JPH0244576B2 - - Google Patents

Info

Publication number
JPH0244576B2
JPH0244576B2 JP54157549A JP15754979A JPH0244576B2 JP H0244576 B2 JPH0244576 B2 JP H0244576B2 JP 54157549 A JP54157549 A JP 54157549A JP 15754979 A JP15754979 A JP 15754979A JP H0244576 B2 JPH0244576 B2 JP H0244576B2
Authority
JP
Japan
Prior art keywords
tower
granulation
urea
jet
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54157549A
Other languages
Japanese (ja)
Other versions
JPS5679664A (en
Inventor
Toshio Fujita
Hideaki Matsuoka
Shigemitsu Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP15754979A priority Critical patent/JPS5679664A/en
Publication of JPS5679664A publication Critical patent/JPS5679664A/en
Publication of JPH0244576B2 publication Critical patent/JPH0244576B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fertilizers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、尿素の連続噴流造粒法に関する。更
に詳しくは、本発明は該造粒法において噴流造粒
塔を2基以上シリーズに連結し、第1塔で篩分さ
れた大粒品を次塔へ小粒品を自塔へ再供給する方
法に係る。 昨今、尿素を造粒後樹脂膜等で被覆し、肥料と
して緩効化、施肥時の濃度障害防止、バルクブレ
ンド時の副反応防止等を図る等の研究開発が行な
われている。このように粒状尿素の被覆を行う場
合原料の粒状尿素は、○イ粒度分布巾の狭いこと○ロ
個々の粒子が球状に近いこと、○ハ個々の粒子の表
面が平滑であること、○ニ適当な硬度を有すること
が望まれる。他方、噴流造粒法においては、たと
え均一な粒径の種品すなわち最初に流動層をつく
る為に供給する粒状尿素を用いても、噴霧により
粒径を増大させる過程で粒径分布の巾が広がつて
くる。種品としては、市販のプリル塔で造粒した
粒度8〜14meshの尿素(以下粒度限定を含まず
プリル尿素という)が入手し易く常用されるが、
プリル尿素は、中空であるため噴流層中で衝撃に
より破壊することさえあり、かゝる場合には、噴
流造粒品の紛度分布巾は一層ひろがり、形状も不
良になる。そして公知方法で一塔で連続に噴流造
粒する場合は、造粒中にその一部をぬき出して、
大粒と中粒と小粒に分け、大粒は粉砕再使用、小
粒は再供給し、中粒のみ製品として収得する。し
かし、この中粒品が前記○イ〜○ニの形状的品質を充
分に保持し得ない場合が多く、良好な品質の被覆
粒状尿素を製造するには必ずしも適当でないこと
が伴つた。前記中粒品の収率を著しく低下させれ
ば、形状的品質は、向上するが、製造能率が大巾
に低下して経済性を失う。 本発明者等は、前記技術問題の解決に鋭意努力
した結果、噴流造粒塔を相互に小く共2基以上直
列に連結し、各塔で粒径を小刻みに増加させてい
くこと、その際ですら小量発生する大粒品は、諸
塔より数えて3番目以降の塔に供給すれば、各塔
から次塔へ送り若しくは製品として収得すべき中
粒品若しくは大粒品の分留りは、前記形状的品質
を良好に維持したまゝ向上させ得ることを知つて
本発明を完成した。 以上の記述から明らかなように本発明の目的
は、被覆粒状尿素用に適した形状の良い粒状尿素
の連続製造法を提供するにあり、さらにそのよう
な粒状尿素を提供するにある。其他の目的は、以
下の記述から明らかにされる。本発明は (1) 噴流造粒塔内で粒状尿素を噴流状態に維持し
つつ、該粒状尿素に該塔内下部に設けられたノ
ズルから溶融尿素を噴霧して、該粒状尿素の粒
径を増加させる尿素の造粒法において、二以
上の噴流造粒塔を相互に少くとも二以上直列に
接続し、その1番目若しくは最終の該造粒塔
においては、該塔内で造粒された尿素を大径と
小径のものに分離して前者を第2番目の噴流造
粒塔におくるか、若しくは製品として収得し、
後者は、同一噴流塔に戻してくりかえし粒径を
増加させ、その2番目以降の造粒塔であつて
最終の造粒塔でないn番目の該造粒塔において
は、該塔内で造粒された尿素を大径と中径と小
径のものの3区分に分離して、○イ大径のものを
n+2番目以降の造粒塔に送り、○ロ中径のもの
をn+1番目の造粒塔に送り、ハ小径のものを
同一噴流塔内に戻してくりかえし粒径を増加さ
せ下式(1)で現わされる形状係数φSが0.70以上の
粒状尿素を収得する ここで、 ζ=1−ρB/ρP ρB:嵩密度 (g/ml) ρP:粒子密度 (g/ml) ことを特徴とする形状のよい尿素の連続造粒
法。 (2) 前記(1)に於て、直列の連続は、直前の噴流造
粒塔の製品抜出管と当該噴流造粒塔の原料供給
管とを中間に分級用の篩を介し若しくは介する
ことなく行うことを特徴とする方法。 (3) 前記(1)に於て、各噴流造粒塔で得られた中間
製品は該各塔若しくは該塔外に設けられた篩で
大粒と小粒(直列に配置されている装置の部
分の第一塔と最終塔で得られたものに限る)若
しくは大粒と中粒と小粒(相互に直列に配置
されている造粒装置の部分の第一塔と最終塔で
得られたものを除く)に夫々区分し、イ.前
記に於ける大粒は、次塔へ供給もしくは製品
として収得し、該小粒は同一塔内へ再供給し、
ロ.前記に於ける大粒は当該噴流造粒塔から
数えて3番目以降の造粒塔へ移送し、該中粒
は、当該噴流塔の次塔へ供給し、該小粒は、同
一塔内に再供給する方法。 (4) 前記(1)において最終塔若しくは最終塔の直前
の塔で得られた各中間製品を篩分けして得られ
た大粒品を前者は更に大粒品と中粒品に篩分
けし、後者の大粒品は、前記篩分けに係る大
粒品と共に別途収得し、前記に係る中粒品
を製品として収納する方法。 (5) 前記(1)に於て、大粒と小粒に篩分けする際
の両区分の重量比は1:1〜10であり、大粒
と中粒と小粒に篩分ける際の該三区分の重量比
は0.1〜1:1:1〜10とする方法。 (6) 前記(1)に於て、各噴流塔に供給する溶融尿素
と供給する粒状尿素(再供給を含む)の重量比
は1:1〜10とする方法。 (7) 前記(1)に於て、第1噴流造粒塔に供給する粒
状尿素がプリル尿素である方法。 (8) 前記(6)に於てプリル尿素の粒度が8〜
14meshである方法である。 以下に本発明の構成と効果を詳細に説明する。 本発明に使用する噴流造粒塔は、いわゆる噴流
層式造粒塔であつて、塔本体は例えば塔高/塔径
が10程度の直立円筒であり、その底部に結合され
た円錐状部分をその頂部に流動用気体の排出口を
有する。塔体に取付けられた粒状尿素供給口から
供給された粒状尿素は、前記円錐状部分の先端に
直結された流動用気体吹込管から供給される空気
等の不活性気体により、流動層を形成し、更に該
層の中央部がいわゆる吹抜け状態を形成する噴流
層を形成させかつ維持させられる。前記状態の粒
状尿素に対し、前記円錐状部分内の適当な位置に
ノズル(開口部)を有する溶融尿素供給管から溶
融尿素を噴霧し、噴流層中の尿素粒に付着し固化
させて粒状尿素の粒径を増大させる。 本発明においては、二以上の噴流造粒塔を(相
互に少くとも二以上)直列に接続した装置を使用
する。この二以上の噴流造粒塔の大きさ若しくは
容量は、同一であつても異つていてもよく、通常
は尿素粒径の増大に伴う各噴流層内の尿素量の増
大を考慮して後段の噴流造粒塔を前段の該塔より
大きくする。また、直列に接続すべき塔数は限定
されないが、2以上10殊に3以上5塔程度が該各
塔毎の運転条件の調整をし易く望ましい。また、
該塔は、本発明の方法を実施すべき全塔にわたつ
て必ずしも直列である必要はなく一部に並列部分
を含んでいてもよい。次に、相互に相隣る二つの
噴流造粒塔の直列の接続方法は、前段の該塔の粒
状尿素取出管を前段の粒状尿素供給管に、ロータ
リーバルブを介して○イ直結するか若しくは○ロ前記
取出管と前記供給管の中間に粒径により区分する
為の区分装置例えば篩を介して行う。そして、前
記○イの直結の場合は、前段の噴流造粒塔内には、
粒状尿素を粒径により区分するための機構例えば
篩を有していなければならず、次塔への供給管は
該塔内で区分された大径品又は中径品を受入れる
よう構成されていなければならない。 いづれかの噴流造粒塔で造粒された粒状尿素
は、前述のように塔内又は塔外に設置された粒径
区分装置(例えば篩)により、○イ大径と小径のも
のに二区分されるか若しくは○ロ大径と中径と小径
のものに三区分される。そして二区分か三区分か
を区別する基準は、相互に直列に接続されている
本発明の方法に係る第1の噴流造粒塔ならびに同
様に接続されている最終の該塔は原則として二区
分とし、それら以外の中間の噴流塔造塔は三区分
とする、第1ならびに最終塔の造粒品を二区分す
る理由は、前者では粒度分布の巾が異常になるこ
とが少い為であり、後者では、造粒自体において
粒度調整的運転が期待されるからである。しか
し、前記最終塔に関しては前記(4)に述べたように
大粒区分を更に二区分して、収得すべき製品か
ら、異常な大粒品を除去することを妨げない。ま
た、前記中間の噴流造粒塔の造粒品を三区分す
る。理由は、少量発生する大粒品を区分すること
により、粒径の能率的増大換言すれば塔容量当り
時間当り製造能力を効果的に向上させ得るからで
ある。 前記第1番目若しくは最終の造粒塔において、
夫々前述のように二区分された大粒品と小粒品
は、次のように処理される。即ち、第1塔の大粒
品は、第2塔内へ供給され、小粒品は、第1塔へ
再供給される。同様に、最終塔(直列部分のみな
らず装置全体の最終塔に該当する場合)の大粒品
は製品として収得され、小粒品は該最終塔へ再供
給される。 前記第1番目若しくは最終塔以外の直列配置さ
れた造粒塔において、夫々前述のように三区分さ
れた大粒品、中粒品および小粒品は次のように処
理される。即ち、n塔の大粒品は、n+2番目以
降(但しn+1番目が最終塔のときはn+1番
目)の造粒塔に送る。又は、n+1番目が最終塔
のときは第n塔の大粒品は別途収得して粉砕再使
用等の目的に再使用できる。具体的には、その大
粒品の粒度が、移送されるべきn+1番目で得ら
れる中粒品と同等がより小さいことが望ましい。
しかし、多くの場合、該大粒品は、第n+2番目
の造粒塔に移送できる。また、前記三区分の中、
中粒品は次塔へ、小粒品は同一塔(第n塔)へ再
供給される。 次に、前述のように、a.第1塔若しくは最終塔
又はb.それら以外のn番目の塔に於て、製造され
た粒を二区分又は三区分する基準いいかえると区
分後の各区分の重量比率は、前記a.の場合は大粒
1:小粒1〜10であり、前記b.の場合は、大粒
0.1〜1:中粒1:小粒1〜10である。前記a.の
場合、大粒がより多いと大粒自身の粒度分布巾が
広すぎかつ形状が不良となり易く、逆に小粒がよ
り多いと製造能率が低下する。前記、bの場合、
大粒が前記範囲より多い前記aの場合と同様の理
由の他中粒品の粒度分布および形状が不安定若し
くは不良になり易い。また、同じ場合、中粒が前
記範囲より多いと粒度分布の巾が広すぎ若しくは
該粒子の形状が不良になり易い。同じく小粒が前
記範囲より多いときは、前記aの場合と同様であ
る。例えば、種品(原料尿素)として粒度8〜
14meshのプリル尿素を用い直列3塔で造粒する
場合、第1塔の篩は8メツシユ、第2塔の篩は5
メツシユおよび6.5メツシユとし、第3塔(最終
塔)は4メツシユとして4メツシユオンの大粒を
収得できる。 各塔おける製造すなわち粒径増大の問題を、各
塔へ供給される溶融尿素と供給される粒状尿素
(再供給品を含む)との重量比でとらえると、該
比率は、1:1〜10が好ましい。溶融尿素がこれ
より高いと大粒小粒共に粒度分布が広くなりすぎ
かつ形状が不良になる。また、これより少いと製
造能率が極めて不良となる。 第1塔が、本発明に使用する装置全体に対する
第1塔を兼ねる場合、該第1塔に新に供給する尿
素粒としては、プリル尿素を使用できる。プリル
尿素とはプリル塔内に溶融尿素を雨下させ、冷却
用気体と接触させて得た粒状尿素で、硬度等は必
ずしも充分でないが、本発明の種品(第1塔への
供給用)として使用できる程度の粒度等の品質を
有するものであれば良い。かゝる粒度は限定され
ないが、8〜10meshのものが使用し易い。 本発明の尿素の連続造粒法において、各造粒塔
に供給される粒状尿素の中再供給品と新供給品
(第1塔の場合は種品)の比率(重量)は1〜
10:1とするのが好ましい。再供給品の比率がこ
の範囲より少いと該塔で得られる大粒品又は中粒
品の粒度分布および形状が不安定および不良とな
る。 本発明の尿素の連続造粒法における他の製造条
件は、公知の一塔だけの噴流造粒法と同様で、不
活性気体としては空気、窒素等を用い塔内温度は
室温ないし5℃、噴霧すべき、溶融尿素の温度
は、135℃〜140℃でよい。たゞしこれらの温度範
囲外でも実施できる。塔内圧力は、0.1Kg/cm2
〜1Kg/cm2Gで好ましく実施できる。 本発明方法によると一塔だけの噴流造粒法に較
べ、後述実施例に示すように得られる粒状尿素の
形状係数が著しく蚊善され、かゝる粒状尿素をポ
リエチレン等で被覆した際の溶出抑制効果が、公
知方法にかゝる粒状尿素より著しく優れるだけで
なく、また、造粒塔単位容量当り単位時間当りの
製造能力も、造粒塔の組合せ方法と運転条件によ
り、前記公知方法の製造能力より20%ないし50%
も増加する。また、運転条件の調整が容易なの
で、製品の形状および粒度分布巾が安定し、被覆
粒状尿素用原料粒状尿素の製造法として適してい
る。次に、本発明の造粒法を図面によつて説明す
る。先づ、種品(註、核となる尿素小粒)が、供
給槽1からロータリーバルブ2を経て第1噴流造
粒塔3に送られる。該塔内の種品は該塔下部の空
気吹込管16から供給された空気により、噴流層
を形成させられ、この層に対して溶融尿素を定量
ポンプで13からノズル14を経て噴霧し、種品
の粒径を増大させる。このように製造された種品
は、その一部を連続的にロータリーバルブを経て
取り出し、篩5で大粒品と小粒品に分ける。大粒
品と小粒品を分ける基準は、種品の粒度分布の上
限粒径より10%ないし20%の間の適当値より粒径
の大きいものが、篩上に残るように篩の目(サイ
ズ若しくはメツシユ)を定める。 大粒品と小粒品の篩分け後の重量比率は、前
記ノズル14からの尿素融液の噴霧量とロータリ
ーバルブ2からの種品(戻り小粒を含む)の量と
の比率に密接に関連するが、該比率は通常
1:1〜10、は1:1〜10の範囲内で適当に定
める。 前記篩5で分けた大粒品は、ロータリーバルブ
6を経て第2噴流造粒塔4に送られ、小粒品は戻
り小粒として再度ロータリーバルブ2の手前に戻
される。また、空気吹込管6から該塔内に供給さ
れた空気はバルブ10(流管調節用)を経てパイ
プ18およびサイクロン(図示せず)を経て排気
される。 次に、第2噴流造粒塔7内での造粒工程は、第
1噴流造粒塔におけるそれと全く同様で、製品
(戻り小粒分離前)はロータリーバルブ8から取
り出され、噴流用空気は吹込管6から調節バルブ
11を経てパイプ18へ廃気される。 ロータリーバルブ8を経た製品は篩9で3段階
に篩分けられる。大粒品と中粒品と小粒品に篩分
け後のそれぞれの重量比率は、特に限定はされ
ないが、前記ノズル15からの尿素融液の噴霧量
とロータリーバルブ6からの供給品(戻り小粒を
含む)の量との比率に密接に関連し、該比率は
通常は0.1〜1:1:1〜10、は1:1〜10
の範囲内で適当に定める。 前記篩9で分けた大粒品は、図示してないが、
後段に2以上の噴流造粒塔がシリースに連結され
ている場合は、該塔7を基準にして3番目以降の
噴流造粒塔(多くの場合3番目のものでもよい)
に選択的に供給され、同じく中粒品は2番目の噴
流造粒塔(図示してない)に供給される。また、
小粒品は、前述の場合と同様に戻り小粒としてロ
ータリーバルブ6に供給される。また、前記噴流
造粒塔7が最終塔である場合には、上記大粒品と
中粒品は共に製品として収得してもよく、大粒品
のみ別途収得後粉砕して再使用し、中粒品のみ製
品として収得してもよい。 以下に実施例および比較例を示すが本発明はこ
れらに限定されるものではない。 実施例 1 噴流造粒塔2基をシリーズに直結した前記図の
装置を用い下記第1表の条件で本発明の尿素の造
粒を行つた。種品としては、10〜14メツシユのプ
リル尿素を用いた。結果を第2表に示す。なお、
同表中のφSおよび25℃3日水中溶出率については
後述測定例中に説明されている。 比較例 前記図の装置において供給槽1をロータリーバ
ルブ6に直結して噴流造粒塔7と付属装置を使用
し下記第1表の条件で尿素の造粒を行つた。同表
に明らかなようにこの条件は、上記実施例1にお
ける第2塔としての該塔7の製造条件と同一であ
る。結果を第2表に示す。
The present invention relates to a continuous jet granulation method for urea. More specifically, the present invention relates to a method in which two or more jet granulation towers are connected in series in the granulation method, large grain products sieved in the first tower are fed to the next tower, and small grain products are re-supplied to the own tower. It depends. Recently, research and development efforts have been carried out to coat urea with a resin film or the like after granulation to make it a slow-release fertilizer, prevent concentration disturbances during fertilizer application, and prevent side reactions during bulk blending. When coating granular urea in this way, the raw material granular urea must: ○a have a narrow particle size distribution; It is desirable to have appropriate hardness. On the other hand, in the jet granulation method, even if a seed with a uniform particle size is used, that is, granular urea is initially supplied to create a fluidized bed, the width of the particle size distribution increases during the process of increasing the particle size by spraying. It's spreading. As a seed product, urea with a particle size of 8 to 14 mesh granulated in a commercially available prill tower (hereinafter referred to as prill urea without particle size restrictions) is easily available and commonly used.
Since prill urea is hollow, it may even be destroyed by impact in the spouted bed, and in such a case, the particle size distribution of the jet granulated product will become wider and its shape will become poor. When jet granulation is carried out continuously in one tower using a known method, a part of the granulation is taken out during granulation.
Separate into large grains, medium grains, and small grains; large grains are crushed and reused, small grains are resupplied, and only medium grains are obtained as a product. However, it is often the case that this medium-sized product cannot sufficiently maintain the above-mentioned shape qualities of ◯I to ◯◯, and is not necessarily suitable for producing coated granular urea of good quality. If the yield of the medium-grained product is significantly lowered, the dimensional quality will be improved, but the production efficiency will be greatly reduced and economical efficiency will be lost. As a result of our earnest efforts to solve the above-mentioned technical problem, the inventors of the present invention discovered a method of connecting two or more small jet granulation towers in series and increasing the particle size in each tower in small increments. If large grains, which are produced in small quantities even at the end of the day, are supplied to the third and subsequent towers, the fraction of medium or large grains that should be sent from each tower to the next tower or obtained as a product can be reduced. The present invention was completed based on the knowledge that it is possible to improve the above-mentioned shape quality while maintaining it well. As is clear from the above description, an object of the present invention is to provide a method for continuously producing granular urea with a good shape suitable for coated granular urea, and also to provide such granular urea. Other purposes will become clear from the description below. The present invention provides (1) maintaining the granular urea in a jet state in a jet granulation tower and spraying molten urea onto the granular urea from a nozzle provided at the lower part of the tower to reduce the particle size of the granular urea; In the granulation method for increasing urea, at least two or more jet granulation towers are connected in series, and in the first or last granulation tower, the urea granulated in the tower is Separate into large-diameter and small-diameter ones and send the former to the second jet granulation tower, or obtain it as a product,
The latter is returned to the same jet tower to increase the particle size repeatedly, and in the second and subsequent granulation towers, but not the final granulation tower, the granules are granulated in the tower. Separate the urea into three categories: large diameter, medium diameter, and small diameter, and send the large diameter urea to the n+2nd and subsequent granulation towers, and send the medium diameter urea to the n+1st granulation tower. The small-diameter particles are returned to the same jet column and the particle size is increased repeatedly to obtain granular urea with a shape factor φ S of 0.70 or more expressed by the following formula (1). Here, ζ=1−ρ BP ρ B : Bulk density (g/ml) ρ P : Particle density (g/ml) A continuous granulation method for urea with a good shape. (2) In (1) above, serial continuity means passing a classification sieve between the product extraction pipe of the immediately preceding jet granulation tower and the raw material supply pipe of the jet granulation tower. A method characterized by being performed without (3) In (1) above, the intermediate products obtained in each jet granulation tower are separated into large particles and small particles (parts of the equipment arranged in series) using a sieve installed in each tower or outside the tower. (limited to those obtained in the first column and the last column) or large, medium and small particles (excluding those obtained in the first column and the last column in the parts of the granulator that are arranged in series with each other) A. The large particles in the above are supplied to the next column or obtained as a product, and the small particles are re-supplied into the same column,
B. The large grains in the above are transferred to the third or subsequent granulation tower counting from the jet granulation tower, the medium grains are supplied to the next tower after the jet tower, and the small grains are re-supplied into the same tower. how to. (4) The large grain products obtained by sieving each intermediate product obtained in the final tower or the tower immediately before the final tower in (1) above are further sieved into large grain products and medium grain products, and the latter is further sieved into large grain products and medium grain products. A method in which the large grains are obtained separately together with the large grains subjected to the sieving, and the medium grains according to the above are stored as a product. (5) In (1) above, the weight ratio of the two categories when sieving into large particles and small particles is 1:1 to 10, and the weight of the three categories when sieving into large particles, medium particles, and small particles. The ratio is 0.1-1:1:1-10. (6) In the above (1), the weight ratio of the molten urea supplied to each jet tower and the granular urea supplied (including resupply) is 1:1 to 10. (7) The method according to (1) above, wherein the granular urea supplied to the first jet granulation tower is prill urea. (8) In (6) above, the particle size of prill urea is 8 to
The method is 14mesh. The configuration and effects of the present invention will be explained in detail below. The spouted granulation tower used in the present invention is a so-called spouted bed type granulation tower, and the tower body is, for example, an upright cylinder with a tower height/tower diameter of about 10, and a conical part connected to the bottom of the tower. It has an outlet for fluidizing gas at its top. The granular urea supplied from the granular urea supply port attached to the column body forms a fluidized bed with an inert gas such as air supplied from the fluidizing gas blowing pipe directly connected to the tip of the conical part. Furthermore, a spouted layer forming a so-called blow-through state is formed and maintained in the center of the layer. Molten urea is sprayed onto the granular urea in the above state from a molten urea supply pipe having a nozzle (opening) at an appropriate position within the conical portion, and the urea particles in the spouted bed are adhered to and solidified to form granular urea. increase the particle size of In the present invention, an apparatus in which two or more jet granulation towers (at least two or more of each other) are connected in series is used. The size or capacity of these two or more spouted bed granulators may be the same or different, and usually the latter stage is taken into consideration to increase the amount of urea in each spouted bed as the urea particle size increases. The jet granulation tower is made larger than the preceding tower. Further, the number of columns to be connected in series is not limited, but 2 or more and 10 or more, especially 3 or more and 5 columns is desirable because it is easy to adjust the operating conditions for each column. Also,
The entire column in which the method of the present invention is to be carried out does not necessarily need to be in series, and may include some parallel sections. Next, the method of connecting two mutually adjacent jet granulation towers in series is to directly connect the granular urea takeoff pipe of the tower in the previous stage to the granular urea supply pipe in the previous stage via a rotary valve, or (b) A sorting device, for example a sieve, is used to sort particles according to particle size between the take-out pipe and the supply pipe. In the case of direct connection as in ○B above, there are
A mechanism for separating the granular urea according to particle size must be provided, such as a sieve, and the feed pipe to the next column must be configured to receive the large or medium-sized product that has been separated in the column. Must be. The granulated urea granulated in any of the jet granulation towers is divided into large diameter and small diameter by a particle size classification device (for example, a sieve) installed inside or outside the tower as described above. It is divided into three categories: large diameter, medium diameter, and small diameter. The criterion for distinguishing between two sections and three sections is that the first jet granulation tower according to the method of the present invention that is connected in series with each other and the final tower that is connected in the same manner are, in principle, divided into two sections. The reason why the granulated products from the first and final towers are divided into two is that the width of the particle size distribution is less likely to be abnormal in the former. This is because, in the latter case, particle size control operation is expected in the granulation itself. However, regarding the final column, as described in (4) above, the large particles can be further divided into two to remove abnormally large particles from the product to be obtained. Furthermore, the granulated product from the intermediate jet granulation tower is divided into three categories. The reason is that by separating large particles produced in small amounts, it is possible to effectively increase the particle size, in other words, to effectively improve the production capacity per column capacity per hour. In the first or final granulation tower,
The large grain products and the small grain products, which are divided into two as described above, are processed as follows. That is, the large grains from the first column are fed into the second column, and the small grains are fed back into the first column. Similarly, the large grains of the final column (if applicable to the final column of the entire system, not just the series section) are recovered as product and the small grains are re-fed to the final column. In the granulation towers arranged in series other than the first or last tower, the large granules, medium granules and small granules, each divided into three categories as described above, are processed as follows. That is, the large granules from the n towers are sent to the n+2-th and subsequent granulation towers (however, when the n+1-th is the final tower, the n+1-th granulation tower). Alternatively, when the n+1th column is the final column, the large grains of the nth column can be separately collected and reused for purposes such as pulverization and reuse. Specifically, it is desirable that the particle size of the large grain product is smaller than that of the n+1th medium grain product to be transferred.
However, in many cases the large granules can be transferred to the n+2 granulation tower. Also, among the three categories above,
Medium grain products are re-supplied to the next column, and small grain products are re-supplied to the same column (nth column). Next, as mentioned above, in a. the first column or the final column, or b. the n-th column other than these, the criteria for dividing the produced grains into two or three sections, or in other words, each section after classification. In case of a. above, the weight ratio is 1 large particle: 1 to 10 small particles, and in case of b. above, large particle
0.1-1: medium grains 1: small grains 1-10. In the case of a. above, if there are more large particles, the particle size distribution of the large particles themselves will be too wide and the shape will tend to be poor, and conversely, if there are more small particles, the production efficiency will decrease. In the case of b above,
In addition to the same reason as in case a above where the large particles are larger than the above range, the particle size distribution and shape of medium particle products tend to become unstable or defective. In the same case, if the number of medium particles exceeds the above range, the width of the particle size distribution is likely to be too wide or the shape of the particles is likely to be poor. Similarly, when the number of small particles is greater than the above range, the same applies as in case a above. For example, as a seed product (raw material urea), the particle size is 8~
When granulating 14 mesh prill urea with 3 towers in series, the sieve in the first tower is 8 mesh, and the sieve in the second tower is 5 mesh.
The third tower (final tower) has 4 meshes and can obtain 4 meshes of large grains. The problem of production in each column, that is, increase in particle size, can be considered in terms of the weight ratio of molten urea supplied to each column and granular urea (including re-feed), which is 1:1 to 10. is preferred. If the molten urea is higher than this, the particle size distribution of both large and small particles becomes too wide and the shape becomes poor. Moreover, if it is less than this, manufacturing efficiency will be extremely poor. When the first column also serves as the first column for the entire apparatus used in the present invention, prill urea can be used as the urea particles newly supplied to the first column. Prill urea is granular urea obtained by pouring molten urea into a prill column and contacting it with a cooling gas, and although it does not necessarily have sufficient hardness, it can be used as the seed product of the present invention (for supply to the first column). Any material may be used as long as it has a quality such as particle size that can be used as a material. Although the particle size is not limited, 8 to 10 mesh is easily used. In the continuous urea granulation method of the present invention, the ratio (weight) of the medium resupply of granular urea and the new supply (seed product in the case of the first column) supplied to each granulation tower is 1 to 1.
A ratio of 10:1 is preferable. If the proportion of the re-feed product is less than this range, the particle size distribution and shape of the large or medium-grained product obtained in the column will be unstable and poor. Other production conditions in the continuous urea granulation method of the present invention are similar to the known jet granulation method using only one tower, in which air, nitrogen, etc. are used as the inert gas, and the temperature inside the tower is room temperature to 5°C. The temperature of the molten urea to be sprayed may be between 135°C and 140°C. However, it can also be carried out outside these temperature ranges. The pressure inside the column is 0.1Kg/cm 2 G
It can be preferably carried out at ~1 Kg/cm 2 G. According to the method of the present invention, compared to the jet granulation method using only one tower, the shape factor of the granular urea obtained is significantly improved as shown in the examples below, and the elution when such granular urea is coated with polyethylene etc. Not only is the inhibitory effect significantly superior to that of the granular urea produced by the known method, but the production capacity per unit time per unit volume of the granulation tower is also superior to that of the known method, depending on the granulation tower combination method and operating conditions. 20% to 50% of manufacturing capacity
will also increase. In addition, since the operating conditions can be easily adjusted, the shape and particle size distribution of the product are stable, making it suitable as a method for producing granular urea, a raw material for coated granular urea. Next, the granulation method of the present invention will be explained with reference to the drawings. First, a seed product (note: small urea particles serving as a core) is sent from a supply tank 1 to a first jet granulation tower 3 via a rotary valve 2. The seeds in the column are made to form a spouted bed by air supplied from the air blowing pipe 16 at the bottom of the column, and molten urea is sprayed onto this layer from the metering pump 13 through the nozzle 14 to form the seeds. increase the particle size of the product. A portion of the seeds produced in this way is continuously taken out through a rotary valve and separated into large grains and small grains by a sieve 5. The criterion for separating large grains from small grains is to ensure that particles larger than an appropriate value between 10% and 20% of the upper limit particle size of the grain size distribution remain on the sieve. (Metsuyu) is determined. The weight ratio of large particles and small particles after sieving is closely related to the ratio between the amount of urea melt sprayed from the nozzle 14 and the amount of raw material (including returned small particles) from the rotary valve 2. The ratio is normally set within the range of 1:1 to 10, and is appropriately set within the range of 1:1 to 10. The large particles separated by the sieve 5 are sent to the second jet granulation tower 4 via the rotary valve 6, and the small particles are returned to the rotary valve 2 as small particles. Further, air supplied into the column from the air blowing pipe 6 is exhausted through a valve 10 (for flow pipe adjustment), a pipe 18, and a cyclone (not shown). Next, the granulation process in the second jet granulation tower 7 is exactly the same as that in the first jet granulation tower, the product (before the return small particle separation) is taken out from the rotary valve 8, and the jet air is blown into the Exhaust air is discharged from the pipe 6 via the regulating valve 11 to the pipe 18. The product passed through the rotary valve 8 is sieved into three stages by a sieve 9. The weight ratio of large grains, medium grains, and small grains after sieving is not particularly limited; ), and the ratio is usually 0.1-1:1:1-10, 1:1-10
Appropriately determined within the scope of. Although the large grains separated by the sieve 9 are not shown,
If two or more jet granulation towers are connected in a series in the latter stage, the third or later jet granulation tower based on the tower 7 (in many cases, the third one may be used)
The medium granules are also fed selectively to a second spout granulation tower (not shown). Also,
The small particles are supplied to the rotary valve 6 as return small particles in the same way as in the previous case. In addition, when the jet granulation tower 7 is the final tower, both the large grain product and the medium grain product may be obtained as a product, and only the large grain product is collected separately, then crushed and reused, and the medium grain product is It may be obtained only as a product. Examples and comparative examples are shown below, but the present invention is not limited thereto. Example 1 Urea of the present invention was granulated under the conditions shown in Table 1 below using the apparatus shown in the figure above, in which two jet granulation towers were directly connected in series. As a seed product, 10 to 14 mesh prill urea was used. The results are shown in Table 2. In addition,
The φ S and the 3-day dissolution rate in water at 25°C in the same table are explained in the measurement examples below. Comparative Example In the apparatus shown in the figure above, the supply tank 1 was directly connected to the rotary valve 6, and the jet granulation tower 7 and attached equipment were used to granulate urea under the conditions shown in Table 1 below. As is clear from the table, these conditions are the same as those for producing the column 7 as the second column in Example 1 above. The results are shown in Table 2.

【表】 実施例 2 噴流造粒塔3基をシリーズに直結した前記図の
装置を用い、前記第1表の条件で本発明の造粒を
行つた。種品としては8〜10メツシユのプリル尿
素を用いた。結果を第2表に示す。なお、同表中
のφSおよび25℃3日水中溶出率については後述測
定法中に示されている。
[Table] Example 2 Granulation of the present invention was carried out under the conditions shown in Table 1 using the apparatus shown in the above figure in which three jet granulation towers were directly connected in series. As a seed product, 8 to 10 mesh prill urea was used. The results are shown in Table 2. In addition, the φ S and the 25° C. 3-day water dissolution rate in the same table are shown in the measurement method described later.

【表】 第2表から明らかなように実施各例のφS(形状
係数)ならびに25℃、3日水中溶出率は、いずれ
も比較例のものより顕著にすぐれている。 測定法 上記実施例、比較例で用いたφSは次のように測
定ならびに計算して求めた。 ここで ζ=1−ρB/ρp ρB:嵩密度(g/ml) ρp:粒子密度(g/ml) 上記ρB、ρpは下記の手法で求めた。即ち、ρB
1000mlのメスフラスコにサンプル600gを静かに
入れてその容積(ml)を測ることにより又ρpにつ
いては、400mlのシリコン油を入れた1000mlのメ
スシリンダーにサンプル400gを静かに入れて該
メスシリンダー内容物の容積増加を求めることに
より、夫々次の式により求めた。 ρB=サンプル重量(600g)/メスシリンダーにより測
定された容積(ml) ρp=サンプル重量(400g)/シリコン油の容積増
加(ml) また、上記第2表の25℃、3日水中溶出率は、
造粒された尿素の被覆のされ易さ言いかえると被
覆を一定条件で行つた際の被覆の完全性を示し、
次のように被覆とその後の被覆品の溶出試験を行
つたものである。即ち、各試料(造粒後の尿素)
にポリエチレンの溶剤(テトラクロロエチレン5
重量%)溶液を該各試料の噴流層内に噴霧して該
溶液を瞬時に乾燥させる方法(特公昭54−3104の
実施例7の方法)で、ポリエチレンを各試料に対
し4重量%被覆した。次で、該被覆品各10gを
夫々200mlの水中に浸漬し、25℃で3日間放置し
た溶出量と最初の試料量(10g)との比率を求め
る。
[Table] As is clear from Table 2, the φ S (shape factor) and the dissolution rate in water at 25° C. for 3 days of each example are both significantly superior to those of the comparative example. Measurement method φ S used in the above examples and comparative examples was determined by measurement and calculation as follows. Here, ζ=1−ρ Bp ρ B : Bulk density (g/ml) ρ p : Particle density (g/ml) The above ρ B and ρ p were determined by the following method. That is, ρ B is
For ρ, gently put 600 g of the sample into a 1000 ml volumetric flask and measure its volume (ml).For p , gently put 400 g of the sample into a 1000 ml graduated cylinder containing 400 ml of silicone oil, and measure the contents of the graduated cylinder. By determining the increase in volume of the object, each was determined using the following formula. ρ B = Sample weight (600 g) / Volume measured by graduated cylinder (ml) ρ P = Sample weight (400 g) / Increase in volume of silicone oil (ml) Also, elution in water at 25°C for 3 days in Table 2 above The rate is
Ease of coating of granulated urea In other words, it indicates the completeness of coating when coating is performed under certain conditions,
The coating and subsequent elution test of the coated product were conducted as follows. That is, each sample (urea after granulation)
Polyethylene solvent (tetrachlorethylene 5
Each sample was coated with 4% by weight of polyethylene by spraying a solution (% by weight) into the spouted layer of each sample and drying the solution instantly (method of Example 7 of Japanese Patent Publication No. 54-3104). . Next, each 10 g of the coated product is immersed in 200 ml of water and left at 25° C. for 3 days, and the ratio of the elution amount to the initial sample amount (10 g) is determined.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の造粒法に使用するシリーズ型
噴流式造粒装置のフローシートで、1は、種品供
給槽、2,4,6,8は、粒状尿素用ロータリー
バルブ、3,7は噴流造粒塔、5,9は篩、1
0,11は空気排気用ロータリーバルブである。
つづいて、12,13は溶融尿素供給ポンプ、1
4,15は噴霧ノズル、16,17は空気供給管
である。
The drawing is a flow sheet of a series type jet granulator used in the granulation method of the present invention, in which 1 is a seed supply tank, 2, 4, 6, 8 are rotary valves for granular urea, 3, 7 is a jet granulation tower, 5 and 9 are sieves, 1
0 and 11 are rotary valves for air exhaust.
Subsequently, 12 and 13 are molten urea supply pumps, 1
4 and 15 are spray nozzles, and 16 and 17 are air supply pipes.

Claims (1)

【特許請求の範囲】 1 噴流造粒塔内で粒状尿素を噴流状態に維持し
つつ、該粒状尿素に該塔内下部に設けられたノズ
ルから溶融尿素を噴霧して、該粒状尿素の粒径を
増加させる尿素の造粒法において、 二以上の噴流造粒塔を相互に少なくとも二以
上直列に接続し、 その1番目若しくは最終の該造粒塔において
は、該塔内で造粒された尿素を大径と小径のも
のに分離して、前者を2番目の噴流造粒塔にお
くるか、若しくは製品として収得し、後者は同
一噴流塔に戻してくりかえし粒径を増加させ、 その第2番目以降の造粒塔であつて最終の造
粒塔でないn番目の該造粒塔においては、該塔
内で造粒された尿素を大径と中径と小径のもの
の3区分に分離して、 ○イ 大径のものをn+2番目以降の造粒塔に送
り、 ○ロ 中径のものをn+1番目以降の造粒塔に送
り、 ○ハ 小径のものを同一噴流塔内に戻してくりか
えし粒半径を増加させ、下式(1)で現わされる
形状係数φSが0.70以上の粒状尿素を収得する ここで、 ζ=1−ρB/ρP ρB:嵩密度 (g/ml) ρP:粒子密度 (g/ml) ことを特徴とする形状の良い尿素の連続造粒法。 2 特許請求の範囲1に記載の方法に於て、直列
の接続は、直前の噴流造粒塔の製品抜出管と当該
噴流造粒塔の原料供給管とを中間に分級用の篩を
介し若しくは介することなく行うことを特徴とす
る方法。 3 特許請求の範囲1に記載の方法に於て、各噴
流造粒塔で得られた中間製品は該名塔内若しくは
該塔外に設けられた篩で大粒と小粒(直列に配
管されている装置の部分の第一塔と最終塔で得ら
れたものに限る)若しくは大粒と中粒と小粒
(相互に直列に配管されている造粒装置部分の第
一塔と最終塔で得られるものを除く)に夫々区分
し、イ.前記に於ける大粒は、次塔に供給し
若しくは製品として収得し、該小粒は同一塔内に
再供給し、ロ.前記に於ける大粒は当該噴流塔
から数えて3番目以降の造粒塔へ移送し、該中粒
は、当該噴流塔の次塔へ供給し、該小粒は、同一
塔内に再供給する方法。 4 特許請求の範囲1に記載の方法に於て最終塔
若しくは最終塔の直前の塔で得られた各中間製品
を篩分けして得られた大粒品を前者は更に大粒
品と中粒品とに篩分けし、後者の大粒品は、前
記篩分けに係る大粒品と共に別途収得し、前記
に係る中粒品を製品として収得する方法。 5 特許請求の範囲1に記載の方法に於て、大
粒と小粒に篩分けする際の両区分の重量比は1:
1〜10とし、大粒と中粒と小粒に篩分けする際
の該三区分の重量比は0.1〜1:1:1〜10とす
る方法。 6 特許請求の範囲1に記載の方法に於て、各造
粒塔に供給する溶融尿素と供給する粒状尿素(再
供給品を含む)の重量比は1:1〜10とする方
法。 7 特許請求の範囲1に記載の方法に於て、第1
噴流造粒塔に供給する粒状尿素がプリル尿素であ
る方法。 8 特許請求の範囲6に記載の方法に於て、プリ
ル尿素の粒度が8〜14meshである方法。
[Claims] 1. While maintaining the granular urea in a jet state in a jet granulation tower, the particle size of the granular urea is determined by spraying molten urea onto the granular urea from a nozzle provided at the lower part of the tower. In a urea granulation method that increases the Separate the particles into large diameter and small diameter ones, send the former to the second jet granulation tower or obtain it as a product, and return the latter to the same jet tower to increase the particle size repeatedly. In the subsequent granulation tower, which is not the final granulation tower, the n-th granulation tower separates the urea granulated in the tower into three categories: large diameter, medium diameter, and small diameter. ○B Send the large diameter ones to the n+2nd and subsequent granulation towers, ○B Send the medium diameter ones to the n+1st and subsequent granulation towers, ○C Return the small diameter ones to the same jet tower and repeat the grain radius. to obtain granular urea with a shape factor φ S of 0.70 or more expressed by the following formula (1). Here, ζ=1−ρ BP ρ B : Bulk density (g/ml) ρ P : Particle density (g/ml) A continuous granulation method for urea with a good shape. 2 In the method described in claim 1, the series connection is made by connecting the product extraction pipe of the immediately preceding jet granulation tower and the raw material supply pipe of the jet granulation tower through a classification sieve in the middle. or a method characterized in that it is carried out without any intervention. 3 In the method described in claim 1, the intermediate products obtained in each jet granulation tower are separated into large particles and small particles (which are piped in series) through a sieve installed inside or outside the tower. (Limited to those obtained in the first column and final column of the granulation device section) or large, medium and small particles (limited to those obtained in the first column and final column of the granulation device section which are piped in series with each other) A. The large grains in the above are supplied to the next column or obtained as a product, the small grains are re-supplied to the same column, and b. A method in which the large grains in the above are transferred to the third or subsequent granulation tower counting from the jet tower, the medium grains are supplied to the next tower after the jet tower, and the small grains are resupplied into the same tower. . 4 The large grain products obtained by sieving each intermediate product obtained in the final tower or the tower immediately before the final tower in the method described in claim 1 are further divided into large grain products and medium grain products. A method in which the latter large grains are separately obtained together with the large grains subjected to the sieving, and the medium grains according to the above are obtained as a product. 5 In the method described in claim 1, when sieving into large grains and small grains, the weight ratio of both classifications is 1:
1 to 10, and when sieving into large grains, medium grains, and small grains, the weight ratio of the three categories is 0.1 to 1:1:1 to 10. 6. The method according to claim 1, wherein the weight ratio of molten urea supplied to each granulation tower and granular urea (including resupplied products) is 1:1 to 10. 7 In the method recited in claim 1, the first
A method in which the granular urea supplied to the jet granulation tower is prill urea. 8. The method according to claim 6, wherein the particle size of the prill urea is 8 to 14 mesh.
JP15754979A 1979-12-05 1979-12-05 Continuous granulation of urea having good shape Granted JPS5679664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15754979A JPS5679664A (en) 1979-12-05 1979-12-05 Continuous granulation of urea having good shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15754979A JPS5679664A (en) 1979-12-05 1979-12-05 Continuous granulation of urea having good shape

Publications (2)

Publication Number Publication Date
JPS5679664A JPS5679664A (en) 1981-06-30
JPH0244576B2 true JPH0244576B2 (en) 1990-10-04

Family

ID=15652103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15754979A Granted JPS5679664A (en) 1979-12-05 1979-12-05 Continuous granulation of urea having good shape

Country Status (1)

Country Link
JP (1) JPS5679664A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005037750A1 (en) * 2005-08-10 2007-02-22 Glatt Ingenieurtechnik Gmbh Process for the production of urea pellets

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147502A (en) * 1976-06-02 1977-12-08 Luossavaara Kiirunavaara Ab Process for production of pellets

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147502A (en) * 1976-06-02 1977-12-08 Luossavaara Kiirunavaara Ab Process for production of pellets

Also Published As

Publication number Publication date
JPS5679664A (en) 1981-06-30

Similar Documents

Publication Publication Date Title
US20240042480A1 (en) Fluid Bed Granulation Process and Apparatus
EP0900589B1 (en) Method for granulation and granulator
JP2017200695A (en) Method for producing granule
US9050254B2 (en) Method for production of particles of pharmaceutical substances and the use thereof
CA1154212A (en) Granulation process and apparatus therefor
JP2002530441A (en) Method and apparatus for emptying a polymerization reactor
JPS5921650B2 (en) Granulation method
JPS58170534A (en) Simultaneous sorting, adjusting and continuous discharging method for particulate substance from fluidized bed reactor
US5779945A (en) Process for producing granules
US4686115A (en) Process for granulating chemical products and apparatus therefor
JPS6013735B2 (en) Method for producing granules consisting of a core and a coating layer
JP2003516851A (en) Method and apparatus for processing solutions, melts, suspensions, emulsions, slurries, or solids into granules
EP0212714A1 (en) Process for the preparation of granules and granules obtained by this process
JPH0244576B2 (en)
JPH10216499A (en) Improved method of pelletizing and pelletizer
JPH0138102B2 (en)
JPH0244792B2 (en) RYUJONONYOSOMATAHANYOSOKEIHIRYONOSEIZOHOHO