JPH0245606B2 - - Google Patents

Info

Publication number
JPH0245606B2
JPH0245606B2 JP57158017A JP15801782A JPH0245606B2 JP H0245606 B2 JPH0245606 B2 JP H0245606B2 JP 57158017 A JP57158017 A JP 57158017A JP 15801782 A JP15801782 A JP 15801782A JP H0245606 B2 JPH0245606 B2 JP H0245606B2
Authority
JP
Japan
Prior art keywords
ruthenium
hydrocarbons
catalyst
manganese
synthesis gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57158017A
Other languages
Japanese (ja)
Other versions
JPS5948424A (en
Inventor
Tetsuya Imai
Hiroshi Fujita
Minoru Koikeda
Takashi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI
Original Assignee
SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI filed Critical SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI
Priority to JP57158017A priority Critical patent/JPS5948424A/en
Publication of JPS5948424A publication Critical patent/JPS5948424A/en
Publication of JPH0245606B2 publication Critical patent/JPH0245606B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、一酸化炭素と水素との混合ガス(以
下、合成ガスという)から、炭素数2以上の炭化
水素を高収率で得る方法に関し、特に該方法に適
用するに適した触媒を提供せんとするものであ
る。 現在、エネルギーの中心を占めている石油をめ
ぐる環境は非常に不安定であり、1980年代後半か
ら1990年代にかけては石油不足からエネルギーの
谷間が来ることが憂慮されている。このため石油
の消費を節約をすすめるとともに、石炭、原子
力、LNGなどの石油代替エネルギーで対応する
ことが考えられている。このため、わが国では、
今後相対的に高い需要の伸びを示すと予想されて
いるガソリン、灯油、軽油、A重油等の供給不足
を石油以外の炭素源、例えば石炭又は天然ガス等
から製造する新技術の開発に関心が向けられてい
る。このうち、石炭から炭化水素油を製造する方
法としては、直接法である石炭の液化、及び間接
法である合成ガスを経由する製造方法が知られて
おり、前者は未だ研究開発過程にあり、現状では
製品品質が劣るとともに経済性も劣る。一方後者
はすでに南アフリカSASOL社で石炭のガス化プ
ロセスとフイツシヤー・トロプシユプロセスを組
合せたSASOL社の実用運転がなされている。 このように石炭、天然ガス又はアスフアルト等
のガソリン、灯油、軽油への直接転化が困難な炭
素含有物もガス化によつて一酸化炭素と水素との
混合ガスに容易に転化できることは公知である。
またこの混合ガスを適当な触媒の存在下で接触さ
せることにより炭化水素混合物へ転化できること
も公知である。 例えば、フイツシヤー・トロプシユ法は、鉄、
コバルト、ニツケル、ルテニウム及びロジウムに
基づく触媒の存在下で合成ガスから炭化水素混合
物を製造することで知られているが、この方法で
は反応生成物がメタンからワツクスに至る幅広い
炭化水素混合物(パラフイン、オレフイン)と各
種の含酸素化合物(アルコール、エーテル等)で
あり、価値のある特定沸点範囲の生成物を選択的
に得ることはできない。 上記の各種金属を用いたフイツシヤー・トロプ
シユ触媒のうち、実用運転に使用されているのは
鉄系の触媒であるが、これは炭酸ガスの副生が多
く、またカーボン析出が多く劣化しやすいという
欠点がある。 また、炭酸ガスの副生が少ない触媒としてルテ
ニウム系の触媒が知られているが、従来のアルミ
ナ担体にルテニウムを担持した触媒では、比較的
低圧では殆んどメタンが主成分であり、液状の炭
化水素があまり得られないという欠点がある。 そこで本発明者らは、これらの欠点を解決する
ため、一酸化炭素を水素化する活性金属と金属化
合物との組合わせについて鋭意実験検討を重ねた
結果、マンガンの価数が3〜4の範囲にあるマン
ガンの酸化物を含有する担体にルテニウムを担持
した触媒が、合成ガスから炭素数2以上の炭化水
素を得るのに極めて有効なことを見出し、本発明
を完成するに至つた。 すなわち、本発明は、合成ガスから炭化水素を
製造する方法において、マンガンの価数が3〜4
の範囲にあるマンガンの酸化物を含有する担体に
ルテニウムを担持した触媒の存在下で、合成ガス
を圧力10〜100Kg/cm2G、温度200〜400℃の条件
で接触させ、生成炭化水素中の炭素数5以上の炭
化水素の割合が40重量%以上の炭化水素を製造す
ることを特徴とする炭化水素の製法である。 本発明でいうマンガン酸化物を含有する担体と
は、次のものをさす。 (i) 市販のマンガン酸化物を焼成処理したもの (ii) マンガン化合物、例えば硝酸マンガンを含有
する水溶液にアンモニア水等のアルカリを加え
てゲル化したもの、又は焼成したもの、 (iii) マンガン化合物、例えば硝酸マンガンを含有
する水溶液にアルミナ等の担体を浸漬し乾燥、
焼成したもの (iv) 上記(i),(ii),(iii)においてマンガン酸化物又

マンガン化合物以外に、周期律表,,,
,族、a,a,族の化合物を共存さ
せたもの 上記(i)〜(iv)のマンガン酸化物はMn2O3又は
MnO2である。Mn2O3,MnO2は焼成条件(温度)
によつて決定される。 次に、上記のマンガン酸化物を含有する担体に
ルテニウムを担持する方法についてであるが、塩
化ルテニウムやヘキサアンミンルテニウムトリク
ロライド等のルテニウム化合物を含有する水溶液
又はアセトン等の溶剤に溶かした非水溶液中に上
記のマンガン酸化物を含有する担体を浸漬し、含
浸担持する通常の含浸技術が利用できる。 触媒組成中のルテニウムのマンガン酸化物に対
する担持量は重要であり、ルテニウムは金属とし
て0.1〜20重量%好ましくは0.5〜10重量%であ
る。 この場合、触媒を成形する際に、シリカアルミ
ナ、これらのゾル又はゾル、その他の耐火性酸化
物、或いは天然粘土鉱物などを添加することは、
触媒の性能を損なわないかぎりの量であればさし
つかえない。 本発明の方法において原料ガスとなる合成ガス
は石炭、天然ガス、石油コークス、頁岩油、ター
ルサンド又は石油蒸留からの残渣油などの化石燃
料を公知のガス化反応、例えば部分酸化反応又は
スチームリフオーミング反応などにより任意に製
造される。又合成ガスの前駆物質である一酸化炭
素とスチームとの混合物、或いは二酸化炭素と水
素との混合物も使用することができる。更には、
生成物中の液状炭化水素留分を除去した未反応ガ
ス混合物も又原料ガスとして使用できる。合成ガ
ス中の水素と一酸化炭素との比率はガス化される
炭素源により変化するが、本転化反応のために
は、その比率は0.2〜6.0の範囲にすることが好適
である。 合成ガスは触媒と200〜400℃の温度、10〜100
Kg/cm2Gの圧力及び触媒体積当り1時間標準温
度、圧力で約100−10000の合成ガス体積の
GHSV(ガス基準空塔速度)で接触反応を行う。 また、本発明は固定床タイプだけではなく、流
動床、液相スラリータイプのリアクターで行うこ
とができる。 次に本発明を実施例により具体的に説明するが
本発明はその要旨を越えないかぎり限定されるも
のではない。 〔実施例 1〕 硝酸マンガンを含有する水溶液のPHが9.0にな
るまでアンモニア水を加えて水酸化マンガンのゲ
ルを作つた後、これを過洗浄し、130℃で3時
間乾燥続いて500℃で3時間焼成してマンガン酸
化物Mn2O3の微粉末を得た。 このマンガン酸化物をルテニウム含有量が2重
量%になる量の塩化ルテニウム水溶液に浸漬した
後、130℃で3時間乾燥して触媒1を得た。 同様の方法でルテニウム担持量が6,1,0重
量%になるように触媒2,3,4を各々調製し
た。 これらの触媒1,2,3,4をそれぞれ流通式
マイクロリアクター(固定床)に充填し、転化反
応に供する前に水素を用いて、常圧
GHSV1000h-1,温度350℃で1時間、さらに400
℃で3時間予め還元処理し、引き続きH2/COモ
ル比2の合成ガスを用いて、290℃の温度、40
Kg/cm2Gの圧力、GHSV500h-1の条件で反応さ
せ表1のような結果を得た。
The present invention relates to a method for obtaining hydrocarbons having two or more carbon atoms in high yield from a mixed gas of carbon monoxide and hydrogen (hereinafter referred to as synthesis gas), and provides a catalyst particularly suitable for application to the method. This is what I am trying to do. The environment surrounding oil, which currently occupies the center of energy, is extremely unstable, and there are concerns that there will be an energy trough due to oil shortages from the late 1980s to the 1990s. For this reason, efforts are being made to reduce oil consumption and to use alternative energy sources such as coal, nuclear power, and LNG to replace oil. For this reason, in our country,
There is interest in the development of new technology for producing gasoline, kerosene, diesel oil, A-heavy oil, etc., which are expected to show relatively high demand growth in the future, from carbon sources other than petroleum, such as coal or natural gas, to solve the shortage of supplies. It is directed towards. Among these methods, known methods for producing hydrocarbon oil from coal include a direct method of coal liquefaction and an indirect method of production via synthesis gas, and the former is still in the research and development process. At present, product quality is inferior and economical efficiency is also inferior. The latter, on the other hand, is already in practical operation at SASOL South Africa, which combines a coal gasification process with a Fitscher-Tropsch process. It is well known that carbon-containing substances such as coal, natural gas, or asphalt, which are difficult to convert directly into gasoline, kerosene, or light oil, can be easily converted into a mixed gas of carbon monoxide and hydrogen through gasification. .
It is also known that this gas mixture can be converted into a hydrocarbon mixture by contacting it in the presence of a suitable catalyst. For example, the Fitscher-Tropsch method uses iron,
Known for the production of hydrocarbon mixtures from synthesis gas in the presence of catalysts based on cobalt, nickel, ruthenium and rhodium, this method produces a wide range of hydrocarbon mixtures ranging from methane to waxes (paraffins, olefins) and various oxygenated compounds (alcohols, ethers, etc.), and it is not possible to selectively obtain valuable products with specific boiling point ranges. Among the above-mentioned Fitscher-Tropschew catalysts using various metals, the one used in practical operation is an iron-based catalyst, but it is said that it produces a lot of carbon dioxide gas as a by-product and is prone to deterioration due to a large amount of carbon deposits. There are drawbacks. In addition, ruthenium-based catalysts are known as catalysts that produce less carbon dioxide as a by-product, but with conventional catalysts in which ruthenium is supported on an alumina carrier, methane is the main component at relatively low pressures, and liquid The disadvantage is that very few hydrocarbons are obtained. Therefore, in order to solve these drawbacks, the present inventors conducted intensive experimental studies on combinations of active metals and metal compounds that hydrogenate carbon monoxide, and found that the valence of manganese is in the range of 3 to 4. The present inventors have discovered that a catalyst in which ruthenium is supported on a manganese oxide-containing carrier is extremely effective in obtaining hydrocarbons having two or more carbon atoms from synthesis gas, leading to the completion of the present invention. That is, the present invention provides a method for producing hydrocarbons from synthesis gas in which the valence of manganese is 3 to 4.
In the presence of a catalyst in which ruthenium is supported on a support containing a manganese oxide in the range of This is a process for producing hydrocarbons characterized by producing hydrocarbons in which the proportion of hydrocarbons having a carbon number of 5 or more is 40% by weight or more. The carrier containing manganese oxide as used in the present invention refers to the following. (i) A commercially available manganese oxide that has been calcined; (ii) A manganese compound, for example, an aqueous solution containing manganese nitrate that has been gelled or calcined by adding an alkali such as aqueous ammonia; (iii) A manganese compound. , for example, by immersing a support such as alumina in an aqueous solution containing manganese nitrate and drying it.
Calcined products (iv) In addition to manganese oxides or manganese compounds in (i), (ii), and (iii) above, the periodic table,...
The manganese oxides of (i) to (iv) above are Mn 2 O 3 or
It is MnO2 . Mn 2 O 3 and MnO 2 are firing conditions (temperature)
determined by. Next, regarding the method of supporting ruthenium on the above-mentioned manganese oxide-containing carrier, in an aqueous solution containing a ruthenium compound such as ruthenium chloride or hexaammineruthenium trichloride, or a non-aqueous solution dissolved in a solvent such as acetone. A conventional impregnation technique can be used in which a carrier containing the manganese oxide is immersed in the manganese oxide to impregnate and support the manganese oxide. The amount of ruthenium supported relative to manganese oxide in the catalyst composition is important, and the amount of ruthenium as a metal is 0.1 to 20% by weight, preferably 0.5 to 10% by weight. In this case, adding silica alumina, their sols or sols, other refractory oxides, or natural clay minerals when forming the catalyst is
Any amount may be used as long as it does not impair the performance of the catalyst. Synthesis gas, which serves as the raw material gas in the method of the present invention, is obtained by converting fossil fuels such as coal, natural gas, petroleum coke, shale oil, tar sands or residual oil from petroleum distillation into known gasification reactions, such as partial oxidation reactions or steam reflux reactions. Manufactured arbitrarily by Ohming reaction, etc. It is also possible to use a mixture of carbon monoxide and steam, or a mixture of carbon dioxide and hydrogen, which are precursors to synthesis gas. Furthermore,
The unreacted gas mixture from which the liquid hydrocarbon fraction in the product has been removed can also be used as feed gas. The ratio of hydrogen to carbon monoxide in the synthesis gas varies depending on the carbon source to be gasified, but for the main conversion reaction, the ratio is preferably in the range of 0.2 to 6.0. Synthesis gas has a catalyst and a temperature of 200-400℃, 10-100℃
About 100-10000 synthesis gas volumes at standard temperature and pressure of Kg/cm 2 G and catalyst volume per hour.
Catalytic reaction is carried out at GHSV (gas standard superficial velocity). Furthermore, the present invention can be carried out not only in a fixed bed type reactor but also in a fluidized bed or liquid phase slurry type reactor. Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the extent that it does not go beyond the gist thereof. [Example 1] Aqueous ammonia was added to an aqueous solution containing manganese nitrate until the pH reached 9.0 to create a manganese hydroxide gel, which was then overwashed, dried at 130°C for 3 hours, and then dried at 500°C. After firing for 3 hours, a fine powder of manganese oxide Mn 2 O 3 was obtained. This manganese oxide was immersed in an aqueous ruthenium chloride solution having a ruthenium content of 2% by weight, and then dried at 130° C. for 3 hours to obtain catalyst 1. Catalysts 2, 3, and 4 were prepared in the same manner so that the amount of ruthenium supported was 6, 1, and 0% by weight, respectively. These catalysts 1, 2, 3, and 4 were each packed into a flow-type microreactor (fixed bed), and heated to normal pressure using hydrogen before being subjected to the conversion reaction.
GHSV1000h -1 , 1 hour at 350℃, then 400℃
℃ for 3 hours, followed by synthesis gas at a H 2 /CO molar ratio of 2 at a temperature of 290℃ and 40℃.
The reaction was carried out under the conditions of a pressure of Kg/cm 2 G and a GHSV of 500 h -1 , and the results shown in Table 1 were obtained.

〔実施例 2〕[Example 2]

市販の酸化マンガン(MnO2)粉末とアルミナ
ゾルとを混合した後焼成し、MnO2:Al2O3
1:1(重量比)の混合物を得た。 この混合物にルテニウム含有量が1重量%にな
る量の塩化ルテニウム水溶液に浸漬した後、130
℃で3時間乾燥して触媒5を得た。 実施例1で得たマンガン酸化物の微粉末と酸化
マグネシウムの微粉末とを1対1の重量比で混合
し、乳鉢ですりつぶして両者の均一混合組成物を
得た。 この混合物にルテニウム含有量が1重量%にな
る量の塩化ルテニウム水溶液に浸漬した後、130
℃で3時間乾燥して触媒6を得た。 また、比較例として、アルミニ担体にルテニウ
ム含有量が1重量%になる量の塩化ルテニウム水
溶液に浸漬した後、130℃で乾燥して比較触媒を
得た。 これらの触媒を流通式マイクロリアクターで実
施例1と同じ方法、条件により合成ガスの転化反
応を行わせたところ、表2のような結果が得られ
た。
Commercially available manganese oxide (MnO 2 ) powder and alumina sol are mixed and fired to form MnO 2 :Al 2 O 3 =
A 1:1 (weight ratio) mixture was obtained. After immersing this mixture in an aqueous ruthenium chloride solution with a ruthenium content of 1% by weight,
Catalyst 5 was obtained by drying at ℃ for 3 hours. The manganese oxide fine powder obtained in Example 1 and the magnesium oxide fine powder were mixed at a weight ratio of 1:1 and ground in a mortar to obtain a uniform mixed composition of the two. After immersing this mixture in an aqueous ruthenium chloride solution with a ruthenium content of 1% by weight,
Catalyst 6 was obtained by drying at ℃ for 3 hours. Further, as a comparative example, an aluminum carrier was immersed in an aqueous ruthenium chloride solution having a ruthenium content of 1% by weight, and then dried at 130°C to obtain a comparative catalyst. When these catalysts were subjected to a synthesis gas conversion reaction in a flow microreactor using the same method and conditions as in Example 1, the results shown in Table 2 were obtained.

【表】 以上実施例で示したごとく、本発明におけるマ
ンガンの価数が3〜4の範囲にあるマンガン酸化
物を含有する担体にルテニウムを担持した触媒を
用いることにより、合成ガスから炭素数5以上の
炭化水素の割合が40重量%以上の炭化水素が高収
率で得られる。
[Table] As shown in the examples above, by using a catalyst in which ruthenium is supported on a carrier containing a manganese oxide having a valence of manganese in the range of 3 to 4, synthesis gas can be Hydrocarbons containing the above hydrocarbons in a proportion of 40% by weight or more can be obtained in high yield.

Claims (1)

【特許請求の範囲】[Claims] 1 合成ガスから炭化水素を製造する方法におい
て、マンガンの価数が3〜4の範囲にあるマンガ
ンの酸化物を含有する担体にルテニウム担持した
触媒の存在下で、合成ガスを圧力10〜100Kg/cm2
G、温度200〜400℃の条件で接触させ、生成炭化
水素中の炭素数5以上の炭化水素の割合が40重量
%以上の炭化水素を製造することを特徴とする炭
化水素の製法。
1. In a method for producing hydrocarbons from synthesis gas, synthesis gas is heated at a pressure of 10 to 100 kg/kg in the presence of a catalyst in which ruthenium is supported on a carrier containing a manganese oxide with a manganese valence in the range of 3 to 4. cm2
G. A method for producing hydrocarbons, which comprises contacting at a temperature of 200 to 400°C to produce hydrocarbons in which the proportion of hydrocarbons having 5 or more carbon atoms in the produced hydrocarbons is 40% by weight or more.
JP57158017A 1982-09-13 1982-09-13 Preparation of hydrocarbon Granted JPS5948424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57158017A JPS5948424A (en) 1982-09-13 1982-09-13 Preparation of hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57158017A JPS5948424A (en) 1982-09-13 1982-09-13 Preparation of hydrocarbon

Publications (2)

Publication Number Publication Date
JPS5948424A JPS5948424A (en) 1984-03-19
JPH0245606B2 true JPH0245606B2 (en) 1990-10-11

Family

ID=15662446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57158017A Granted JPS5948424A (en) 1982-09-13 1982-09-13 Preparation of hydrocarbon

Country Status (1)

Country Link
JP (1) JPS5948424A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914612A (en) * 1988-03-31 1990-04-03 International Business Machines Corporation Massively distributed simulation engine
AU2002313208B2 (en) 2001-06-18 2007-07-26 Cosmo Oil Co., Ltd. Method for producing hydrocarbons by fischer-tropsch process
JP4660039B2 (en) * 2001-09-28 2011-03-30 独立行政法人石油天然ガス・金属鉱物資源機構 Process for producing hydrocarbons by Fischer-Tropsch process in the presence of carbon dioxide
JP4660021B2 (en) * 2001-06-18 2011-03-30 独立行政法人石油天然ガス・金属鉱物資源機構 Process for producing hydrocarbons by the Fischer-Tropsch process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US420613A (en) * 1890-02-04 Ashes from steamboats or other vessels

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US420613A (en) * 1890-02-04 Ashes from steamboats or other vessels

Also Published As

Publication number Publication date
JPS5948424A (en) 1984-03-19

Similar Documents

Publication Publication Date Title
US3586621A (en) Hydrocarbon steam reforming,conversion and refining
Lu et al. Direct syngas conversion to liquefied petroleum gas: Importance of a multifunctional metal-zeolite interface
US2686195A (en) Hydrocarbon synthesis
JPH10511731A (en) Hydrocarbon preparation method
US4607056A (en) Mixed aliphatic alcohol production
JP4833070B2 (en) Method for producing liquefied petroleum gas
CN111036278B (en) Method for preparing low-carbon olefin from synthesis gas
US4607055A (en) Aliphatic alcohol production
CN114939433A (en) Composite catalyst for directly preparing light aromatic hydrocarbon by carbon dioxide hydrogenation, preparation and application thereof
WO2014018653A1 (en) Nanoparticle catalyst capable of forming aromatic hydrocarbons from co2 and h2
GB2053960A (en) Process for the preparation of hydrocarbons and hydrocarbons so prepared
JP4132295B2 (en) Method for producing liquid hydrocarbon oil from lower hydrocarbon gas containing carbon dioxide gas
CN103664436A (en) Method for directly transforming synthesis gas into low-carbon olefin
CA1210749A (en) Crystalline silicates, and processes for the production or use thereof
JPH0245605B2 (en)
EP0018683B1 (en) Process for the preparation of hydrocarbons, and hydrocarbons so prepared
JP5988243B2 (en) Hydrocarbon production method
JPH0245606B2 (en)
US4560672A (en) Ruthenium-copper-containing, activated-carbon-supported catalyst and process for making alcohol using same
US5070058A (en) Method for making a catalyst composition used in the production of lower aliphatic alcohols
KR102073959B1 (en) Catalyst for synthesizing synthetic natural gas and manufacturing method for high calorific synthetic natural gas using the same
CN109647492B (en) Catalyst for directly producing low-carbon olefin by synthesis gas
US4440875A (en) Catalytic process for the production of hydrocarbons from syngas
US5013764A (en) Catalyst and method for producing lower aliphatic alcohols
JPS63243194A (en) Production of hydrocarbon