well as its carbon yield after 15 minutes, is higher than that of the best known recarburizer, graphite. Table Analysis of fine graphite Carbon 99.2% by weight Hydrogen 0.013 Titanium 0.05 Sulfur 0.02 Volatile content 0.57% by weight Ash 0.15 Moisture 0.2 [Table]

【図面の簡単な説明】[Brief explanation of the drawing]

図面は種々の加炭剤の炭素歩留りを示す図であ
る。
The figure shows the carbon yield of various recarburizers.

Claims (1)

【特許請求の範囲】 1 炭素粉を結合剤とともに圧縮し、引き続き乾
燥ないしはカ焼する、溶解速度の高い加炭剤の製
法において、成形体の密度を上昇するため混合物
に粒度2mm未満の密度の高い、製鉄および製鋼の
際に常用の合金成分およびスラグを形成しない添
加剤を添加することを特徴とする溶解速度の高い
加炭剤の製法。 2 密度の高い成分として鋼の合金成分の純金属
粉末を使用する特許請求の範囲第1項記載の製
法。 3 密度の高い成分としてたとえばねずみ鋳鉄の
金属切粉を使用する特許請求の範囲第1項記載の
製法。 4 密度の高い成分としてスラグを形成しない添
加剤たとえばフエロマンガンおよびフエロシリコ
ンの粉末を使用する特許請求の範囲第1項記載の
製法。 5 最大粒度2mmの黒鉛粉末を密度の高い成分と
1:10〜10:1の比で、オキシエチルセルロース
1%添加のもとに乾式混合し、水10〜25%および
アルカリ金属もしくはアルカリ土類金属の塩基ま
たはアンモニア水を乾燥混合物に対して1%未満
添加し、次に3〜15mmの大きさの成形体に圧縮
し、これを80〜180℃で5〜20時間乾燥する特許
請求の範囲第1項から第4項までのいずれか1項
記載の製法。
[Claims] 1. In a process for producing a carburizing agent with a high dissolution rate, in which carbon powder is compressed with a binder and subsequently dried or calcined, a density particle with a particle size of less than 2 mm is added to the mixture in order to increase the density of the compact. A process for producing a recarburizer with a high dissolution rate, characterized by the addition of alloying ingredients commonly used in iron and steel manufacturing and additives that do not form slag. 2. The manufacturing method according to claim 1, wherein pure metal powder of a steel alloy component is used as the high-density component. 3. The manufacturing method according to claim 1, wherein metal chips of gray cast iron, for example, are used as the dense component. 4. Process according to claim 1, in which non-slag-forming additives such as ferromanganese and ferrosilicon powders are used as the dense component. 5 Graphite powder with a maximum particle size of 2 mm is dry mixed with the dense component in a ratio of 1:10 to 10:1 with the addition of 1% oxyethyl cellulose, 10 to 25% water and an alkali metal or alkaline earth metal. Adding less than 1% of base or aqueous ammonia to the dry mixture, then compressing it into a molded body with a size of 3 to 15 mm, and drying it at 80 to 180°C for 5 to 20 hours. The manufacturing method according to any one of Items 1 to 4.
JP57002919A 1981-01-16 1982-01-13 Manufacture of carburizing agent having high speed of dissolution Granted JPS57140635A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3101168A DE3101168C2 (en) 1981-01-16 1981-01-16 "Process for the production of carburizing agents with increased dissolution rate"

Publications (2)

Publication Number Publication Date
JPS57140635A JPS57140635A (en) 1982-08-31
JPH0245685B2 true JPH0245685B2 (en) 1990-10-11

Family

ID=6122709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57002919A Granted JPS57140635A (en) 1981-01-16 1982-01-13 Manufacture of carburizing agent having high speed of dissolution

Country Status (8)

Country Link
JP (1) JPS57140635A (en)
BE (1) BE891344A (en)
DE (1) DE3101168C2 (en)
FR (1) FR2498202A1 (en)
GB (1) GB2091233B (en)
IT (1) IT1172155B (en)
NL (1) NL8105217A (en)
SE (1) SE451949B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089510A (en) * 1983-10-19 1985-05-20 Mihato Kogyosho:Kk Recarburizer for iron and steel
JPS60169512A (en) * 1984-02-13 1985-09-03 Nippon Kokan Kk <Nkk> Carburizer for metallurgy
FI126583B (en) * 2014-03-31 2017-02-28 Outotec Finland Oy Process and carrier for transporting reducing agent such as coke into a metallurgical furnace and production process for the carrier
JP6622755B2 (en) * 2017-06-09 2019-12-18 株式会社サンアール Carburizing agent for steel making and steel making method

Also Published As

Publication number Publication date
SE8106735L (en) 1982-07-17
GB2091233B (en) 1984-12-19
DE3101168C2 (en) 1984-07-26
IT8149915A0 (en) 1981-12-15
DE3101168A1 (en) 1982-08-05
SE451949B (en) 1987-11-09
FR2498202A1 (en) 1982-07-23
GB2091233A (en) 1982-07-28
BE891344A (en) 1982-03-31
JPS57140635A (en) 1982-08-31
FR2498202B3 (en) 1984-09-07
NL8105217A (en) 1982-08-16
IT1172155B (en) 1987-06-18

Similar Documents

Publication Publication Date Title
US4105457A (en) Briquet and method of making same
US4123257A (en) Method of treating a plating sludge
US4613363A (en) Process of making silicon, iron and ferroalloys
US3782930A (en) Graphite-containing ferrous-titanium carbide composition
JPH06502691A (en) metal base alloy
US2726152A (en) Addition agent and method for treating cast iron
US3801303A (en) Porous refractory body impregnated with magnesium
US3941582A (en) Direct reduced iron
JPH0245685B2 (en)
IE57642B1 (en) Production of silicon from raw quartz
US4702772A (en) Sintered alloy
JPH0437139B2 (en)
US4194901A (en) Process for producing graphite agglomerates, and products obtained by it
US4179287A (en) Method for adding manganese to a molten magnesium bath
US3389990A (en) Manganese nitride
CA2913632A1 (en) Iron and molybdenum containing compacts
CA1091418A (en) Process for producing graphitic agglomerates, and products obtained by it
US3120699A (en) Method for producing sintered ferrous article
KR100228221B1 (en) Preparation of formed coke
US4272324A (en) Process for producing shaft furnace cokes
JPH04332790A (en) Production of briquetted coal
RU2774341C1 (en) Method for briquetting metal shavings
DE1045988B (en) Process for the production of moldings with increased abrasion resistance from finely divided materials
DE3011962A1 (en) Composite metallic material contg. metal nitride - such as mixt. of nickel and vanadium nitride, and used for adding nitrogen to molten steel or other alloys
US4534887A (en) Molded-to-size silver-graphite articles and process for making same