JPH0245666A - Fine flow-rate pump - Google Patents

Fine flow-rate pump

Info

Publication number
JPH0245666A
JPH0245666A JP63193991A JP19399188A JPH0245666A JP H0245666 A JPH0245666 A JP H0245666A JP 63193991 A JP63193991 A JP 63193991A JP 19399188 A JP19399188 A JP 19399188A JP H0245666 A JPH0245666 A JP H0245666A
Authority
JP
Japan
Prior art keywords
pump chamber
pump
diaphragm
bimorph
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63193991A
Other languages
Japanese (ja)
Inventor
Koji Nagasaka
長坂 皓司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Walbro Far East Inc
Original Assignee
Walbro Far East Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Walbro Far East Inc filed Critical Walbro Far East Inc
Priority to JP63193991A priority Critical patent/JPH0245666A/en
Publication of JPH0245666A publication Critical patent/JPH0245666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)

Abstract

PURPOSE:To remove the residual gas foams in a small-sized pump chamber in simple ways by pushing a supporting body for supporting a bimorph swing plate against the force of a spring through a diaphragm. CONSTITUTION:Supporting bodies 10 and 16 are supported onto a bimorph swing plate 6 through a disphragm 13 inside a housing consisting of a body 14 and a cover 12. The supporting bodies 10 and 16 are pushed against the force of a spring 17 by an operating rod 8. In the ordinary case, the supporting bodies 10 and 16 are pushed to the edge wall of a housing by the force of the spring 17, and the capacity of a pump chamber 22 is varied by the bimorph swing plate 6, and a slight flow rate of liquid is sucked into the pump chamber 22 from an inlet 2 through a check valve 19, and discharged to an outlet 15 through a check valve 18. Therefore, a large quantity of liquid is sucked into the pump chamber 22, and the gas foams in the pump chamber 22 are discharged outside, together with liquid. Therefore, the gas foams in the pump chamber 22 are removed effectively with the small dimension of the whole device, and the stable pump faculty can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は石油ストーブ、化学機器、医療機器などの液体
供給装置に供される微流量ポンプに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a microflow pump used in liquid supply devices such as oil stoves, chemical equipment, and medical equipment.

[従来の技#/#] 本出願人は微流量ポンプとして、バイモルフ援助板の周
縁部を本体とカバーの間に挟持して一方側または両側に
ポンプ室を区画・し、バイモルフ援助板に交流電圧を印
加することにより、ポンプ室に容積変化をもたらし、液
体を逆止弁を経てポンプ室へ吸引し、ポンプ室から逆止
弁を経て出口へ吐き出すものを既に提案している。この
微流量ポンプでは、液体の吐出量が非常に少ないために
、ポンプ室に僅かでも気泡が残留すると、ポンプ効率が
低下し、また逆止弁などの狭隘部に気泡が滞留すると流
路が狭められるなど、吐出量に大きなバラツキが生じる
[Conventional Technique #/#] The present applicant has developed a microflow pump by sandwiching the peripheral edge of a bimorph support plate between a main body and a cover to partition a pump chamber on one side or both sides, and applying an alternating current to the bimorph support plate. A system has already been proposed in which a volume change is caused in the pump chamber by applying a voltage, liquid is sucked into the pump chamber through a check valve, and liquid is discharged from the pump chamber through the check valve to the outlet. Since this micro-flow pump discharges a very small amount of liquid, if even the slightest amount of air bubbles remains in the pump chamber, the pump efficiency will decrease, and if air bubbles stay in narrow areas such as check valves, the flow path will become narrower. This causes large variations in the discharge amount.

残留気泡を除去するために、ポンプ室の姿勢を変えて気
泡がポンプ室から流出しやすくしたり、入口から強11
1J的に多層の液体をポンプ室へ送り、気泡を外部へ誘
導するなどの手段が講じられている。しかし、このよう
な手段ではポンプが機器に組み込まれた状態では操作が
しがたく、ポンプが損傷したり、またポンプの組込み状
態によっては操作不可能の場合もある。
To remove residual air bubbles, change the position of the pump chamber to make it easier for air bubbles to flow out of the pump chamber, or
Measures have been taken, such as sending multi-layered liquid into the pump chamber in a 1J manner and guiding air bubbles to the outside. However, with such means, it is difficult to operate the pump when it is incorporated into a device, and the pump may be damaged or may become impossible to operate depending on the state of the pump.

[発明が解決しようとする問題点] そこで、本発明の目的は上述の同題に鑑み、小形でポン
プ室の残留気泡を簡単に除去し得る微流量ポンプを提供
することにある。
[Problems to be Solved by the Invention] In view of the above-mentioned problem, an object of the present invention is to provide a microflow pump that is small and capable of easily removing residual air bubbles in the pump chamber.

[問題を解決するための手段] 上記目的を達成するために、本発明の構成はバイモルフ
振動板の周縁を挟持する1対の環状の支持体の外周側に
環状のダイヤプラムを結合し、該ダイヤプラムの外周縁
をカップ状の本体とカバーの間に挟持して大気室とポン
プ室を区画し、ばねにより支持体をカバーの端壁に付勢
衝合し、支持体にカバーから外部へ突出する操作Oラド
を結合し、本体の入口とポンプ室を結ぶ通路に逆止弁を
、ポンプ室と出口を結ぶ通路に逆止弁をそれぞれ備えた
ものである。
[Means for Solving the Problem] In order to achieve the above object, the configuration of the present invention is such that an annular diaphragm is coupled to the outer peripheral side of a pair of annular supports that sandwich the periphery of a bimorph diaphragm. The outer periphery of the diaphragm is sandwiched between the cup-shaped main body and the cover to partition the atmospheric chamber and the pump chamber, and the support body is biased against the end wall of the cover by a spring, and the support body is moved from the cover to the outside. A protruding operating O-rad is connected to the main body, and a check valve is provided in the passage connecting the inlet of the main body and the pump chamber, and a check valve is provided in the passage connecting the pump chamber and the outlet.

[作用] 本体14とカバー12からなるハウジングの内部にダイ
ヤフラム13を介してバイモルフ振動板6に支持体10
.16が支持され、この支持体10.16をばねの力に
抗して押すことにより、ポンプ室22へ多量の液体が吸
引され、ポンプ室22の気泡が液体と一緒に外部へ排除
される。
[Function] The support 10 is connected to the bimorph diaphragm 6 via the diaphragm 13 inside the housing consisting of the main body 14 and the cover 12.
.. 16 is supported, and by pushing this support 10.16 against the force of a spring, a large amount of liquid is drawn into the pump chamber 22, and air bubbles in the pump chamber 22 are expelled to the outside together with the liquid.

通常は支持体10.16はばねの力によりハウジングの
端壁へ押し付けられ、支持体io、ieのバイモルフ振
動板6によりポンプ室22の容積が変化し、入口2から
逆止弁19を経て微8G!量の液体がポンプ室22へ吸
引され、ポンプ室22の液体が逆止弁18を経て出口1
5へ吐き出される。
Normally, the support 10.16 is pressed against the end wall of the housing by the force of a spring, and the volume of the pump chamber 22 is changed by the bimorph diaphragm 6 of the supports io, ie. 8G! amount of liquid is sucked into the pump chamber 22, and the liquid in the pump chamber 22 passes through the check valve 18 to the outlet 1.
Spit out to 5.

[発明の実施例] 第1図に示すように、微流量ポンプは入口2と出口15
を有するカップ状の本体14と、カップ状のカバー12
との間に、環状のダイヤフラム13を挟持し、ボルト4
により結合してハウジングを構成される。ダイヤフラム
13の内周縁部は上下1対の環状の支持体1oと16の
間に挟持される。同時に、支持体10と16の間に弾性
リング5.21を介して円形のバイモルフ振動板6と隔
離板20の周縁部が挟持される。本体14とダイヤフラ
ム13の間にポンプ室22が区画され、カバー12とダ
イヤフラム13の闇に大気ロアを有する大気室3が区画
される。支持体10.16はポンプ室22に収容したば
ね17によりカバー12の内端壁、詳しくは突部12a
に付勢衝合される。
[Embodiment of the Invention] As shown in FIG. 1, the microflow pump has an inlet 2 and an outlet 15.
a cup-shaped main body 14 having a cup-shaped cover 12;
An annular diaphragm 13 is sandwiched between the bolts 4 and
are combined to form a housing. The inner peripheral edge of the diaphragm 13 is held between a pair of upper and lower annular supports 1o and 16. At the same time, the peripheral edges of the circular bimorph diaphragm 6 and the separator 20 are held between the supports 10 and 16 via the elastic ring 5.21. A pump chamber 22 is defined between the main body 14 and the diaphragm 13, and an atmospheric chamber 3 having an atmospheric lower space is defined between the cover 12 and the diaphragm 13. The support 10.16 is moved by a spring 17 housed in the pump chamber 22 to the inner end wall of the cover 12, in particular to the protrusion 12a.
energized against each other.

図示の実施例では、支持体10はカップ状をなし、通孔
7aを有する端壁に操作ロッド8が一体に形成される。
In the illustrated embodiment, the support body 10 is cup-shaped, and the operating rod 8 is integrally formed in the end wall having a through hole 7a.

カバー12の外端型中央に一体に形成した円筒部9に、
操作ロッド8が摺動可能に嵌合される。
In the cylindrical part 9 integrally formed in the center of the outer end mold of the cover 12,
The operating rod 8 is slidably fitted.

本体14の入口2とポンプ室22を結ぶ通路に、入口2
からポンプ室22への流れを許す逆止弁19が、またポ
ンプ室22と出口15を結ぶ通路に、ポンプ室22から
出口15への流れを許す逆止弁18がそれぞれ備えられ
る。これらの逆止弁18゜19は周縁部の一部を本体1
4に支持された薄いゴムの板が、ポンプ室22の圧力変
化に応じて弁慶が離れて通路を開くように構成される一
般的なものである。
There is an inlet 2 in the passage connecting the inlet 2 of the main body 14 and the pump chamber 22.
A check valve 19 that allows flow from the pump chamber 22 to the outlet 15 is provided, and a check valve 18 that allows flow from the pump chamber 22 to the outlet 15 is provided in the passage connecting the pump chamber 22 and the outlet 15. These check valves 18 and 19 have a part of their periphery connected to the main body 1.
A thin rubber plate supported by the pump chamber 22 is commonly constructed so that the valve valve moves away to open the passageway in response to pressure changes in the pump chamber 22.

第2図に示すように、バイモルフ振動板6は圧電セラミ
ックからなる1対の電極板6aの間に、導電性金属から
なる電極板6bを挟んで構成されるもので、電極板6a
と電極板6bに交流電源27に接続すると、支持体10
.18に挟持されるバイモルフ振動板6が周縁部を支点
として、中央部が椀状に上側と下側へ交互に変形してポ
ンプ室22の容積変化をもたらす。
As shown in FIG. 2, the bimorph diaphragm 6 is constructed by sandwiching an electrode plate 6b made of conductive metal between a pair of electrode plates 6a made of piezoelectric ceramic.
When the AC power source 27 is connected to the electrode plate 6b, the support 10
.. The bimorph diaphragm 6 held between the pump chambers 18 is deformed alternately upward and downward into a bowl shape with its peripheral edge serving as a fulcrum, thereby changing the volume of the pump chamber 22.

バイモルフ振動板6が上方へ椀状に突出変形すると、液
体が入口2から逆止弁19を経てポンプ室22へ吸引さ
れる。次いで、バイモルフ振動板6が下方へ椀状に突出
変形すると、ポンプ室22の液体が逆止弁18を経て出
口15へ吐き出される。バイモルフ振動板6を支持する
支持体10゜16はばね17の力によりカバー12の内
端壁へ押し付けられており移動しない。
When the bimorph diaphragm 6 deforms and protrudes upward into a bowl shape, liquid is sucked into the pump chamber 22 from the inlet 2 via the check valve 19. Next, when the bimorph diaphragm 6 deforms and protrudes downward into a bowl shape, the liquid in the pump chamber 22 is discharged to the outlet 15 via the check valve 18. The support 10.degree. 16 supporting the bimorph diaphragm 6 is pressed against the inner end wall of the cover 12 by the force of the spring 17 and does not move.

上述の説明から明らかなように、本体14とカバー12
との間にダイヤフラム13を介して支持体10.16を
支持したことにより、気泡を除去するための手動ポンプ
が形成される。
As is clear from the above description, the main body 14 and the cover 12
By supporting the support 10.16 via the diaphragm 13 between them, a manual pump for removing air bubbles is formed.

ポンプ室22に気泡が生じると、ポンプ室22の容積変
化は気泡の容積変化により吸収され、ポンプ室22から
の吐出量が少なくなる。この場合に、操作ロッド8と一
緒に支持体10.16をばね17の力に抗して押し下げ
ると、ポンプ室22の液体と一緒に気泡が逆止弁18を
経て出口15へ排出される。次いで、操作ロッド8を放
すと、ばね17の力により支持体10.16が再びカバ
ー12の端壁へ付勢衝合され、同時に多量の液体がポン
プ室22へ吸引される。この操作を繰り返す内にポンプ
室22の気泡が完全に除去される。
When bubbles are generated in the pump chamber 22, the change in the volume of the pump chamber 22 is absorbed by the change in the volume of the bubbles, and the amount of discharge from the pump chamber 22 decreases. In this case, when the support 10.16 is pressed down together with the actuating rod 8 against the force of the spring 17, the air bubbles are discharged together with the liquid in the pump chamber 22 via the check valve 18 to the outlet 15. When the operating rod 8 is then released, the support 10.16 is again urged against the end wall of the cover 12 by the force of the spring 17, and at the same time a large amount of liquid is sucked into the pump chamber 22. By repeating this operation, the air bubbles in the pump chamber 22 are completely removed.

隔離板20はポンプ室22の液体とバイモルフ振動板6
との接触を防ぎ、電気的に絶縁する。
The separator 20 separates the liquid in the pump chamber 22 from the bimorph diaphragm 6.
Prevent contact with and electrically insulate.

第3図に示す実施例では、ばね17に代るばね25がハ
ウジングの外部に配設される。すなわち、支持体10の
中心に一体に形成したロッド26がカバー12の円筒部
9に摺動可能に嵌合され、円筒部9の端壁に摺動可能に
支持したボルト24の端部がロッド26のねじ穴に螺合
される。ボルト24の中間部に係止した止め輪23が、
ボルト24の頭部と円筒部9の外端壁との間に介装した
ばね25により、カバー12の内端壁に付勢衝合される
。他の構成は第1図に示す実施例と同様である。
In the embodiment shown in FIG. 3, a spring 25 instead of spring 17 is arranged outside the housing. That is, the rod 26 integrally formed at the center of the support body 10 is slidably fitted into the cylindrical portion 9 of the cover 12, and the end of the bolt 24 slidably supported on the end wall of the cylindrical portion 9 is fitted into the rod. It is screwed into the 26 screw holes. A retaining ring 23 that is secured to the middle part of the bolt 24 is
A spring 25 interposed between the head of the bolt 24 and the outer end wall of the cylindrical portion 9 biases the cover 12 against the inner end wall. The other configurations are similar to the embodiment shown in FIG.

第3図に示す実施例では、ポンプ室22の気泡を除去す
る場合は、ボルト24をばね25の力に抗して繰り返し
押し下げる。ボルト24のロッド26への螺合量をlI
順すれば、ポンプ室22の容積が変化し、これにより、
バイモルフ振動板6の振動特性とポンプ室22の容積と
の関係から、特に起動時に多く含まれる気泡によって妨
げられるポンプ起動時から正常運転状態に至るまでの時
間が調節される。
In the embodiment shown in FIG. 3, when removing air bubbles from the pump chamber 22, the bolt 24 is repeatedly pressed down against the force of the spring 25. The amount of threading of the bolt 24 into the rod 26 is lI
Accordingly, the volume of the pump chamber 22 changes, and as a result,
Based on the relationship between the vibration characteristics of the bimorph diaphragm 6 and the volume of the pump chamber 22, the time from the start of the pump to the normal operating state is adjusted, which is particularly hindered by the presence of many bubbles at the time of start-up.

[発明の効果] 本発明は上述のように、バイモルフ振動板の周縁を挟持
する1対の環状の支持体の外周側に環状のダイヤフラム
を結合し、該ダイヤフラムの外周縁をカップ状の本体と
カバーの間に挟持して大気室とポンプ室を区画し、ばね
により支持体をカバーの端壁に付勢衝合し、支持体にカ
バーから外部へ突出する操作ロッドを結合し、本体の入
口とポンプ室を結ぶ通路に逆止弁を、ポンプ室と出口を
結ぶ通路に逆止弁をそれぞれ備えたから、手動の気泡除
去用ダイヤフラム型ポンプの内部に、バイモルフ振動板
を利用したポンプが一体的に構成されるので、全体の形
状が小型でありながら、手動ポンプを操作すると流量が
増大し、ポンプ室の気泡が効果的に除去され、したがっ
て、バイモルフ振動板による安定したポンプ性能が得ら
れる。
[Effects of the Invention] As described above, the present invention connects an annular diaphragm to the outer periphery of a pair of annular supports that sandwich the periphery of a bimorph diaphragm, and connects the outer periphery of the diaphragm to a cup-shaped main body. The support body is sandwiched between the covers to partition the atmospheric chamber and the pump chamber, the support body is biased against the end wall of the cover by a spring, the operating rod protruding from the cover to the outside is connected to the support body, and the inlet of the main body is connected to the support body. A check valve is installed in the passage connecting the pump chamber and the outlet, and a check valve is installed in the passage connecting the pump chamber and the outlet, so a pump that uses a bimorph diaphragm is integrated inside the manual diaphragm pump for removing air bubbles. Therefore, although the overall shape is small, the flow rate increases when the manual pump is operated, and air bubbles in the pump chamber are effectively removed, thus providing stable pump performance due to the bimorph diaphragm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る微流量ポンプの側面断面図、第2
図はバイモルフ振動板のポンプ作用を示す原理図、第3
図は本発明の第2実施例に係る微流量ポンプの側面断面
図である。 2:入口 3:大気室 6:バイモルフ振動板8:操作
ロッド 10.16:支持体 12:カバー 13:ダ
イヤフラム 14:本体 15二出口 17:ばね 1
8,19:逆止弁 22:ポンプ室
FIG. 1 is a side sectional view of a microflow pump according to the present invention, and FIG.
The figure is a principle diagram showing the pumping action of the bimorph diaphragm.
The figure is a side sectional view of a microflow pump according to a second embodiment of the present invention. 2: Inlet 3: Atmospheric chamber 6: Bimorph diaphragm 8: Operating rod 10.16: Support body 12: Cover 13: Diaphragm 14: Main body 15 Two outlets 17: Spring 1
8, 19: Check valve 22: Pump chamber

Claims (1)

【特許請求の範囲】[Claims] バイモルフ振動板の周縁を挟持する1対の環状の支持体
の外周側に環状のダイヤフラムを結合し、該ダイヤフラ
ムの外周縁をカップ状の本体とカバーの間に挟持して大
気室とポンプ室を区画し、ばねにより支持体をカバーの
端壁に付勢衝合し、支持体にカバーから外部へ突出する
操作ロッドを結合し、本体の入口とポンプ室を結ぶ通路
に逆止弁を、ポンプ室と出口を結ぶ通路に逆止弁をそれ
ぞれ備えたことを特徴とする微流量ポンプ。
An annular diaphragm is coupled to the outer periphery of a pair of annular supports that sandwich the periphery of the bimorph diaphragm, and the outer periphery of the diaphragm is sandwiched between a cup-shaped main body and a cover to form an atmospheric chamber and a pump chamber. A support body is biased against the end wall of the cover by a spring, an operating rod protruding from the cover to the outside is connected to the support body, and a check valve is installed in the passage connecting the inlet of the main body and the pump chamber. A microflow pump characterized by having a check valve in each passage connecting the chamber and the outlet.
JP63193991A 1988-08-03 1988-08-03 Fine flow-rate pump Pending JPH0245666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63193991A JPH0245666A (en) 1988-08-03 1988-08-03 Fine flow-rate pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63193991A JPH0245666A (en) 1988-08-03 1988-08-03 Fine flow-rate pump

Publications (1)

Publication Number Publication Date
JPH0245666A true JPH0245666A (en) 1990-02-15

Family

ID=16317152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63193991A Pending JPH0245666A (en) 1988-08-03 1988-08-03 Fine flow-rate pump

Country Status (1)

Country Link
JP (1) JPH0245666A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381598A (en) * 1991-10-23 1995-01-17 Mitsubishi Denki Kabushiki Kaisha Method of preparing a large-current printed circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381598A (en) * 1991-10-23 1995-01-17 Mitsubishi Denki Kabushiki Kaisha Method of preparing a large-current printed circuit board

Similar Documents

Publication Publication Date Title
US5336062A (en) Microminiaturized pump
EP3073114B1 (en) Piezoelectric micro-blower
US4983876A (en) Piezoelectric pump assembly
KR20190082732A (en) Miniature fluid control device
JP5522270B2 (en) Fluid supply device
US20130213506A1 (en) Fluid transportation device
JP2011504560A (en) Pump device including safety valve
US3347273A (en) Surge chambers employing flexible membranes
US2707074A (en) Pump
EP0424087A1 (en) Micro-pump or micro-discharge device
JP3997345B2 (en) Membrane type actuator, liquid-sealed vibration isolator using the actuator, and fluid control device using the actuator
JPH0245666A (en) Fine flow-rate pump
JP4860617B2 (en) Double diaphragm valve
EP0168656B1 (en) An automatic degassing device in a reciprocating pump
US3462073A (en) Air compressor
JPS6350697A (en) Control disposal of water supply system
WO2001059306A1 (en) Electrohydraulic distributor
JP2002130137A (en) Piezoelectric pump
US3366067A (en) Pump assembly
CN220395931U (en) Automatic pressure relief pump and sphygmomanometer comprising same
AU2199599A (en) Ferroelectric pump
WO1988009440A1 (en) Reciprocation switching structure for pumps
JP2008088904A (en) Piezoelectric pump
CN214092247U (en) Diaphragm pump
CN216923250U (en) Pneumatic valve element assembly and in-wall flush valve