JPH0244775B2 - - Google Patents

Info

Publication number
JPH0244775B2
JPH0244775B2 JP56097549A JP9754981A JPH0244775B2 JP H0244775 B2 JPH0244775 B2 JP H0244775B2 JP 56097549 A JP56097549 A JP 56097549A JP 9754981 A JP9754981 A JP 9754981A JP H0244775 B2 JPH0244775 B2 JP H0244775B2
Authority
JP
Japan
Prior art keywords
hexagonal ferrite
powder
ferrite
recording
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56097549A
Other languages
Japanese (ja)
Other versions
JPS582225A (en
Inventor
Tadashi Ido
Tsutomu Nomura
Osamu Kubo
Tatsumi Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56097549A priority Critical patent/JPS582225A/en
Publication of JPS582225A publication Critical patent/JPS582225A/en
Publication of JPH0244775B2 publication Critical patent/JPH0244775B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、磁気記録用磁性粉末の製造方法に係
り、特に凝集性が低く分散性が高くて高密度垂直
磁化記録に適する六方晶系フエライト磁性粉末の
製造方法に関する。 従来、磁気記録には一般に記録媒体の面内長手
方向の残留磁化を用いる方式(最短記録波長約
1.2μm)が用いられている。しかしこの面内長手
方向の残留磁化を用いる方式では、記録の高密度
化を図ると記録媒体内の減磁界が増加するため高
密度化には限度がある。そこで垂直磁化記録方式
が注目されている、この方式は記録密度を高めて
も記録媒体内の減磁界が減少するので前記のよう
な不都合がなく、本質的に高密度記録に適してい
る。 このような垂直磁化記録方式では、磁気記録層
の磁化容易軸が記録媒体面に垂直であることが必
要であるが、かかる磁気記録層を塗布形式で作成
する場合の磁性粉末として六方晶系フエライト粉
末が試みられている。六方晶系フエライトは、例
えばBaFe12O16がそうであるように平板状でしか
も磁化容易軸が板面に垂直であるため、バインダ
ー等と混合して基材表面に塗布後磁場配向処理や
機械的処理により容易に垂直配向させ得るからで
ある。もつとも、BaFe12O16などは、このままで
は保磁力IHcが大きすぎるので、周知のようにFe
の一部を他の元素例えばAl、Ti、V、Cr、Mn、
Co、Ni、Cu、Zn、Nb、Sb、Taなどの少なくと
も1種に置換することにより、保磁力を磁気記録
用に適した200〜2000Oeに低下させて用いられ
る。 ところで、この六方晶系フエライト結晶の粒径
は0.01〜0.3μmの範囲のものが好ましいとされて
いる。その理由は、0.01μm未満で磁気記録に必
要な強い磁性を呈し得ず、また0.3μmを超えると
高密度記録点での利点が余りなくなるからであ
る。 しかし、結晶の粒径が0.01〜0.3μmの範囲にあ
る六方晶系フエライトの粒子は単磁区構造である
ためいわば永久磁石のようなものであり、磁場を
作用させなくても磁気により凝集する傾向が強
い。しかもこのフエライトの微粒子は平板状であ
るため、板が積み重なるようにして凝集体を作り
易い。そのため、有機バインダーなどと混合した
ときに粉末の分散性が余り良くないという欠点が
あつた。このように分散性が不十分であるとベー
スフイルム上に塗布して磁気記録層を作成して
も、磁気記録における再生出力を決める角形比が
小さく、かつ媒体ノイズが多い記録媒体となる。
従つて、六方晶系フエライト粉末を用いて高密度
磁気記録媒体を製造する場合には、フエライト粉
末の凝集性を低め、分散性を高めることが大きな
課題となつていた。 本発明の目的は、六方晶系フエライト粉末の製
造方法の上述の問題に鑑み、凝集性が低く、分散
性の高い六方晶系フエライト粉末を提供すること
にある。 しかして本発明は、保磁力制御のための置換元
素を含有する六方晶系フエライト粉末を、不活性
雰囲気中で200〜650℃で焼成することを特徴とす
る磁気記録用六方晶フエライト粉末の製造方法で
ある。 本発明における、保磁力制御のための置換元素
を含有する六方晶系フエライトを具体的に示す
と、次式Iで表わす組成を有している。 一般式: AO・n(Fe1-nMn2O3 ……(I) (式中AはBa、Ca、Sr及びPbの総括概念であ
り、Mは当該化合物の保磁力を200〜2000Oeとす
るための置換元素であり、mは0.1〜0.2の数を意
味し、nは5〜6の数を意味する)式Iにおいて
置換元素Mとしては、例えばAl、Ti、V、Cr、
Mn、Co、Ni、Cu、Zn、Nb、Sb、Taなどのす
くなくとも1種以上の元素があげられる。 本発明に用いる不活性雰囲気としては、窒素、
アルゴン、真空などがあげられる。 本発明で得られる六方晶系フエライト粉末は、
化学的には焼成処理を施す前と同じで、六方晶系
フエライト単相からなるものである。 本発明で得られる六方晶系フエライト粉末は、
凝集性が低く、分散性が高い。この特性の評価
は、例えばTemple C.Patton著、栃原・今岡訳
『塗料の流動と顔料分散』(共立出版(株)発行、昭和
46年)に記載のように、適当な溶媒中における粉
末の沈降特性を測定することによつて行うことが
できる。 焼成は200〜650℃の温度で行う必要がある。
200℃未満では分散性を改良することは難しく、
650℃を超える温度では粒子間で焼結反応が起つ
て粒子が大きくなり、これまた分散性低下の別の
原因になるからである。焼結が起ると一般に保磁
力が低下するので保磁力を測定することにより評
価できる。 以下、実施例により本発明を具体的に説明す
る。 実施例 1 先ずBaCl2・2H2O0.014モル、FeCl3
6H2O0.13モル、TiCl40.01モルおよびCoCl2
6H2O0.01モルを純水200mlに溶解して金属塩溶液
を調製した。この金属塩溶液を、純水40ml、
NaOH50g、Na2CO312.5gを溶解してなるアル
カリ溶液と混合し、撹拌して共沈物を得た。この
共沈物を水洗して50℃で乾燥した後、電気炉中に
て900℃で2時間反応させてCo−Ti置換バリウム
フエライトを得た。このようにして得たフエライ
ト粒子をよくほぐしてから、東レエンジニアリン
グ(株)製流動加熱炉を用いてN2ガス雰囲気中で焼
成した。この流動加熱炉は金属製円筒の下端より
ガスを流入させ、その少し上方にフイルターが設
けられていて粉末が円筒外に出ないようになつて
いる。そして、円筒の上端はガスを流出させる開
口部以外は封じられており、粉末が金属円筒外に
出ないようになつている。この金属円筒容器をた
て型の電気炉に設置して、下端から加熱したガス
を流入して粉末を焼成する。金属円筒内部に設け
られた熱電対により焼成温度を測定する。この方
法により温度100℃から800℃までの間の温度で30
分間焼成した。 以上の処理を施したCo−Ti置換バリウムフエ
ライト粉末の分散性を評価するために、前掲
Temple C.Patton著書記載の方法により粉末の
液体中における沈降特性を調べた。 沈降特性の測定条件 55mlのメスシリンダーにシクロヘキサノン50ml
とフエライト粉末5gを入れ、十分に撹拌する。
撹拌停止後、次第に降下してゆく分散粉末の上限
の降下速度を測定し、これを沈降速度とする。ま
た、撹拌停止から24時間後にメスシリンダーの底
に沈積した体積を読み取り、これを沈降体積とす
る。沈降速度や沈降体積が大きいほどフエライト
粒子の凝集度が高いことになる。 また、前述の焼成処理を施したフエライト粉末
の磁気特性も測定した。以上の測定結果を下表に
示す。
The present invention relates to a method for producing magnetic powder for magnetic recording, and particularly to a method for producing hexagonal ferrite magnetic powder that has low cohesiveness and high dispersibility and is suitable for high-density perpendicular magnetization recording. Conventionally, magnetic recording generally uses residual magnetization in the in-plane longitudinal direction of the recording medium (the shortest recording wavelength is approximately
1.2 μm) is used. However, in this method using residual magnetization in the in-plane longitudinal direction, increasing the recording density increases the demagnetizing field within the recording medium, so there is a limit to increasing the recording density. Therefore, the perpendicular magnetization recording method is attracting attention. This method does not have the above-mentioned disadvantages because the demagnetizing field within the recording medium is reduced even if the recording density is increased, and is essentially suitable for high-density recording. In such a perpendicular magnetization recording method, it is necessary that the axis of easy magnetization of the magnetic recording layer is perpendicular to the surface of the recording medium, but when such a magnetic recording layer is created by coating, hexagonal ferrite is used as the magnetic powder. Powders are being tried. Hexagonal ferrite, like BaFe 12 O 16 , for example, has a flat plate shape and the axis of easy magnetization is perpendicular to the plate surface, so it can be mixed with a binder and applied to the surface of the base material, then subjected to magnetic field orientation treatment or mechanical treatment. This is because the vertical alignment can be easily achieved by a specific treatment. However, since the coercive force I Hc of BaFe 12 O 16 is too large as is, it is known that Fe
A part of the other elements such as Al, Ti, V, Cr, Mn,
By substituting at least one of Co, Ni, Cu, Zn, Nb, Sb, Ta, etc., the coercive force is lowered to 200 to 2000 Oe, which is suitable for magnetic recording. By the way, it is said that the grain size of this hexagonal ferrite crystal is preferably in the range of 0.01 to 0.3 μm. The reason for this is that if it is less than 0.01 μm, it cannot exhibit the strong magnetism necessary for magnetic recording, and if it exceeds 0.3 μm, there will be little advantage in high-density recording points. However, hexagonal ferrite particles with a crystal grain size in the range of 0.01 to 0.3 μm have a single domain structure, so they are like permanent magnets and tend to aggregate due to magnetism even without the application of a magnetic field. is strong. Furthermore, since the fine particles of ferrite are tabular, it is easy to form aggregates by stacking the plates. Therefore, the dispersibility of the powder is not very good when mixed with an organic binder or the like. If the dispersibility is insufficient in this way, even if a magnetic recording layer is formed by coating on a base film, the squareness ratio that determines the reproduction output in magnetic recording will be small and the recording medium will have a lot of medium noise.
Therefore, when producing a high-density magnetic recording medium using hexagonal ferrite powder, it has been a major challenge to reduce the agglomeration of the ferrite powder and increase its dispersibility. An object of the present invention is to provide a hexagonal ferrite powder with low agglomeration and high dispersibility in view of the above-mentioned problems in the method for producing hexagonal ferrite powder. Therefore, the present invention is directed to the production of hexagonal ferrite powder for magnetic recording, which is characterized by firing hexagonal ferrite powder containing substitutional elements for coercive force control at 200 to 650°C in an inert atmosphere. It's a method. Specifically, the hexagonal ferrite containing a substitution element for coercive force control in the present invention has a composition represented by the following formula I. General formula: AO・n(Fe 1-n M n ) 2 O 3 ...(I) (In the formula, A is the general concept of Ba, Ca, Sr and Pb, and M is the coercive force of the compound from 200 to 2000 Oe, m means a number of 0.1 to 0.2, n means a number of 5 to 6) In formula I, the substitution element M is, for example, Al, Ti, V, Cr,
Examples include at least one element such as Mn, Co, Ni, Cu, Zn, Nb, Sb, and Ta. The inert atmosphere used in the present invention includes nitrogen,
Examples include argon and vacuum. The hexagonal ferrite powder obtained in the present invention is
Chemically, it is the same as before the firing treatment, and consists of a single hexagonal ferrite phase. The hexagonal ferrite powder obtained in the present invention is
Low agglomeration and high dispersibility. The evaluation of this property can be done, for example, in "Paint Flow and Pigment Dispersion" by Temple C. Patton, translated by Tochihara and Imaoka, published by Kyoritsu Shuppan Co., Ltd., Showa
This can be done by measuring the sedimentation properties of powders in suitable solvents, as described in 1996). Firing must be carried out at a temperature of 200-650 ° C.
It is difficult to improve dispersibility below 200℃;
This is because at a temperature exceeding 650°C, a sintering reaction occurs between particles and the particles become larger, which is another cause of reduced dispersibility. Since coercive force generally decreases when sintering occurs, it can be evaluated by measuring coercive force. Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 First, 0.014 mol of BaCl 2・2H 2 O, FeCl 3
6H 2 O 0.13 mol, TiCl 4 0.01 mol and CoCl 2 .
A metal salt solution was prepared by dissolving 0.01 mol of 6H 2 O in 200 ml of pure water. Add this metal salt solution to 40ml of pure water,
It was mixed with an alkaline solution prepared by dissolving 50 g of NaOH and 12.5 g of Na 2 CO 3 and stirred to obtain a coprecipitate. This coprecipitate was washed with water and dried at 50°C, and then reacted in an electric furnace at 900°C for 2 hours to obtain a Co-Ti substituted barium ferrite. The ferrite particles thus obtained were thoroughly loosened and then fired in a N 2 gas atmosphere using a fluidized heating furnace manufactured by Toray Engineering Co., Ltd. In this fluidized fluidized heating furnace, gas is introduced from the lower end of a metal cylinder, and a filter is installed slightly above the gas to prevent powder from coming out of the cylinder. The upper end of the cylinder is sealed except for the opening through which the gas flows out, so that the powder does not come out of the metal cylinder. This metal cylindrical container is placed in a vertical electric furnace, and heated gas is introduced from the bottom end to sinter the powder. The firing temperature is measured by a thermocouple installed inside the metal cylinder. This method allows for temperatures between 100°C and 800°C.
Bake for a minute. In order to evaluate the dispersibility of the Co-Ti substituted barium ferrite powder subjected to the above treatment,
The sedimentation properties of powders in liquids were investigated by the method described in Temple C. Patton's book. Measurement conditions for sedimentation properties 50ml of cyclohexanone in a 55ml graduated cylinder
Add 5g of ferrite powder and stir thoroughly.
After the stirring is stopped, the upper limit of the rate of descent of the dispersed powder is measured, and this is taken as the sedimentation rate. Also, read the volume settled at the bottom of the measuring cylinder 24 hours after stopping the stirring, and use this as the settled volume. The higher the sedimentation velocity and sedimentation volume, the higher the degree of agglomeration of the ferrite particles. In addition, the magnetic properties of the ferrite powder subjected to the above-mentioned firing treatment were also measured. The above measurement results are shown in the table below.

【表】 上表より明らかなように、本発明に係るフエラ
イト粉末(No.3〜6)は、焼成しないものよりも
沈降体積が10%少なく、沈降速度は30%と少な
く、分散性が高い。また焼成温度が650℃を超え
ると(No.7、8)保磁力が低下傾向にあるので、
粒子間の焼結が起つていることがわかる。 なお、沈降特性の測定を、溶媒にシクロヘキサ
ノンの代りにトルエン、メチルエチルケトン、又
はメチルイソブチルケトンを用いて行つてみたが
上表に示した結果と同様であつた。 実施例 2 バリウムフエライトの代りにストロンチウムフ
エライト、鉛フエライト、及びカルシウムフエラ
イトを製造し、同様に処理し、測定したが同様の
結果であつた。また共沈法以外の方法で製造した
六方晶系フエライトに本発明に従つて不活性雰囲
気中の焼成を施した場合も同様の結果であつた。
[Table] As is clear from the above table, the ferrite powders according to the present invention (Nos. 3 to 6) have a sedimentation volume that is 10% smaller than those that are not calcined, a sedimentation rate that is as low as 30%, and are highly dispersible. . Also, when the firing temperature exceeds 650℃ (No. 7, 8), the coercive force tends to decrease.
It can be seen that sintering between particles occurs. The sedimentation properties were measured using toluene, methyl ethyl ketone, or methyl isobutyl ketone instead of cyclohexanone as a solvent, but the results were similar to those shown in the table above. Example 2 Strontium ferrite, lead ferrite, and calcium ferrite were produced in place of barium ferrite, treated in the same manner, and measured, but the results were similar. Similar results were also obtained when hexagonal ferrite produced by a method other than the coprecipitation method was fired in an inert atmosphere according to the present invention.

Claims (1)

【特許請求の範囲】 1 保磁力制御のための置換元素を含有する六方
晶系フエライト粉末を、不活性雰囲気中で200〜
650℃で焼成することを特徴とする磁気記録用六
方晶フエライト粉末の製造方法。 2 置換元素を含有する六方晶系フエライトがバ
リウムフエライトである特許請求の範囲第1項に
記載の磁気記録用六方晶フエライト粉末の製造方
法。
[Claims] 1. Hexagonal ferrite powder containing a substitution element for coercive force control is heated to
A method for producing hexagonal ferrite powder for magnetic recording, characterized by firing at 650°C. 2. The method for producing a hexagonal ferrite powder for magnetic recording according to claim 1, wherein the hexagonal ferrite containing a substituent element is barium ferrite.
JP56097549A 1981-06-25 1981-06-25 Hexagonal system ferrite powder for magnetic recording Granted JPS582225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56097549A JPS582225A (en) 1981-06-25 1981-06-25 Hexagonal system ferrite powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56097549A JPS582225A (en) 1981-06-25 1981-06-25 Hexagonal system ferrite powder for magnetic recording

Publications (2)

Publication Number Publication Date
JPS582225A JPS582225A (en) 1983-01-07
JPH0244775B2 true JPH0244775B2 (en) 1990-10-05

Family

ID=14195316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56097549A Granted JPS582225A (en) 1981-06-25 1981-06-25 Hexagonal system ferrite powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPS582225A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168950A (en) * 1983-03-17 1984-09-22 Ricoh Co Ltd Magnetic recording medium
JPS59188106A (en) * 1983-04-08 1984-10-25 Ricoh Co Ltd Photo-magnetic recording medium
US4670323A (en) * 1983-11-26 1987-06-02 Ricoh Company, Ltd. Magneto-optic recording medium having a metal oxide recording layer
US4670322A (en) * 1983-12-05 1987-06-02 Ricoh Company, Ltd. Metal oxide magnetic substance and a magnetic film consisting thereof and their uses
DE3503996A1 (en) * 1984-02-06 1985-08-08 Ricoh Co., Ltd., Tokio/Tokyo MAGNETIC METAL OXIDE SUBSTANCE AND AN EXISTING MAGNETIC LAYER AND THEIR USE
JPH0630142B2 (en) * 1984-04-23 1994-04-20 富士写真フイルム株式会社 Disk-shaped magnetic recording medium
US4699771A (en) * 1984-05-14 1987-10-13 Kabushiki Kaisha Toshiba Magnetic recording powder, method of manufacturing thereof and application thereof
JPH0725553B2 (en) * 1987-05-07 1995-03-22 松下電器産業株式会社 Method for producing plate-like magnetic powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661101A (en) * 1979-10-24 1981-05-26 Toshiba Corp Magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661101A (en) * 1979-10-24 1981-05-26 Toshiba Corp Magnetic recording medium

Also Published As

Publication number Publication date
JPS582225A (en) 1983-01-07

Similar Documents

Publication Publication Date Title
JP5445843B2 (en) Magnetic iron oxide particles, magnetic material, and electromagnetic wave absorber
US5585032A (en) Ferromagnetic fine powder for magnetic recording
JPS63277523A (en) Production of platelike magnetic powder
US5378384A (en) Process of making hexagonal magnetic ferrite pigment for high density magnetic recording applications
JPH0244775B2 (en)
US4764300A (en) Preparation of finely divided and acicular hexagonal ferrites and their use for the production of magnetic recording media and plastoferrites
Sakai et al. Preparation and magnetic properties of barium ferrite fine particles by the coprecipitation salt-catalysis method
US4851292A (en) Plate-like barium ferrite particles suitable for use in magnetic recording and process for producing the same
JPS6242337B2 (en)
US5616414A (en) Hexagonal magnetic ferrite pigment for high density magnetic recording applications
JPS60255628A (en) Fine powder of ba ferrite plate particle for magnetic recording use and its preparation
JPH0359007B2 (en)
JPH0719363B2 (en) Magnetic recording medium
JPH05144615A (en) Magnetic recording magnetic powder and magnetic recording medium using the same
US4272285A (en) Process for producing magnetic metal powders
JPS5841728A (en) Manufacture of fine ferrite powder
JPS6197805A (en) Ferri magnetic particle and making thereof
JPH0469091B2 (en)
JPH0614486B2 (en) Plate-shaped composite ferrite fine particle powder for magnetic recording and method for producing the same
KR970002098B1 (en) Method of barium ferrite powder
JPH0266902A (en) High coercive force platelike magnetoplumbite type ferrite particle powder and manufacture thereof
JP5316522B2 (en) Magnetic particle powder
JPH0514329B2 (en)
JPH0459619A (en) Magnetic powder for magnetic recording and magnetic recording medium therefrom
JPH0825745B2 (en) Method for producing magnetic powder