JPH0245135B2 - - Google Patents

Info

Publication number
JPH0245135B2
JPH0245135B2 JP59259796A JP25979684A JPH0245135B2 JP H0245135 B2 JPH0245135 B2 JP H0245135B2 JP 59259796 A JP59259796 A JP 59259796A JP 25979684 A JP25979684 A JP 25979684A JP H0245135 B2 JPH0245135 B2 JP H0245135B2
Authority
JP
Japan
Prior art keywords
liquid
light
output
amount
earthquake sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59259796A
Other languages
Japanese (ja)
Other versions
JPS61137025A (en
Inventor
Hiroshi Ko
Takashi Tokuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Tetsuku Kk
Original Assignee
Fuji Tetsuku Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Tetsuku Kk filed Critical Fuji Tetsuku Kk
Priority to JP59259796A priority Critical patent/JPS61137025A/en
Priority to US06/729,117 priority patent/US4662225A/en
Priority to GB08510935A priority patent/GB2160319B/en
Publication of JPS61137025A publication Critical patent/JPS61137025A/en
Publication of JPH0245135B2 publication Critical patent/JPH0245135B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地震等による振動を感知する地震感
知器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an earthquake sensor that detects vibrations caused by earthquakes and the like.

〔従来の技術及び発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

まず、地震の周波数について説明する。 First, we will explain the frequency of earthquakes.

一般に地震波の主成分の周波数は1〜10Hzにあ
ると言われているが、そのうち特に1〜5Hzの成
分が顕著である。第2図に昭和53年6月12日17時
14分に発生した宮城県沖地震について、一例とし
て大船渡で観測された地震波のパワースペクトル
を示す。卓越振動数は2〜3Hz(2.4Hz)で、1
〜5Hzのパワーが大きい(図示していないが、フ
ーリエスペクトルもほぼ同様な形状で1〜5Hz成
分が多い)。
It is generally said that the main component of seismic waves has a frequency of 1 to 10 Hz, and among these, the 1 to 5 Hz component is particularly prominent. Figure 2 shows 17:00 on June 12, 1978.
As an example, the power spectrum of the seismic waves observed in Ofunato is shown for the Miyagi Prefecture-Oki Earthquake that occurred on the 14th minute. The predominant frequency is 2-3Hz (2.4Hz), 1
-5Hz power is large (although not shown, the Fourier spectrum has almost the same shape and has many 1-5Hz components).

又、電車、ダンプカー、建築工事及び回転機械
等種々の原因による地盤及び建物の微小振動は地
震波とは異なり外乱振動となるが、この外乱振動
は20Hz以上のものが多いが10Hz近傍のものも含ま
れるので誤動作防止の点より日本エレベータ協会
の耐震設計・施工指針の技術基準においては、感
知器の周波数特性として「普通級は1〜5Hzの範
囲でフラツト特性、精密級では0.1〜5Hzの範囲
でフラツト特性、5Hzを越える範囲では感度は下
降特性とすること」となつている。
In addition, minute vibrations in the ground and buildings caused by various causes such as trains, dump trucks, construction work, and rotating machinery are different from seismic waves and constitute disturbance vibrations, but these disturbance vibrations are often over 20Hz, but also include vibrations around 10Hz. Therefore, in order to prevent malfunction, the Japan Elevator Association's technical standards for seismic design and construction guidelines state that the frequency characteristics of the sensor are ``a flat characteristic in the range of 1 to 5 Hz for normal grade, and a flat characteristic in the range of 0.1 to 5 Hz for precision grade. The sensitivity should be flat in the range exceeding 5 Hz.''

上記のような地震の特性に対して、従来の地震
感知器としては、電気式の動電型やストレーンゲ
ージ型、圧電型、或いは機械式の重錘落下型など
が一般に用いられている。
In response to the above-mentioned characteristics of earthquakes, conventional earthquake sensors are generally of an electrodynamic type, a strain gauge type, a piezoelectric type, or a mechanical weight drop type.

第3図に、動電型地震感知器の構造の一例(垂
直方向感知器)を示す。この動電型地震感知器
は、永久磁石4によつて発生する磁束5の中を、
おもり2に固定されたコイル3が振動により上下
に動くと、コイル3の両端に電圧が発生し、この
電圧の大きさがコイル3の移動速度に比例するこ
とを利用して地震を感知するものである。なお、
1はおもり2を支持するばね系であり、6は磁路
を形成するヨークである。このばね系1の固有振
動数は、普通4Hz程度にとられているが、この方
式で周波数特性を前記のように5Hz以上で下降特
性とするのは難しく(ばね系の問題)、通常10Hz
程度以上で下降特性にしている。更に固有振動数
は、ばね系1やおもり2の精度に大きく影響を受
けるので、実際には、最終の工程で手加工により
おもりの重さ等を調整している。すなわち、この
動電型地震感知器は精度や調整の手間の点で問題
を有している。
FIG. 3 shows an example of the structure of an electrodynamic earthquake sensor (vertical sensor). This electrodynamic earthquake sensor passes through the magnetic flux 5 generated by the permanent magnet 4.
When a coil 3 fixed to a weight 2 moves up and down due to vibration, a voltage is generated at both ends of the coil 3, and the magnitude of this voltage is proportional to the moving speed of the coil 3. This is used to detect earthquakes. It is. In addition,
1 is a spring system that supports the weight 2, and 6 is a yoke that forms a magnetic path. The natural frequency of this spring system 1 is normally set to about 4 Hz, but it is difficult to make the frequency characteristics fall above 5 Hz as mentioned above with this method (spring system problem), and it is usually 10 Hz.
If the temperature exceeds a certain level, it becomes a downward characteristic. Furthermore, since the natural frequency is greatly affected by the precision of the spring system 1 and the weight 2, the weight of the weight, etc. is actually adjusted by hand in the final process. That is, this electrodynamic seismic sensor has problems in terms of accuracy and the amount of effort required for adjustment.

また、ストレーンゲージ型地震感知器は、スト
レーンゲージ(歪ゲージ)をX、Y方向に設置
し、これらの電気出力をベクトル合成して加速度
を求めるものであるが、歪ゲージ自身の周波数特
性は数KHzにも及ぶので、電気的フイルターで5
Hz以上を減衰させるようにしている。従つてスト
レーンゲージ型の地震感知器はこのフイルターの
特性に大きく左右され、更にベクトル合成を行な
う為に掛算器等を必要とするなど、多くの誤差要
因を含んでおり信頼性の点で問題がある。なお、
圧電型地震感知器もベクトル合成方式を採用して
おり、同様の問題点を含んでいる。
In addition, in a strain gauge type earthquake sensor, strain gauges are installed in the X and Y directions, and their electrical outputs are vector-combined to obtain acceleration, but the frequency characteristics of the strain gauges themselves are Since it reaches up to KHz, an electric filter can be used to
It is designed to attenuate frequencies above Hz. Therefore, strain gauge type earthquake detectors are greatly affected by the characteristics of this filter, and also include many error factors such as the need for multipliers to perform vector synthesis, which poses problems in terms of reliability. be. In addition,
Piezoelectric earthquake sensors also use a vector synthesis method and have similar problems.

第4図は、重錘落下型地震感知器の構造の一例
を示すものである。これは、静止状態では重錘
(鉄等の磁性体)13が、ケース10に固定され
た永久磁石11に吸引されているが、ある一定以
上の振動が発生するとこの重錘13が落下し、重
錘13にはめ込まれているレバー12が支点15
を中心に矢印方向に回転することにより、マイク
ロスイツチ14のアクチユエータ14′を作動さ
せて地震を感知するものである。
FIG. 4 shows an example of the structure of a falling weight type earthquake sensor. This is because in a stationary state, a weight 13 (magnetic material such as iron) is attracted to the permanent magnet 11 fixed to the case 10, but when vibrations above a certain level occur, the weight 13 falls. The lever 12 fitted into the weight 13 is the fulcrum 15
By rotating in the direction of the arrow around the center, the actuator 14' of the micro switch 14 is actuated to sense an earthquake.

この方式は簡単ではあるが、磁石の吸引力と重
錘の重さの関係によつて感知レベルが左右され、
その調整が大変であると同時に低い周波数(1Hz
以下)では感知しにくいという欠点があり、やは
り精度や信頼性の点で問題がある。
Although this method is simple, the sensing level depends on the relationship between the attraction force of the magnet and the weight of the weight.
Adjustment is difficult and at the same time low frequency (1 Hz)
The following) have the disadvantage of being difficult to detect, and also have problems in terms of accuracy and reliability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、外部からの光を遮断する密閉構造の
容器を備え、該容器の底部には比重が大きく表面
反射率の高い第1の液体と、比重が小さく表面反
射率の低い第2の液体とが入つており、前記第1
の液体及び前記第2の液体の上方には前記容器内
を照射する光源と、該光源が発する光のうち前記
第1の液体表面からの反射光を受光し、その光量
を電気信号に変換する光電変換素子とを設け、前
記第1の液体の液面の傾きを前記第1の液体表面
からの反射光量の変化として捉え、前記光電変換
素子の出力電気信号が所定値よりも大きいとき出
力を発する信号処理部を備えるものである。
The present invention includes a container with a sealed structure that blocks light from the outside, and at the bottom of the container there is a first liquid with a large specific gravity and a high surface reflectance, and a second liquid with a small specific gravity and a low surface reflectance. is included, and the first
above the liquid and the second liquid is a light source that irradiates the inside of the container, and a light source that receives reflected light from the surface of the first liquid among the light emitted by the light source and converts the amount of light into an electrical signal. a photoelectric conversion element, which detects the inclination of the liquid level of the first liquid as a change in the amount of reflected light from the first liquid surface, and outputs an output when an output electric signal of the photoelectric conversion element is larger than a predetermined value. It is equipped with a signal processing section that emits a signal.

〔作用〕[Effect]

第2の液体によつてダンピングされながら振動
に応じて第1の液体の表面が凹凸状に変化すれば
この変化を液体表面での反射光量の変化として捉
え、地震による振動のレベルを検出する。
If the surface of the first liquid changes into an uneven shape in response to the vibration while being damped by the second liquid, this change is taken as a change in the amount of reflected light on the liquid surface, and the level of vibration caused by the earthquake is detected.

〔本発明の原理〕[Principle of the present invention]

即ち、本発明の基本原理は次のとおりである。 That is, the basic principle of the present invention is as follows.

簡単のため、液体の入つた小円筒容器を一定振
動加速度で水平方向に振動させたときの液体の表
面の波の動きは、振動加速度の大きさをA、重力
の加速度をg、波の振幅および波長をそれぞれa
およびλとし、波の進路に沿つてX軸をとるとす
れば第10図に示すように、小円筒容器の側壁の
ところがちようど山ないし谷になる1/2波長の正
弦波の振動が主成分の振動をする。そして、液面
の傾斜角θはその値が小さい場合には次の式で与
えられる。
For simplicity, when a small cylindrical container containing a liquid is vibrated in the horizontal direction with a constant vibrational acceleration, the movement of waves on the surface of the liquid is expressed as follows: the magnitude of the vibrational acceleration is A, the acceleration of gravity is g, and the amplitude of the wave. and the wavelength a
and λ, and if the X-axis is taken along the wave path, then as shown in Figure 10, the vibration of a 1/2-wavelength sine wave that appears at various peaks or troughs on the side wall of the small cylindrical container is generated. The main component vibrates. When the angle of inclination θ of the liquid level is small, it is given by the following equation.

θ=A/g=2πa/λcos2πχ/λ …… つまり、振動加速度の大きさAは液体表面の傾
斜角に比例するから振動加速度を検出するために
は液体表面の傾斜角を検出すればよいことにな
る。
θ=A/g=2πa/λcos2πχ/λ...In other words, since the magnitude A of the vibrational acceleration is proportional to the inclination angle of the liquid surface, in order to detect the vibrational acceleration, it is sufficient to detect the inclination angle of the liquid surface. become.

このような円筒容器内の波は側壁のところで液
体が鉛直方向に動かなければならず、この波のパ
ターンは山ないし谷がちようど側壁の位置にくる
ような大きさになり、水平加振時は第10図、上
下加振時は第11図を基本波モードとする波とな
る。
Waves in a cylindrical container like this require the liquid to move vertically at the side wall, and the wave pattern has peaks or troughs that are large enough to be located at the side wall. The fundamental wave mode is shown in FIG. 10, and the fundamental wave mode is shown in FIG. 11 during vertical vibration.

次に、液面の傾斜角を検出する基本的な光学系
は第12図に示すとおりである。
Next, the basic optical system for detecting the angle of inclination of the liquid surface is as shown in FIG.

即ち、液面への入射光束をφ1、静止した液面
での反射光束をφ2、傾いた液面での反射光束を
φ3、傾斜角θだけ液面が変化したときの光電変
換素子へ入射する光束の変化量をφ4とすると、
図から明らかなように液面がθなる角度だけ傾く
と、反射光束の移動角は2θとなるので、結局光電
変換素子への入射光束の変化量φ4(液体表面から
の反射光束の変化量)はθに比例することにな
る。
That is, the incident light beam on the liquid surface is φ 1 , the reflected light beam on the stationary liquid surface is φ 2 , the reflected light beam on the tilted liquid surface is φ 3 , and the photoelectric conversion element when the liquid surface changes by the tilt angle θ If the amount of change in the luminous flux incident on is φ 4 , then
As is clear from the figure, when the liquid surface is tilted by an angle of θ, the moving angle of the reflected light flux becomes 2θ, so the amount of change in the light flux incident on the photoelectric conversion element is φ 4 (the amount of change in the light flux reflected from the liquid surface) ) is proportional to θ.

今、光電変換素子としてホトダイオードのよう
なものを使用すると、その出力は入射光束(光
量)に比例するから、円筒容器が加速されると、
そのときの出力uは式を考慮すれば次の式で表
わされる。
Now, when we use something like a photodiode as a photoelectric conversion element, its output is proportional to the incident luminous flux (light amount), so when the cylindrical container is accelerated,
The output u at that time can be expressed by the following equation if the equations are considered.

u=K1・θ=K2A …… 但し、K1、K2は定数 つまり、光電変換素子の出力は振動加速度に比
例する。
u=K 1 ·θ=K 2 A... However, K 1 and K 2 are constants. In other words, the output of the photoelectric conversion element is proportional to the vibration acceleration.

〔実施例〕〔Example〕

第5図は、本発明による地震感知器の構成を示
すブロツク図の一例で、図中、20は容器内に入
れた種類の違う液体からの反射光を受光し、受光
量に応じた電気信号20aを出力する感知部、2
1は電気信号20aが所定値を越えると出力を発
する信号処理部である。この例では、信号処理部
21は2段階の設定値を設けており、前置増幅器
(交流増幅器)22の出力が第1の設定値より大
きい場合は第1のコンパレータ23及び出力回路
24により信号24aが出力され、更に第2の設
定値より大きい場合は第2のコンパレータ25及
び出力回路26により信号26aが出力される。
なお、前置増幅器22の後にノイズ除去の為のフ
イルターを設けてもよく、設定値は上記のように
2段階に限らず、任意の複数段階の設定値を簡単
に設けることもできる。
FIG. 5 is an example of a block diagram showing the configuration of an earthquake sensor according to the present invention. In the figure, 20 receives reflected light from different types of liquids contained in a container, and receives an electrical signal according to the amount of received light. a sensing unit that outputs 20a, 2;
Reference numeral 1 denotes a signal processing section that outputs an output when the electric signal 20a exceeds a predetermined value. In this example, the signal processing unit 21 has two levels of set values, and when the output of the preamplifier (AC amplifier) 22 is larger than the first set value, the first comparator 23 and output circuit 24 output a signal. 24a is output, and if it is larger than the second set value, the second comparator 25 and output circuit 26 output a signal 26a.
Note that a filter for noise removal may be provided after the preamplifier 22, and the setting values are not limited to two stages as described above, but may easily be set to any plurality of stages.

第1図は感知部20の一実施例の構造を示す断
面図で31は外部からの光を遮断する密閉構造の
容器、32は容器31内に入れられた液体で例え
ば水銀のように比重が大きく低粘度でかつ表面反
射率の高い液体、33は液体32と比べ比重が小
さく高粘度でかつ表面反射率の低い例えば油のよ
うな液体で二重層液体34を構成している。35
は電源、36は例えば発光ダイオード等の光源、
37は光を受光する光電変換素子である。第1図
において、容器31が静止状態に置かれている場
合は、二重層液体34も静止状態にあり、従つて
液体32からの反射光線の分布は一定で光電変換
素子37の出力37aも一定の直流電圧のみであ
るが、地震等の振動により二重層液体34が揺動
すると二重層を構成する各々の液体32,33の
表面の形状が変わり、特に液体32からの光の反
射や散乱の形態が変化して容器31内の輝度分布
も変化し、それに対応して光電変換素子37の出
力37a(但し前置増幅器22を介した後の出力。
以下感知器20の出力電圧という)は前述の原理
に基づき第6図(aは地震の振動数が低い場合、
bは地震の振動数が高い場合を示す)に示すよう
に変化する。この場合の出力レベルは周波数特性
によつて決まる。
FIG. 1 is a cross-sectional view showing the structure of an embodiment of the sensing unit 20, in which 31 is a container with a closed structure that blocks light from the outside, and 32 is a liquid contained in the container 31, which has a specific gravity such as mercury. The liquid 33 has a large, low viscosity and high surface reflectance, and is a liquid such as oil, which has a lower specific gravity, higher viscosity, and lower surface reflectance than the liquid 32, and constitutes a double layer liquid 34. 35
is a power source, 36 is a light source such as a light emitting diode,
37 is a photoelectric conversion element that receives light. In FIG. 1, when the container 31 is in a stationary state, the double layer liquid 34 is also in a stationary state, so the distribution of reflected light from the liquid 32 is constant and the output 37a of the photoelectric conversion element 37 is also constant. However, when the double layer liquid 34 is shaken due to vibrations such as earthquakes, the shape of the surface of each liquid 32 and 33 making up the double layer changes, and in particular the reflection and scattering of light from the liquid 32 changes. As the shape changes, the luminance distribution inside the container 31 also changes, and correspondingly, the output 37a of the photoelectric conversion element 37 (however, the output after passing through the preamplifier 22).
Based on the above-mentioned principle, the output voltage of the sensor 20 (hereinafter referred to as the output voltage of the sensor 20) is calculated as shown in Fig. 6 (a) when the frequency of the earthquake is low.
b indicates the case where the earthquake frequency is high). The output level in this case is determined by the frequency characteristics.

地震の振動周波数が変われば液体34の揺動の
様子もP波の場合とS波の場合で異なるため、容
器31内の輝度分布も微妙に変化してその影響が
出力電圧に現われる。
If the vibration frequency of the earthquake changes, the way the liquid 34 oscillates will differ between P waves and S waves, so the brightness distribution inside the container 31 will also change slightly, and this effect will appear on the output voltage.

ここで、種類の違う液体32,33から構成さ
れる二重層液体34を容器31内に入れる理由に
ついて以下詳細に説明する。第7図は比重が大き
く低粘度でかつ表面反射率の高い液体32として
JISI級の水銀のみ1gと2gを直径30mm、深さ
12.6mm、頂角100゜の逆円錐形状の容器31内に入
れた場合の感知器20の振動周波数に対する出力
特性の実験結果を示す。第7図aは水平振動(以
下水平振動という、実線は2g、破線は1gの場
合)、第7図bは垂直上下振動(以下上下動とい
う)の場合を示す。第7図からわかるとおり特定
の周波数において水平動に対しては水銀2gの場
合は5Hz付近で極端なピークAが生じ水銀1gの
場合も8Hz付近でピークを生じ、上下動に対して
もピークBが生じ、又このピークの生じる周波数
は液体32の量によつて変化することも実験によ
り明らかになつた。
Here, the reason why the double layer liquid 34 composed of different types of liquids 32 and 33 is placed in the container 31 will be explained in detail below. Figure 7 shows a liquid 32 with high specific gravity, low viscosity, and high surface reflectance.
JISI grade mercury only 1g and 2g in diameter 30mm and depth
The experimental results of the output characteristics with respect to the vibration frequency of the sensor 20 when placed in an inverted conical container 31 having a diameter of 12.6 mm and an apex angle of 100° are shown. FIG. 7a shows the case of horizontal vibration (hereinafter referred to as horizontal vibration; the solid line indicates 2 g and the broken line represents 1 g), and FIG. 7 b shows the case of vertical vertical vibration (hereinafter referred to as vertical motion). As can be seen from Figure 7, at a specific frequency, for horizontal motion, an extreme peak A occurs around 5 Hz for 2 g of mercury, a peak around 8 Hz for 1 g of mercury, and a peak B for vertical motion. It has also been found through experiments that the frequency at which this peak occurs changes depending on the amount of liquid 32.

一方、第8図に比重が小さく高粘度でかつ表面
反射率の低い液体33としてJIS2232の航空機作
動油のみ0.5gと1.5gを直径30mm、深さ12.6mm、
頂角100゜の逆円錐形状の容器31内に入れた場合
の感知器20の振動周波数に対する出力特性の実
験結果を示す。第8図aは水平動、第8図bは上
下動の場合を示す。この場合、水平動に対しては
航空機作動油1.5gの場合は図中点線で示すごと
くピークAが生じるが、0.5gの航空機作動油の
場合は図中実線で示すように低周波を最大に周波
数が上がるにつれ下降する特性となることがわか
つた。又上下動に対しては0.5gの航空機作動油
の場合低周波が若干上がり周波数が上がるにつれ
略フラツトな特性となることもわかつた。
On the other hand, Fig. 8 shows JIS2232 aircraft hydraulic oil as a liquid 33 with low specific gravity, high viscosity, and low surface reflectance.
The experimental results of the output characteristics with respect to the vibration frequency of the sensor 20 when placed in an inverted conical container 31 with an apex angle of 100° are shown. FIG. 8a shows the case of horizontal movement, and FIG. 8b shows the case of vertical movement. In this case, for horizontal motion, when 1.5 g of aircraft hydraulic oil is used, peak A occurs as shown by the dotted line in the figure, but when 0.5 g of aircraft hydraulic oil is used, the low frequency is maximized as shown by the solid line in the figure. It was found that the characteristic decreases as the frequency increases. It was also found that in the case of 0.5 g of aircraft hydraulic oil, the low frequency increases slightly with respect to vertical motion, and as the frequency increases, the characteristics become approximately flat.

次に第7図の特性を持つ量の液体32即ち水銀
を1gと第8図の実線で示した特性を持つ量の液
体33即ち作動油を0.35gとを用いた二重層液体
34を同じ形状の容器内に入れた場合の振動周波
数に対する感知器20の出力特性の実験結果を第
9図に示す。第9図aは水平動、第9図bは上下
動の場合を示す。ここで第9図aに示すパラメー
タ(g1、g2、g3、g4)は水平振動加速度でv1〜v4
は各々の振動加速度の5Hzにおける出力電圧であ
り、加速度の大きさと出力電圧とは略比例するこ
とがわかつた。因に、水銀の量1gのまま作動油
の量を0.25gにした場合を第9図a1、作動油の量
を0.45gにした場合を第9図a2として示す。又、
第9図bに示すパラメータ(g5、g6)は垂直振動
加速度で、v5、v6は水銀1g、作動油0.35gの場
合の各々の振動加速度の5Hzにおける感知器20
の出力電圧であり、振動加速度の大きさに対し出
力電圧v5、v6は比例する。第9図からは明らかな
ように液体32と33を適当な量に選べば各々の
振動加速度に対する周波数特性は水平動、上下動
共1〜5Hzが略フラツト、5Hz以上では下降特性
で地震波の周波数特性と合致しており、地震感知
器に理想的な特性となることが確認できた。
Next, a double layer liquid 34 is made in the same shape using an amount of liquid 32 having the characteristics shown in FIG. 7, that is, 1 g of mercury, and an amount of liquid 33, that is, 0.35 g of hydraulic oil having the characteristics shown by the solid line in FIG. FIG. 9 shows the experimental results of the output characteristics of the sensor 20 with respect to the vibration frequency when the sensor 20 is placed in a container. FIG. 9a shows the case of horizontal movement, and FIG. 9b shows the case of vertical movement. Here, the parameters (g 1 , g 2 , g 3 , g 4 ) shown in FIG. 9a are horizontal vibration accelerations v 1 to v 4
is the output voltage at 5 Hz of each vibration acceleration, and it was found that the magnitude of the acceleration and the output voltage are approximately proportional. Incidentally, Fig. 9 a 1 shows a case where the amount of hydraulic oil is changed to 0.25 g while keeping the amount of mercury at 1 g, and Fig. 9 a 2 shows a case where the amount of hydraulic oil is changed to 0.45 g. or,
The parameters (g 5 , g 6 ) shown in FIG. 9b are vertical vibration accelerations, and v 5 , v 6 are the vibration accelerations of the sensor 20 at 5 Hz for each vibration acceleration in the case of 1 g of mercury and 0.35 g of hydraulic oil.
The output voltages v 5 and v 6 are proportional to the magnitude of vibration acceleration. As is clear from Fig. 9, if appropriate amounts of liquids 32 and 33 are selected, the frequency characteristics for each vibration acceleration will be approximately flat in the range of 1 to 5 Hz for both horizontal and vertical motions, and will have a falling characteristic above 5 Hz, resulting in the frequency of the seismic wave. It was confirmed that the characteristics match the characteristics and are ideal for an earthquake sensor.

以上述べたように液体32,33の何れかのみ
では周波数1〜5Hzまでをフラツトな特性にする
ことが極めて困難であるが、本発明のように種類
の違う液体32,33を含む二重層液体34を用
いれば液体32のみの特性であるピーク(共振
点)が液体33のダンピング作用によつて押さえ
られかつ低周波では液体32のみの特性が下がる
のを液体33の特性により上げるように働き安定
した理想的な1〜5Hzの間でフラツトな特性を感
知器20自体にもたらせることができる。
As mentioned above, it is extremely difficult to obtain flat characteristics in the frequency range of 1 to 5 Hz using only either liquid 32 or 33, but a double layer liquid containing different types of liquids 32 and 33 as in the present invention If 34 is used, the peak (resonance point), which is the characteristic of only the liquid 32, is suppressed by the damping effect of the liquid 33, and at low frequencies, the characteristics of the liquid 33 work to increase the characteristics of the liquid 33, which decreases, resulting in stability. The sensor 20 itself can have flat characteristics within the ideal range of 1 to 5 Hz.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、前述のように種類の違う液体
を使用することによつて感知部自身を極めて地震
波の周波数特性に合致するものにできるため、信
号処理部21での信号処理が楽にでき誤動作の恐
れがなく、また取付調整の手間もほとんどかから
ず(厳しい水平出しは不要)、その構成では大変
シンプル(低価格)である。更に、加速度の大き
さに対して感知部の出力電圧はリニアとなるの
で、設定値を任意に何段にも分けて設定でき、ま
た、P波、S波のいずれの地震波をも感知する事
ができるという、従来にない秀れた特徴を数多く
有するものである。
According to the present invention, by using different types of liquids as described above, the sensing section itself can be made to match the frequency characteristics of seismic waves, so signal processing in the signal processing section 21 can be easily performed and malfunctions can occur. There is no fear of this, there is almost no need for installation adjustment (no need for strict leveling), and the configuration is very simple (low price). Furthermore, since the output voltage of the sensing section is linear with respect to the magnitude of acceleration, the set value can be set in any number of stages, and it is possible to detect both P-wave and S-wave seismic waves. It has many excellent features that have not been seen before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による感知部の一例を示す断面
図、第2図は地震波のパワースペクトルの一例を
示す図、第3図は動電型地震感知器の構造の一例
を示す図、第4図は重錘落下型地震感知器の構造
の一例を示す図、第5図は本発明の一実施例の構
成を示すブロツク図、第6図は感知部の出力につ
いての実験結果を示す図、第7図及び第8図はそ
れぞれ異なつた種類の液体の場合の出力電圧につ
いて振動周波数に対する出力特性の実験結果を示
す図、第9図は二重層液体の場合の出力電圧につ
いて振動周波数に対する出力特性の実験結果を示
す図、第10図、第11図及び第12図は本発明
の基本原理を説明するための説明図である。 20……感知部、21……信号処理部、22…
…前置増幅器、23,25……コンパレータ、2
4,26……出力回路、31……容器、32,3
3……液体、34……二重層液体、36……光
源、37……光電変換素子。
FIG. 1 is a sectional view showing an example of a sensing section according to the present invention, FIG. 2 is a view showing an example of the power spectrum of seismic waves, FIG. 3 is a view showing an example of the structure of an electrodynamic seismic sensor, and FIG. Figure 5 is a diagram showing an example of the structure of a falling weight type earthquake sensor, Figure 5 is a block diagram showing the configuration of an embodiment of the present invention, Figure 6 is a diagram showing experimental results regarding the output of the sensing section, Figures 7 and 8 are diagrams showing experimental results of output characteristics versus vibration frequency for output voltage for different types of liquids, and Figure 9 is output characteristics for output voltage versus vibration frequency for double-layer liquids. 10, 11, and 12 are explanatory diagrams for explaining the basic principle of the present invention. 20... Sensing section, 21... Signal processing section, 22...
...Preamplifier, 23, 25...Comparator, 2
4, 26... Output circuit, 31... Container, 32, 3
3...Liquid, 34...Double layer liquid, 36...Light source, 37...Photoelectric conversion element.

Claims (1)

【特許請求の範囲】 1 外部からの光を遮断する密閉構造の容器を備
え、該容器の底部には、比重が大きく表面反射率
の高い第1の液体と比重が小さく表面反射率の低
い第2の液体とが入つており、前記第1の液体及
び前記第2の液体の上方には前記容器内を照射す
る光源と、該光源が発する光のうち前記第1の液
体表面からの反射光を受光し、その光量を電気信
号に変換する光電変換素子とを設け、前記第1の
液体の液面の傾きを前記第1の液体表面からの反
射光量の変化として捉え、前記光電変換素子の出
力電気信号が所定値よりも大きいとき出力を発す
る信号処理部を備えたことを特徴とする地震感知
器。 2 前記第1の液体は水銀であることを特徴とす
る特許請求の範囲第1項記載の地震感知器。 3 前記第2の液体は前記第1の液体の動きをダ
ンピングする性質の液体であることを特徴とする
特許請求の範囲第1項記載の地震感知器。 4 前記第2の液体は航空機作動油であることを
特徴とする特許請求の範囲第1項記載の地震感知
器。 5 前記信号処理部は複数の所定値と比較するコ
ンパレータを備えたことを特徴とする特許請求の
範囲第1項記載の地震感知器。 6 前記信号処理部は前記光電変換素子の出力電
気信号を入力として前記第1の液体の液面の傾き
を前記第1の液体表面からの反射光量の変化とし
て捉える交流増幅器を備えたことを特徴とする特
許請求の範囲第1項記載の地震感知器。
[Scope of Claims] 1. A container with a closed structure that blocks light from the outside is provided, and a first liquid having a large specific gravity and a high surface reflectance and a second liquid having a small specific gravity and a low surface reflectance are provided at the bottom of the container. A light source that irradiates the inside of the container is provided above the first liquid and the second liquid, and among the light emitted by the light source, reflected light from the surface of the first liquid is contained. and a photoelectric conversion element that receives light and converts the amount of light into an electrical signal, and detects the inclination of the liquid level of the first liquid as a change in the amount of reflected light from the surface of the first liquid, and converts the amount of light into an electric signal. An earthquake sensor characterized by comprising a signal processing section that emits an output when an output electrical signal is larger than a predetermined value. 2. The earthquake sensor according to claim 1, wherein the first liquid is mercury. 3. The earthquake sensor according to claim 1, wherein the second liquid is a liquid that damps the movement of the first liquid. 4. The earthquake sensor according to claim 1, wherein the second liquid is aircraft hydraulic fluid. 5. The earthquake sensor according to claim 1, wherein the signal processing section includes a comparator for comparing with a plurality of predetermined values. 6. The signal processing unit includes an AC amplifier that receives the output electric signal of the photoelectric conversion element as input and detects the inclination of the liquid level of the first liquid as a change in the amount of light reflected from the first liquid surface. An earthquake sensor according to claim 1.
JP59259796A 1984-05-01 1984-12-08 Earthquake sensor Granted JPS61137025A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59259796A JPS61137025A (en) 1984-12-08 1984-12-08 Earthquake sensor
US06/729,117 US4662225A (en) 1984-05-01 1985-04-30 Seismic detector
GB08510935A GB2160319B (en) 1984-05-01 1985-04-30 Detecting of seismic waves by sensing the movement of a liquid surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59259796A JPS61137025A (en) 1984-12-08 1984-12-08 Earthquake sensor

Publications (2)

Publication Number Publication Date
JPS61137025A JPS61137025A (en) 1986-06-24
JPH0245135B2 true JPH0245135B2 (en) 1990-10-08

Family

ID=17339111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59259796A Granted JPS61137025A (en) 1984-05-01 1984-12-08 Earthquake sensor

Country Status (1)

Country Link
JP (1) JPS61137025A (en)

Also Published As

Publication number Publication date
JPS61137025A (en) 1986-06-24

Similar Documents

Publication Publication Date Title
US4800267A (en) Optical fiber microbend horizontal accelerometer
US6350983B1 (en) Micro-electro-opto-mechanical inertial sensor
CA2535057C (en) Optical accelerometer, optical inclinometer and seismic sensor system using such accelerometer and inclinometer
JP5117665B2 (en) Method and system for slowing proof mass movement within a MEMS structure
KR20100002228A (en) Multistage proof-mass movement deceleration within mems structures
Pike et al. A self-levelling nano-g silicon seismometer
EA016757B1 (en) Microgravimeter for geophysical prospecting
US7600429B2 (en) Vibration spectrum sensor array having differing sensors
JP2017526919A (en) Acceleration measurement
US8026714B2 (en) Accelerometer with enhanced DC stability
US10802040B2 (en) Acceleration sensor
US9823265B2 (en) Geophysical acceleration sensor and method
GB2185575A (en) Oscillating device for determining and/or monitoring a predetermined filling level in a container
JPH0245135B2 (en)
JPH0245133B2 (en)
JP2008190943A (en) Absolute displacement-speed measuring sensor
JPH0245134B2 (en)
JPH07113577B2 (en) Earthquake detector
GB2160319A (en) Detecting of seismic waves by sensing the movement of a liquid surface
JPH0338532B2 (en)
JPH0245137B2 (en)
JPH0245136B2 (en)
JPH0326432Y2 (en)
JPH0421083Y2 (en)
SU1742732A1 (en) Measuring vibration converter