JPH0245503B2 - - Google Patents

Info

Publication number
JPH0245503B2
JPH0245503B2 JP57188204A JP18820482A JPH0245503B2 JP H0245503 B2 JPH0245503 B2 JP H0245503B2 JP 57188204 A JP57188204 A JP 57188204A JP 18820482 A JP18820482 A JP 18820482A JP H0245503 B2 JPH0245503 B2 JP H0245503B2
Authority
JP
Japan
Prior art keywords
oxygen
disk
magnetic field
squeezer
decompression chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57188204A
Other languages
Japanese (ja)
Other versions
JPS5980344A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP57188204A priority Critical patent/JPS5980344A/en
Publication of JPS5980344A publication Critical patent/JPS5980344A/en
Publication of JPH0245503B2 publication Critical patent/JPH0245503B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/035Open gradient magnetic separators, i.e. separators in which the gap is unobstructed, characterised by the configuration of the gap

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】 本発明は、空気中の酸素が他の気体成分元素と
比較して極めて大きい磁化率を有することに基づ
き、磁界発生部を備えた半円容器部分中で酸素を
捕集する酸素富化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on the fact that oxygen in the air has an extremely large magnetic susceptibility compared to other gas component elements, and the present invention is based on the fact that oxygen in the air has an extremely large magnetic susceptibility compared to other gas component elements. related to oxygen enrichment equipment.

空気中の気体成分の磁化率は、酸素が約104×
10-6、窒素が約−0.16×10-6、ヘリウムが約−
0.078×10-6、C、G、S、e、m、uであつて
酸素が極めて大である。この特性を利用して空気
中から磁界作用区域に浮遊拘束された酸素を周り
の空気と共にポンプで吸引し回収する方法が、本
件発明者により特公昭41−10881号公報等により
提案されている。又、内容積の変化可能で弁を備
えた容器中に磁界発生装置を設け、吸入空気中の
酸素を吸着捕捉し内容積を変化させて弁を介して
酸素富化気体を取出し回収する方法が、本件発明
者により特公昭42−15361号公報等により提案さ
れている。又変化磁界を直流バイアスを加えて発
生し酸素を共振分離するための酸素集合装置が、
本件発明者によつて特公昭39−27101号公報等に
提案している。
The magnetic susceptibility of gaseous components in the air is approximately 104× for oxygen.
10 -6 , nitrogen about -0.16×10 -6 , helium about -
0.078×10 -6 , C, G, S, e, m, u, and oxygen is extremely large. A method has been proposed by the inventor of the present invention in Japanese Patent Publication No. 10881/1983, etc., which utilizes this property to suck and recover oxygen floating and restrained in a magnetic field area from the air together with the surrounding air using a pump. Another method is to provide a magnetic field generator in a container with a variable internal volume and equipped with a valve, adsorb and capture oxygen in the intake air, change the internal volume, and extract and collect oxygen-enriched gas through the valve. , has been proposed by the present inventor in Japanese Patent Publication No. 15361/1983. In addition, there is an oxygen gathering device that generates a changing magnetic field by applying a DC bias to resonantly separate oxygen.
The present inventor proposed this in Japanese Patent Publication No. 39-27101.

本発明は前記のこれらの提案について、これを
更に改良した酸素富化気体を発生するための装置
の提供を目的とする。
The present invention aims to provide an apparatus for generating oxygen-enriched gas that is further improved from the above-mentioned proposals.

次に、本発明を一実施例について図示例に基づ
いて説明する。第1図は本発明の一実施例の正面
図、第2図は矢印Aの向きから見た側面図、第3
図はB,B′におけるAの向きからの側断面図、
第4図は磁界発生部の一部拡大側面図を各々示し
たものである。
Next, one embodiment of the present invention will be described based on an illustrated example. Fig. 1 is a front view of one embodiment of the present invention, Fig. 2 is a side view seen from the direction of arrow A, and Fig. 3 is a front view of an embodiment of the present invention.
The figure is a side sectional view from the direction of A at B and B'.
FIG. 4 shows partially enlarged side views of the magnetic field generating section.

第1図、第2図及び第3図に於て、回転円板1
は中央部で回転駆動軸4に固着し所定数rpm回転
をする。円板1は少なくとも1個、通常は複数の
同一形状のものを装着する。円板1の少なくとも
片面、通常は両面に、複数個の磁界発生部3を備
える。この円板1の面に密接してスクイーザ6と
16を、この実施例では円板1の回転方向(図示
矢印の向き)の密封室8出口側に設ける。スクイ
ーザ6と16は、軸4と円板1との間をシールす
る。7は密封室8の入口側で円板1の面と微小間
隙tで円板1に対向し、この部分で酸素富化気体
を外気と共に吸引する。スクイーザ6と16は磁
界発生部3の周りに吸着され、入口側で吸引でき
なかつた酸素富化気体をかき取り減圧室8の端部
に設けた吸引フアン9で排気し、捕集する。減圧
の程度は、例えば外気が1気圧の場合に対し、密
封室が0.1気圧程度を維持する程度にする。この
圧力の基準は使用するために必要とする酸素濃度
を取得するのに充分な減圧に維持する。
In Fig. 1, Fig. 2, and Fig. 3, the rotating disk 1
is fixed to the rotary drive shaft 4 at the center and rotates at a predetermined number of rpm. At least one disc 1, and usually a plurality of discs 1 having the same shape, are mounted. A plurality of magnetic field generating sections 3 are provided on at least one side, usually both sides, of the disk 1. Squeezers 6 and 16 are provided in close contact with the surface of the disc 1, in this embodiment, on the exit side of the sealed chamber 8 in the direction of rotation of the disc 1 (in the direction of the arrow in the figure). Squeezers 6 and 16 seal between shaft 4 and disc 1. 7 faces the disk 1 at the entrance side of the sealed chamber 8 with a small gap t between the surface of the disk 1 and sucks the oxygen-enriched gas together with the outside air. The squeezers 6 and 16 are attracted around the magnetic field generating section 3, and scrape off the oxygen-enriched gas that could not be sucked at the inlet side, exhaust it with a suction fan 9 provided at the end of the decompression chamber 8, and collect it. The degree of pressure reduction is such that, for example, when the outside air is 1 atm, the pressure in the sealed chamber is maintained at about 0.1 atm. This pressure reference is maintained at a vacuum sufficient to obtain the required oxygen concentration for use.

回転円板1の一応用実施例を第4図に示す。こ
の例では、円板1の両面に複数の少なくとも一種
形状を付した磁界発生部3を設ける。
An applied embodiment of the rotating disk 1 is shown in FIG. In this example, a plurality of magnetic field generating sections 3 having at least one shape are provided on both sides of the disk 1.

第4図の例示のものは、円板1の板面2凹部内
に備えた磁石N極の周りにS極を備えたものであ
る。空気中の酸素は磁性が他の気体成分と比較し
て極めて大であるから磁化作用に因る吸着がなさ
れ、第1図に示すように、スクイーザ6と16と
減圧室8とを一定の位置に維持し、円板1を矢印
方向に回転すると、磁極間隙N、S間には酸素が
富化され他の成分は排除され、減圧室8の入口側
7を通過した酸素富化気体は密封室8内に排気フ
アンより吸引される。更に回転すると磁界発生部
3の酸素富化気体は減圧室8の出口側に設けたス
クイーザ6,16によりかき取られ、減圧室8内
に捕集される如くして、これら繰返されることに
より酸素富化気体が生成されるのである。
In the example shown in FIG. 4, an S pole is provided around the N pole of the magnet provided in the concave portion of the plate surface 2 of the disc 1. Oxygen in the air has extremely high magnetism compared to other gas components, so it is attracted by magnetization, and as shown in FIG. When the disc 1 is maintained at It is sucked into the chamber 8 by an exhaust fan. As it rotates further, the oxygen-enriched gas in the magnetic field generating section 3 is scraped off by the squeezers 6 and 16 provided at the outlet side of the decompression chamber 8, and is collected in the decompression chamber 8. By repeating this process, the oxygen-enriched gas is Enriched gas is produced.

円板1の面2に設ける磁界発生部3はスクイー
ザ6と16の密接その他の適用条件を簡便にし単
純にし互換性を与え、作業性を向上するために、
少なくとも一種の同一形状寸法にし同一磁束を生
ずるものであつて、中央部回転駆動軸4から放射
線上に配列するのが好ましい。又、前記スクイー
ザ6,16は図示実施例の形状に限られるもので
はない。任意の形状のものでもよく、又円板の数
個所に配置することができる。円板の面、回転速
度、発生磁化の強さ、酸素富化の所定濃度と生成
量その他の適用条件に応じて設けることができ
る。
The magnetic field generating section 3 provided on the surface 2 of the disk 1 simplifies and simplifies the closeness of the squeezers 6 and 16 and other application conditions, provides compatibility, and improves workability.
It is preferable that they have at least one type of the same shape and size, generate the same magnetic flux, and are arranged radially from the central rotary drive shaft 4. Furthermore, the squeezers 6 and 16 are not limited to the shape of the illustrated embodiment. They may have any shape, and may be placed at several locations on the disk. It can be provided depending on the surface of the disk, rotation speed, strength of generated magnetization, predetermined concentration and amount of oxygen enrichment, and other application conditions.

磁極NとSとは、第1図に同心円的に配列した
正面が円形のものの組を示したが、この形状寸法
に限られるわけではなく、多角形体のものでもよ
い。磁石は、第3図に永久磁石の例を示したが、
これに限られるわけではなく、電磁石を用いても
よい。
Although the magnetic poles N and S are shown as a set of concentrically arranged magnetic poles with circular front faces in FIG. 1, they are not limited to this shape and may be polygonal. As for the magnet, an example of a permanent magnet is shown in Fig. 3, but
The present invention is not limited to this, and an electromagnet may also be used.

既に説明したように、本発明の酸素富化装置
は、少なくとも片面に複数の磁界発生部を散在さ
せて備えた少なくとも一つの回転円板と、該円板
をその中央部を貫通して設けた回転駆動軸と、円
板の中央から外周端に向けて所要の位置に備えた
少なくとも一つのスクイーザと、スクイーザの外
端に密封して設けた減圧室と減圧室の端に設けた
排気フアンとから成る。
As already explained, the oxygen enrichment device of the present invention includes at least one rotating disk provided with a plurality of magnetic field generating parts scattered on at least one side, and the disk is provided through the central part of the rotating disk. A rotary drive shaft, at least one squeezer provided at a predetermined position from the center of the disk toward the outer peripheral edge, a decompression chamber sealed at the outer end of the squeezer, and an exhaust fan provided at the end of the decompression chamber. Consists of.

こうして形成した本発明の装置は、簡便にして
単純な構造にすることができ、極めて良好な作業
性を有し、所望の磁界強さを付し、酸素富化気体
を吸引捕集することができる。
The device of the present invention formed in this manner can have a simple and simple structure, has extremely good workability, can provide a desired magnetic field strength, and can suction and collect oxygen-enriched gas. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の正面図、第2図は
矢印Aの向きからの側面図、第3図はB,B′に
おけるAの向きから見た側断面図、第4図は酸素
富化気体の捕集部の一部拡大側面図を各々示した
ものである。 1……回転円板、2……板面、3……磁界発生
部、4……回転駆動軸、6,16……スクイー
ザ、7……減圧室入口側、8……減圧室、9……
排気フアン。
Fig. 1 is a front view of one embodiment of the present invention, Fig. 2 is a side view taken from the direction of arrow A, Fig. 3 is a side sectional view taken from the direction A at B, B', and Fig. 4 is a side view taken from the direction of arrow A. 2A and 2B are partially enlarged side views of the oxygen-enriched gas collection section. DESCRIPTION OF SYMBOLS 1...Rotating disk, 2...Plate surface, 3...Magnetic field generation part, 4...Rotation drive shaft, 6, 16...Squeezer, 7...Decompression chamber inlet side, 8...Decompression chamber, 9... …
exhaust fan.

Claims (1)

【特許請求の範囲】[Claims] 1 気体を磁化作用を利用し酸素を磁極付近に富
化し減圧室内に分離捕集するための磁界発生部を
備えた回転円板と酸素富化気体を捕集するための
吸引捕集部とから成るものに於て、少なくとも片
面に複数の磁界発生部を散在させて設けた少なく
とも一つの回転円板と、該円板の中央部を貫通し
て設けた回転駆動軸と、前記円板の中央部から外
周端に向けて所要の位置に密接して設けた少なく
とも一つのスクイーザと、該スクイーザの外端に
設けた減圧室と、該減圧室の端部に設けた排気フ
アンとから成り、前記磁界発生部の磁極間隙に磁
化作用で吸着させた酸素富化気体を円板の回転に
伴つてスクイーザから減圧密封室に吸引捕集する
ことを特徴とした酸素富化装置。
1. A rotating disk equipped with a magnetic field generation section for enriching oxygen near magnetic poles using magnetization of the gas and separating and collecting it in a decompression chamber, and a suction collection section for collecting the oxygen-enriched gas. At least one rotating disk having a plurality of magnetic field generating parts scattered on at least one side, a rotational drive shaft passing through the center of the disk, and a center of the disk. It consists of at least one squeezer disposed in close proximity at a required position from the section to the outer peripheral edge, a decompression chamber disposed at the outer end of the squeezer, and an exhaust fan disposed at the end of the decompression chamber; An oxygen enrichment device characterized by sucking and collecting oxygen-enriched gas adsorbed by magnetization in the gap between the magnetic poles of a magnetic field generating part from a squeezer into a vacuum sealed chamber as a disk rotates.
JP57188204A 1982-10-28 1982-10-28 Device for forming enriched oxygen Granted JPS5980344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57188204A JPS5980344A (en) 1982-10-28 1982-10-28 Device for forming enriched oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57188204A JPS5980344A (en) 1982-10-28 1982-10-28 Device for forming enriched oxygen

Publications (2)

Publication Number Publication Date
JPS5980344A JPS5980344A (en) 1984-05-09
JPH0245503B2 true JPH0245503B2 (en) 1990-10-09

Family

ID=16219591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57188204A Granted JPS5980344A (en) 1982-10-28 1982-10-28 Device for forming enriched oxygen

Country Status (1)

Country Link
JP (1) JPS5980344A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353620B2 (en) * 1995-11-13 2002-12-03 トヨタ自動車株式会社 Magnetic oxygen enrichment device
KR20000012682A (en) * 1999-12-14 2000-03-06 김경미 Active air generator
JP2010029751A (en) * 2008-07-25 2010-02-12 Hitachi Plant Technologies Ltd Magnetic separator
US11009292B2 (en) * 2016-02-24 2021-05-18 Zeine, Inc. Systems for extracting oxygen from a liquid

Also Published As

Publication number Publication date
JPS5980344A (en) 1984-05-09

Similar Documents

Publication Publication Date Title
JP3353620B2 (en) Magnetic oxygen enrichment device
PL355419A1 (en) A method and an apparatus for cleaning of gas
WO2003076036A3 (en) Miniature particle and vapor collector
US6450772B1 (en) Compact molecular drag vacuum pump
JPH0245503B2 (en)
KR900015680A (en) Electric cleaner
WO2007120535A2 (en) Separating air and matter
EP1039138A2 (en) Vacuum pump with inverted motor
JP2006513032A (en) A rotating machine that produces adjustable fluid flux from which inclusions are removed and is self-cleaning
KR920013852A (en) Electronically Commutated DC Equipment
JPH0868388A (en) Turbo molecular vacuum pump
CN107051098B (en) Gas-liquid separator
JP2002509475A (en) Suction device
JPS6046903A (en) Oxygen enriching apparatus
JP2539318B2 (en) Contaminated fluid collector
CN209808242U (en) Cleaning turntable and cleaning device of surface treatment equipment and surface treatment equipment
JP3255462B2 (en) Mist collection device
CN215541735U (en) Magnetic impurity removing device for processing superfine material
JPS5832279A (en) Air cleaning method in magnetic device
JPS599112Y2 (en) Sealed rotary refrigerant gas compressor
CN212975779U (en) Frequency conversion drum-type grass leaf sieve
RU2048205C1 (en) Device for separating and purifying gases
JPS6380147A (en) Air suction apparatus
KR0176051B1 (en) Purifier for exhaust of a vacuum cleaner
JPS62126300A (en) Blower with filter