JPH0244531B2 - - Google Patents

Info

Publication number
JPH0244531B2
JPH0244531B2 JP61181064A JP18106486A JPH0244531B2 JP H0244531 B2 JPH0244531 B2 JP H0244531B2 JP 61181064 A JP61181064 A JP 61181064A JP 18106486 A JP18106486 A JP 18106486A JP H0244531 B2 JPH0244531 B2 JP H0244531B2
Authority
JP
Japan
Prior art keywords
exhaled air
mixing chamber
chamber
partition wall
flowmeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61181064A
Other languages
Japanese (ja)
Other versions
JPS6338435A (en
Inventor
Yoshifumi Sato
Hideki Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koden Corp
Original Assignee
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koden Corp filed Critical Nippon Koden Corp
Priority to JP61181064A priority Critical patent/JPS6338435A/en
Publication of JPS6338435A publication Critical patent/JPS6338435A/en
Publication of JPH0244531B2 publication Critical patent/JPH0244531B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] (産業上の利用分野) 本発明は生体の呼気中の酸素及び炭酸ガス濃度
を測定する呼吸代謝測定装置に係り、特に前記呼
気を拡散するミキシングチヤンバの構造に関す
る。 (従来の技術) 生体、特に人体の呼気中の酸素及び炭酸ガス濃
度を測定して呼吸代謝機能を測定することは、医
療診断上重要な要素である。このための呼吸代謝
測定装置は呼気流量を測定する流量計と、呼気の
濃度差をなくし均一に拡散させるためのミキシン
グチヤンバと、呼気中の酸素及び炭酸ガス濃度を
測定する酸素・炭酸ガスセンサとからなつてい
る。そして従来のミキシングチヤンバ1は第3図
に示すように、両端面に配管2,3が設けられた
密閉円筒状に形成されており、これらの配管2,
3のうち入口側の配管2の一端は前記ミキシング
チヤンバ1内に突出して外周に多数の孔2aが形
成されていた。このようなミキシングチヤンバ1
はチヤンバ1内に残留する呼気と新たに送られて
くる呼気とを完全に拡散し、チヤンバ1内の呼気
の濃度差をなくす作用がある。しかしながら呼気
量には個人差があり、特に安静時と運動時とでは
大きな差がある。一方前記従来のミキシングチヤ
ンバ1の内容積は一定であるため、例えば、呼気
量が300c.c.と少ない場合には完全に拡散されるま
でに時間が長くかかり、1000c.c.と多い場合には拡
散に要する時間が少なく時間差があるという問題
があつた。このため拡散完了後に呼気濃度を測定
しようとすると、時間遅れが一定しないという欠
点があつた。また流量計を自動的に較正しようと
するときは、流量計の前後の管路にバイパスを設
けて、別流路を介して別に設けた較正装置によつ
て較正を行なわなければならず、流量較正が面倒
であるという問題もあつた。 (発明が解決しようとする問題点) 本発明は従来の呼吸代謝測定装置において問題
であつたミキシングチヤンバが一定内容積である
ために、チヤンバ内の呼気の拡散に時間差が発生
し、拡散時間が長くかかる場合があり、かつ流量
計の較正が面倒であるという問題を解決し、短時
間で呼気の拡散ができ、かつ流量計の較正が容易
にできる呼吸代謝測定装置を提供することを目的
とする。 [発明の構成] (問題点を解決するための手段) 本発明は上記の目的を達成するために、生体の
呼気流量を測定する流量計と、この呼気を拡散す
るミキシングチヤンバと、呼気中の酸素、炭酸ガ
ス濃度などのガス濃度を測定するセンサを有する
呼吸代謝測定装置において、前記ミキシングチヤ
ンバ内に気密に摺動可能に設けられた隔壁と、こ
の隔壁を駆動する駆動手段と、前記流量計からの
信号により前記駆動手段の駆動量を設定する制御
装置とを設けたものである。 (作用) 上記の構成によると、流量計が検出した信号を
駆動手段に加えることにより、呼気量に適合した
位置まで隔壁を移動させることができる。この結
果ミキシングチヤンバの隔壁に仕切られた部分の
容積は、あらかじめ設定された呼気量に適合した
容積に自動的に設定されるので、ミキシングチヤ
ンバ内の呼気の拡散が短時間に完全に行なわれ
る。また隔壁の移動する両端を検知する検知手段
の間隔を、あらかじめミキシングチヤンバ内の一
定の容積変化に対応するように設定するならば、
隔壁をこの間隔だけ移動させた一定の流体容積と
流量計の積算値とを比較することにより、流量計
の較正を容易に行なうことができる。 (実施例) 以下、本発明に係る呼吸代謝測定装置の一実施
例を図面を参照して説明する。 第1図及び第2図に本発明の一実施例を示す。
測定する呼気の入口側の管路にはマウスピース
1、可撓管2、方向変換器3、バイパス切替弁
4、サーミスタ付ヒータ5、差圧式流量計6、バ
イパス切替弁7、ミキシングチヤンバ8、可撓管
9、切替バルブ10、配管11が順次接続されて
設けられている。この配管11の下流側にはフア
ン及びサーミスタ付クーラ12を介して酸素・炭
酸ガスセンサ13が接続されており、さらにその
下流にはポンプ14が設けられている。15,1
6はそれぞれバルブ17,18及び流量計19,
20が取付けられた較正用のゼロガス及びスパン
ガスのボンベであり、切替弁21を介して前記ク
ーラ12の入口側に接続されている。 前記ミキシングチヤンバ8は前記バイパス切替
弁7と配管22により接続されており、この配管
22のチヤンバ8内に突出した一端は拡径されか
つ端面が密閉されている。そしてこの拡径部22
aの外周面には多数の孔22bが形成されてい
る。チヤンバ8の内周面にはV字型シールゴム2
3を介して隔壁24が気密にかつ摺動可能に設け
られており、この隔壁24にはチヤンバ8の出口
側端面にV字型シールゴム25を介して気密にか
つ摺動可能に取付けられたパイプ26の一端が開
口して固設されている。このパイプ26のチヤン
バ8から突出した部分の外周面にはラツク27が
軸方向に平行に固設されており、このラツク27
にはモータ28によつて駆動されるピニオンギヤ
29が噛合している。またパイプ26の下部には
本体フレーム30に取付けられたリミツトスイツ
チ31,32とポテンシヨメータ33が配されて
いる。34は制御装置であり、前記流量計6から
送られてくる呼気流量信号を呼気量すなわち換気
量に換算する計算回路35と、この計算回路35
から出力される呼気量信号及び前記ポテンシヨメ
ータ33から送られてくる隔壁24の位置信号と
を受けて比較し、予め設定記憶された呼気量−位
置曲線によつて隔壁移動量を設定する比較回路3
6と、この比較回路36から出力される命令信号
によつてモータの駆動を行なう駆動回路37とか
ら構成されている。 次に本実施例の動作を説明する。被測定者の呼
気はマウスピース1、可撓管2、方向変換器3を
介して自由な方向からヒータ5に送られ、適正な
温度に過熱されて結露が防止される。このときバ
イパス切替弁4,7は直進方向に設定されてい
る。そして流量計6を通つて呼気流量(単位/
S)が測定され、ミキシングチヤンバ8内に送ら
れる。ここで呼気は、拡径部22aに形成された
孔22bから噴出して、チヤンバ8内の入口側端
面と隔壁24との間の空間内で残留している呼気
と新たに導入された呼気とが混合され濃度差なく
完全に拡散される。この拡散された呼気はパイプ
26、バルブ10、配管11を通つてクーラ12
に導入され、適正な温度に冷却された後、酸素・
炭酸ガスセンサ13によつて呼気中の酸素、炭酸
ガス濃度が測定されてポンプ14によつて大気中
に放出される。 ここでチヤンバ8内で効率よく短時間で呼気の
拡散が行なえるチヤンバ8の内容量と呼気量との
関係は例えば下記の第1表に示すようになる。
[Object of the Invention] (Industrial Application Field) The present invention relates to a respiratory metabolism measuring device for measuring the concentration of oxygen and carbon dioxide in the exhaled air of a living body, and particularly to the structure of a mixing chamber that diffuses the exhaled air. (Prior Art) It is an important element in medical diagnosis to measure respiratory metabolic function by measuring oxygen and carbon dioxide concentrations in exhaled breath of a living body, especially a human body. The respiratory metabolic measuring device for this purpose includes a flow meter that measures the expiratory flow rate, a mixing chamber that eliminates concentration differences in exhaled air and diffuses it uniformly, and an oxygen/carbon dioxide sensor that measures the oxygen and carbon dioxide concentrations in exhaled air. It is made up of As shown in FIG. 3, the conventional mixing chamber 1 is formed into a closed cylindrical shape with pipes 2 and 3 provided on both end faces.
One end of the pipe 2 on the inlet side of the mixing chamber 3 protruded into the mixing chamber 1, and a large number of holes 2a were formed on the outer periphery. Mixing chamber 1 like this
has the effect of completely diffusing the exhaled air remaining in the chamber 1 and the newly sent exhaled air, thereby eliminating the concentration difference between the exhaled air within the chamber 1. However, there are individual differences in expiratory volume, and there are particularly large differences between at rest and during exercise. On the other hand, since the internal volume of the conventional mixing chamber 1 is constant, for example, if the exhaled air volume is as small as 300 c.c., it will take a long time for it to be completely diffused; There was a problem that the time required for diffusion was short and there was a time lag. For this reason, when trying to measure exhaled breath concentration after completion of diffusion, there was a drawback that the time delay was inconsistent. In addition, when attempting to automatically calibrate a flowmeter, a bypass must be installed in the pipes before and after the flowmeter, and calibration must be performed via a separate flow path using a separate calibration device. Another problem was that calibration was troublesome. (Problems to be Solved by the Invention) The present invention has a problem in conventional respiratory metabolic measuring devices because the mixing chamber has a constant internal volume, so a time difference occurs in the diffusion of exhaled air within the chamber, and the diffusion time The purpose of the present invention is to provide a respiration metabolism measuring device that can diffuse exhaled air in a short time and easily calibrate the flowmeter, solving the problems that it may take a long time to calibrate the flowmeter and that it is troublesome to calibrate the flowmeter. shall be. [Structure of the Invention] (Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention provides a flowmeter for measuring the expiratory flow rate of a living body, a mixing chamber for diffusing the exhaled air, and a mixing chamber for diffusing the exhaled air. A respiration metabolism measuring device having a sensor for measuring gas concentrations such as oxygen and carbon dioxide concentrations, comprising: a partition wall slidably provided in the mixing chamber in an airtight manner; a driving means for driving the partition wall; A control device is provided for setting the amount of drive of the drive means based on a signal from a flow meter. (Function) According to the above configuration, by applying a signal detected by the flow meter to the driving means, the partition wall can be moved to a position that matches the expiratory volume. As a result, the volume of the part of the mixing chamber partitioned by the partition wall is automatically set to a volume that matches the preset expiratory volume, so that the exhaled air within the mixing chamber is completely diffused in a short period of time. It will be done. Furthermore, if the interval between the detection means for detecting the moving ends of the partition wall is set in advance to correspond to a constant volume change within the mixing chamber, then
The flow meter can be easily calibrated by comparing the constant fluid volume obtained by moving the partition wall by this distance and the integrated value of the flow meter. (Example) Hereinafter, an example of the respiratory metabolism measuring device according to the present invention will be described with reference to the drawings. An embodiment of the present invention is shown in FIGS. 1 and 2. FIG.
A mouthpiece 1, a flexible tube 2, a direction changer 3, a bypass switching valve 4, a heater with a thermistor 5, a differential pressure flowmeter 6, a bypass switching valve 7, and a mixing chamber 8 are included in the pipe on the inlet side of the exhaled air to be measured. , a flexible tube 9, a switching valve 10, and a pipe 11 are connected in this order. An oxygen/carbon dioxide sensor 13 is connected to the downstream side of this piping 11 via a fan and a cooler 12 with a thermistor, and further downstream thereof a pump 14 is provided. 15,1
6 are valves 17, 18 and flowmeter 19, respectively.
20 are cylinders of zero gas and span gas for calibration, which are connected to the inlet side of the cooler 12 via a switching valve 21. The mixing chamber 8 is connected to the bypass switching valve 7 by a pipe 22, and one end of the pipe 22 protruding into the chamber 8 has an enlarged diameter and a sealed end surface. And this enlarged diameter part 22
A large number of holes 22b are formed on the outer peripheral surface of a. There is a V-shaped seal rubber 2 on the inner peripheral surface of the chamber 8.
A partition wall 24 is airtightly and slidably provided through the chamber 3, and a pipe is airtightly and slidably attached to the outlet side end surface of the chamber 8 via a V-shaped seal rubber 25. One end of 26 is open and fixed. A rack 27 is fixed in parallel to the axial direction on the outer peripheral surface of the portion of the pipe 26 that protrudes from the chamber 8.
A pinion gear 29 driven by a motor 28 meshes with the pinion gear 29 . Further, limit switches 31 and 32 and a potentiometer 33 attached to the main body frame 30 are arranged at the lower part of the pipe 26. 34 is a control device, which includes a calculation circuit 35 that converts the expiratory flow rate signal sent from the flow meter 6 into an expiratory volume, that is, a ventilation volume; and this calculation circuit 35.
Comparison in which the expiratory volume signal output from the potentiometer 33 and the position signal of the septum 24 sent from the potentiometer 33 are received and compared, and the septum movement amount is set based on the expiratory volume-position curve set and stored in advance. circuit 3
6, and a drive circuit 37 that drives the motor in accordance with the command signal output from the comparison circuit 36. Next, the operation of this embodiment will be explained. The exhaled breath of the person to be measured is sent from any direction to the heater 5 via the mouthpiece 1, the flexible tube 2, and the direction changer 3, and is heated to an appropriate temperature to prevent dew condensation. At this time, the bypass switching valves 4 and 7 are set in the straight direction. Then, the expiratory flow rate (unit/
S) is measured and sent into the mixing chamber 8. Here, the exhaled air is ejected from the hole 22b formed in the enlarged diameter portion 22a, and the exhaled air remaining in the space between the inlet side end face of the chamber 8 and the partition wall 24 is combined with the newly introduced exhaled air. are mixed and completely diffused without any concentration difference. This diffused exhaled air passes through the pipe 26, valve 10, and piping 11 to the cooler 12.
After being cooled to an appropriate temperature, oxygen and
The concentration of oxygen and carbon dioxide in exhaled breath is measured by the carbon dioxide sensor 13 and released into the atmosphere by the pump 14. Here, the relationship between the internal capacity of the chamber 8 and the amount of exhaled air, which allows exhaled air to be efficiently diffused within the chamber 8 in a short period of time, is shown in Table 1 below, for example.

【表】 チヤンバ8内の入口側端面と隔壁24との間の
内容積は隔壁24に固設されたパイプ26を介し
てポテンシヨメータ33によつて検知される。そ
してこの内容積と流量計6で測定された呼気量と
の関係が前記第1表に示す関係から外れていた場
合には、比較回路36によつてこの関係を一致さ
せる方向にモータ28を駆動させる命令が駆動回
路37に出され、モータ28が回転してピニオン
ギヤ29及びラツク27を介してパイプ26を軸
方向に移動させ、隔壁24が適正内容積になる位
置まで移動して停止する。すなわち流量計6が測
定した呼気量に適合する内容積に前記ミキシング
チヤンバ8を常に維持することができる。従つて
チヤンバ8内の呼気を短時間で完全に拡散するこ
とができる。 次に流量計6の較正方法について説明する。リ
ミツトスイツチ31,32の間隔をあらかじめチ
ヤンバ8内の隔壁24の移動による内容積の変化
量が一定値になる位置に設定しておく。そしてバ
ルブ10を閉じて流量計6に呼気などの流体を送
り、隔壁24を移動させてパイプ26に設けられ
た図示せぬドグがリミツトスイツチ31をたたい
てからリミツトスイツチ32をたたくまでの間に
流量計6を通過した流体の積算容量と、前記設定
されたチヤンバ8の内容積の変化量とを比較して
較正を行なう。 本実施例による流量計6の較正方法によると、
従来のように切替弁4,7によつてバイパスを形
成して別の較正装置によつて較正する必要がな
く、ミキシングチヤンバ8を利用して呼気測定中
でも容易に較正を行なうことができる。 本実施例では流量計が差圧式流量計である場合
について説明したが、この流量計は差圧式に限定
されるものでないことは云うまでもない。 なお、隔壁の駆動装置として、移動量が入力信
号に正確に比例するパルスモータのような手段を
用いた場合には、位置検出手段としてのポテンシ
ヨメータ33は省略することができる。 [発明の効果] 上述したように本発明によれば、呼吸代謝測定
装置に設けられたミキシングチヤンバの内容積を
吸気量に対応して変化させるようにしたので、呼
気のチヤンバ内の拡散を短時間に行なうことがで
き、しかも流量計の較正も容易に行なうことがで
きる。
[Table] The internal volume between the inlet side end face of the chamber 8 and the partition wall 24 is detected by a potentiometer 33 via a pipe 26 fixed to the partition wall 24. If the relationship between this internal volume and the expiratory volume measured by the flowmeter 6 deviates from the relationship shown in Table 1, the comparison circuit 36 drives the motor 28 in a direction that brings this relationship into agreement. A command to do this is issued to the drive circuit 37, and the motor 28 rotates to move the pipe 26 in the axial direction via the pinion gear 29 and the rack 27 until the partition wall 24 reaches a position where it has an appropriate internal volume and then stops. That is, the mixing chamber 8 can always be maintained at an internal volume that matches the expiratory volume measured by the flowmeter 6. Therefore, the exhaled air within the chamber 8 can be completely diffused in a short time. Next, a method for calibrating the flow meter 6 will be explained. The interval between the limit switches 31 and 32 is set in advance at a position where the amount of change in internal volume due to movement of the partition wall 24 in the chamber 8 is a constant value. Then, the valve 10 is closed to send fluid such as exhaled air to the flow meter 6, and the partition wall 24 is moved to adjust the flow rate between when a dog (not shown) provided on the pipe 26 hits the limit switch 31 and until the limit switch 32 is hit. Calibration is performed by comparing the cumulative volume of fluid that has passed through the chamber 6 with the set amount of change in the internal volume of the chamber 8. According to the method of calibrating the flowmeter 6 according to this embodiment,
There is no need to create a bypass using the switching valves 4 and 7 and calibrate using a separate calibrator as in the prior art, and the mixing chamber 8 can be used to easily calibrate even during exhalation measurement. In this embodiment, a case has been described in which the flowmeter is a differential pressure type flowmeter, but it goes without saying that this flowmeter is not limited to a differential pressure type. Note that if means such as a pulse motor whose movement amount is accurately proportional to the input signal is used as the partition wall driving device, the potentiometer 33 as the position detecting means can be omitted. [Effects of the Invention] As described above, according to the present invention, the internal volume of the mixing chamber provided in the respiratory metabolism measuring device is changed in accordance with the amount of inhaled air, so that the diffusion of exhaled air within the chamber is reduced. This can be done in a short time, and the flowmeter can be easily calibrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る呼吸代謝測定装置の一実
施例を示す構成図、第2図は第1図のミキシング
チヤンバを示す縦断面図、第3図は従来のミキシ
ングチヤンバを示す縦断面図である。 6……流量計、8……ミキシングチヤンバ、1
3……センサ、24……隔壁、28……モータ
(駆動手段)、31,32……リミツトスイツチ
(移動端検知手段)、33……ポテンシヨメータ
(位置検出手段)、34……制御装置。
FIG. 1 is a configuration diagram showing an embodiment of the respiratory metabolism measuring device according to the present invention, FIG. 2 is a longitudinal sectional view showing the mixing chamber of FIG. 1, and FIG. 3 is a longitudinal sectional view showing the conventional mixing chamber. It is a front view. 6...Flowmeter, 8...Mixing chamber, 1
3... Sensor, 24... Partition wall, 28... Motor (driving means), 31, 32... Limit switch (moving end detection means), 33... Potentiometer (position detection means), 34... Control device.

Claims (1)

【特許請求の範囲】[Claims] 1 生体の呼気流量を測定する流量計と、この呼
気を拡散するミキシングチヤンバと、呼気中のガ
ス濃度を測定するセンサとを有する呼吸代謝測定
装置において、前記ミキシングチヤンバ内に気密
に摺動可能に設けられた隔壁と、この隔壁を駆動
する駆動手段と、前記流量計からの信号により前
記駆動手段の駆動量を設定する制御装置とを具備
したことを特徴とする呼吸代謝測定装置。
1. In a respiratory metabolic measuring device that includes a flowmeter that measures the exhaled air flow rate of a living body, a mixing chamber that diffuses the exhaled air, and a sensor that measures the gas concentration in the exhaled air, a sensor that airtightly slides into the mixing chamber. 1. A respiratory metabolism measuring device comprising: a partition wall that can be provided, a driving means for driving the partition wall, and a control device for setting a driving amount of the driving means based on a signal from the flow meter.
JP61181064A 1986-07-31 1986-07-31 Respiration metabolism measuring apparatus Granted JPS6338435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61181064A JPS6338435A (en) 1986-07-31 1986-07-31 Respiration metabolism measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61181064A JPS6338435A (en) 1986-07-31 1986-07-31 Respiration metabolism measuring apparatus

Publications (2)

Publication Number Publication Date
JPS6338435A JPS6338435A (en) 1988-02-19
JPH0244531B2 true JPH0244531B2 (en) 1990-10-04

Family

ID=16094158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61181064A Granted JPS6338435A (en) 1986-07-31 1986-07-31 Respiration metabolism measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6338435A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072737A (en) * 1989-04-12 1991-12-17 Puritan-Bennett Corporation Method and apparatus for metabolic monitoring
JP5886060B2 (en) * 2012-01-27 2016-03-16 株式会社フクダ産業 Respiratory flow measurement device and calibration device
JP6140404B2 (en) * 2012-07-13 2017-05-31 ミナト医科学株式会社 Calibration of the delay time of the breath gas analyzer

Also Published As

Publication number Publication date
JPS6338435A (en) 1988-02-19

Similar Documents

Publication Publication Date Title
CA1108039A (en) System for measurement of oxygen uptake and respiratory quotient
US4619269A (en) Apparatus and method for monitoring respiratory gas
US4572208A (en) Metabolic gas monitoring apparatus and method
US3960142A (en) Air flow to pressure differential transducer for pneumotachography
US5072737A (en) Method and apparatus for metabolic monitoring
US5022406A (en) Module for determining diffusing capacity of the lungs for carbon monoxide and method
US5303712A (en) Calibration method for single-breath carbon monoxide lung diffusing capacity test system
US7793659B2 (en) Bymixer apparatus and method for fast-response, adjustable measurement of mixed gas fractions in ventilation circuits
US8776791B2 (en) Respirator and method for calibrating flow rate measuring component thereof
US2630798A (en) Respiratory quotient and metabolism meter
US8820325B2 (en) Bymixer apparatus and method for fast-response, adjustable measurement of mixed gas fractions in ventilation circuits
US20150272475A1 (en) Device for the measurement and analysis of the multiple breath nitrogen washout process
US20130190640A1 (en) Methods and apparatus for the measurement of pulmonary parameters
JPS6257945B2 (en)
JPS6366437A (en) Partial-pressure measuring device for gas dissolved in fluid
EP3605053B1 (en) Exhaled air measurement device
EP1764035B1 (en) Device for the measurement of single-breath diffusing capacity (DLco) of the lung using ultrasound molar mass measurement
FI82803B (en) FOERFARANDE FOER BESTAEMNING AV HALTEN AV EN GASKOMPONENT I EN PATIENTS ANDNINGSLUFT.
Murphy et al. Multi-animal test system for measuring effects of irritant gases and vapors on respiratory function of guinea pigs
JPH0244531B2 (en)
JP2795726B2 (en) Device for measuring unknown parameters of test gas
US8833133B2 (en) Apparatus for evaluation of a device for measuring lung diffusion capacity
US9750431B2 (en) Pulmonary compliance and air flow resistance
US20160331271A1 (en) A manual resuscitator and capnograph assembly
US20050075552A1 (en) Device and method for determining the amount of hemoglobin by means of inhalation of a predefined amount of carbon monoxide