JPH0244319B2 - - Google Patents

Info

Publication number
JPH0244319B2
JPH0244319B2 JP57031555A JP3155582A JPH0244319B2 JP H0244319 B2 JPH0244319 B2 JP H0244319B2 JP 57031555 A JP57031555 A JP 57031555A JP 3155582 A JP3155582 A JP 3155582A JP H0244319 B2 JPH0244319 B2 JP H0244319B2
Authority
JP
Japan
Prior art keywords
complex
maleic anhydride
neocarzinostatin
ncs
sma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57031555A
Other languages
Japanese (ja)
Other versions
JPS58149903A (en
Inventor
Hiroshi Maeda
Ryunosuke Kanamaru
Nakao Ishida
Toshihiko Yoshitake
Minoru Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAYAKU KK
KURARE KK
YAMANOCHI SEIYAKU KK
Original Assignee
KAYAKU KK
KURARE KK
YAMANOCHI SEIYAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAYAKU KK, KURARE KK, YAMANOCHI SEIYAKU KK filed Critical KAYAKU KK
Priority to JP57031555A priority Critical patent/JPS58149903A/en
Priority to AT83301027T priority patent/ATE23863T1/en
Priority to DE8383301027T priority patent/DE3367921D1/en
Priority to EP83301027A priority patent/EP0087957B1/en
Priority to CA000422497A priority patent/CA1214458A/en
Publication of JPS58149903A publication Critical patent/JPS58149903A/en
Priority to US06/730,823 priority patent/US4732933A/en
Publication of JPH0244319B2 publication Critical patent/JPH0244319B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規なネオカルチノスタチン複合体の
製造法に関する。更に詳しくは本発明は式() SMA o− NCS () 〔式中、 NCS はネオカルチノスタチン残基を
意味し、 SMA は平均1分子当り1個以下の無
水マレイン酸環を有し、半アルキルエステル化さ
れた平均分子量1000〜10000のスチレンマレイン
酸共重合体残基を意味し、nは1〜35の整数を意
味する。〕 で示されるネオカルチノスタチン複合体の製造法
に関する。 ネオカルチノスタチンはストレプトミセス・カ
ルチノスタチカス・バリアントF−41・クロヤ
(Streptomyces carzinostaticus var.F−
41Kuroya)の培養物中に産出される蛋白質性抗
癌物質であり(特公昭42−21752号公報及び米国
特許第3334022号明細書参照)、その一次構造は本
発明者の一人である前田によつて、アミノ酸総残
基数が109の推定分子量10700のものとして報告さ
れている〔サイエンス(Science)、178巻、875〜
876頁、1972年及びアルカイブズ・オブ・バイオ
ケミストリイ・アンド・バイオフイジツクス
(Arch.Biochem.Biophys.)、163巻、379〜385頁
参照)。 癌の治療においては、癌細胞の転移が最も重要
な問題であり、就中特にリンパ節転移が最大の問
題である。先に、本発明者はネオカルチノスタチ
ンの毒性の軽減と薬効の持続性を高め、かつ薬物
をリンパ系に特異的に移行せしめることについて
種々研究した結果、ネオカルチノスタチンの分子
中に存在する2個の遊離アミノ基を水溶性ポリス
チレンマレイン酸共重合体の部分水解物と反応せ
しめて得られるネオカルチノスタチン誘導体が上
記目的に合致することを見出し、特許出願した
(特開昭53−117095号公報参照)。 しかし、制癌剤は癌の転移を抑制するための上
記リンパ系に移行する性質の必要性に加えて、腫
瘍親和性が高いことが望ましい。腫瘍親和性が高
いと腫瘍における制癌剤の濃度が選択的に高ま
り、その結果副作用の発現が軽減し、制癌剤の効
果を有効に発揮し得るのである。 そこで、本発明者らはさらに種々研究した結
果、スチレン無水マレイン酸共重合体又はその部
分水解物とは異なる、無水マレイン酸環を有し、
半アルキルエステル化された平均分子量が1000〜
10000のスチレン無水マレイン酸共重合体とネオ
カルチノスタチンとを反応させて得られる式
()で示されるネオカルチノスタチン複合体
〔以下、これを複合体()と略称する〕が意外
にも上記目的を達成することを見出した。 すなわち、本発明により製造される複合体
()は、先のネオカルチノスタチン誘導体と同
様の有用な性質を有すると共に、脂溶性に優れて
おり、油性製剤としての適用が可能となる。複合
体()は油性製剤として投与すると薬物を腫瘍
部位に集中させることができる。そして、複合体
()は腫瘍に対する親和性にも優れており、腫
瘍部位に滞留して制癌効果を強力に発揮すること
ができるのである。 一方、複合体()は脂溶性に加えて意味水溶
性の性質をも兼ね備えているので、水溶性製剤例
えば静注等により全身投与も可能である。 このような複合体()によるネオカルチノス
タチンの好ましい性質は、1個以下の無水マレイ
ン酸環を有し、半アルキルエステル化されたスチ
レン無水マレイン酸共重合体(以下、これを
SMAと略記する)を用いたことにより、ネオカ
ルチノスタチン(以下、これをNCSと略記する)
を水溶性の性質を保持しつつ、脂溶性の性質を兼
ね備えたものとしたことによると考えられる。 制癌剤に要求されていることは、制癌剤が静脈
注射剤として用いられた場合は制癌剤が毛細血管
より組織に出、さらにリンパ系に特異的に移行す
ることであり、一方制癌剤が油性製剤として用い
られた場合には制癌剤が油性製剤より血液中、組
織液中又はリンパ液中など必要な部位に徐放され
ることであり、またいずれの投与形態の場合であ
つても制癌剤がそのまま又は分解を受けて腫瘍組
織(部位)にはよく集積し、なおかつ体外に安全
に排出されることである。 この要求に対しては、複合体()は毛細血管
より組織に漏出するため分子量は6万以下である
ことが好ましく、油性基剤への溶解性、リンパ系
への特異的な移行性のためには分子量は2万以上
であることが望ましい。 複合体()は生体内で所定の部位に到達した
のち、そのままあるいは一部が加水分解を受け、
ネオカルチノスタチンが遊離し抗腫瘍性を発揮す
るものと推定される。なお、複合体()はポリ
アニオンを形成し、生体内で免疫系を賦活化する
効果も期待される。 複合体()はNCS1分子当り1〜35分子通常
は5〜15分子のSMAとの複合体である。NCSと
SMAとの結合状態の詳細については不明である
が、単なる混合物ではない、NCSは分子量約1
万のポリペプチドであると考えられており、両末
端に1級アミノ基を2個有する他に多数の2級ア
ミノ基、水酸基等の官能基があり、これらの官能
基がSMAとの反応に関与するものと考えられる。
しかしながら、NCSとSMAとの反応は多官能性
の高分子(又はオリゴマー)同志の反応であるの
で、反応生成物個々の反応位置を明示したり、分
子構造を明示することは不可能である。但し、反
応生成物の構造は電気泳動、ゲルパーミエーシヨ
ンクロマトグラフイー、ゲル過等の分子サイズ
に関する分折と、赤外線吸収スペクトル、紫外線
吸収スペクトル及び元素分折等の構成成分に関す
る分折とによつて平均的に解折することはでき
る。 複合体()はNCSとSMAとを反応させるこ
とによつて製造される。反応は通常、重炭酸ナト
リウム水溶液にNCSを溶解し、NCS1分子に対し
1分子以上のSMA好ましくは3分子以上のSMA
の粉末を室温で撹拌下に添加して行なわれる。ま
た、SMAを有機溶媒に溶解し、これにNCSの重
炭酸ナトリウム水溶液を添加し、次いで溶媒を減
圧乾燥等により除去することによつても製造する
ことができる。複合体()はSMAの無水マレ
イン酸環が開環し、NCSの官能基と反応するこ
とによつて生成するものと考えられ、NCS1分子
に対し、1〜35分子のSMAが反応して複合体を
生成しうるが通常は5〜15分子のSMAが反応し
て複合体を生成するものと考えられる。従つて、
複合体()に含まれるSMA残基には無水マレ
イン酸環は存在しない。 本発明で用いられるSMAは平均1分子当り1
個以下好ましくは0.1〜0.8個の無水マレイン酸環
を有し、残りの無水マレイン酸は開環され半アル
キルエステル化されたものであつて、平均分子量
1000〜10000、好ましくは1500〜2500のスチレン
無水マレイン酸共重合体である。本発明で使用す
るSMAは、無水マレイン酸が1個以下であり、
かつ半アルキルエステル化されているため架橋反
応による高分子量副生成物の形成を避けることが
でき、NCSとの反応をコントロールすることが
容易である。ここで、半アルキルエステルとは無
水マレイン酸が開環したマレイン酸の有する2個
のカルボン酸の半分のカルボン酸がアルキルエス
テル化されていることを意味し、この半アルキル
エステルは完全に半アルキルエステル化されてい
ることが好ましいが、一部は半アルキルエステル
化されていないマレイン酸であつても、大部分が
半アルキルエステル化されていれば差支えない。
また、半アルキルエステルは通常は低級アルキル
エステルを意味し、例えばメチルエステル、エチ
ルエステル、プロピルエステル、ブチルエステル
等あるいはこれらの混合エステルが挙げられ、就
中半ブチルエステルが好ましい。この他、(ポリ)
エチレングリコールモノエーテルのエステルの如
き多価アルコールのエステルであつてもよく、本
発明においては半アルキルエステルにこれらの多
価アルコールエステルも包含される。 複合体()をヒトに投与するには、癌の原発
部位、手術後の癌摘出部位等の局所組織内投与
法、皮内、皮下、筋肉内、静脈内、動脈内、経向
等の投与法、及び局所への塗布、噴霧、坐薬、膀
胱内注入の外用的投与法が好適である。投与量は
投与法と癌の悪性度、癌の種類、患者の病状及び
一般状態、癌の進行度等によつて一定ではなく、
また術後等のリンパ節転移予防等の目的か、ある
いは治療目的かによつて異なるが、例えば1日1
回0.1〜10mg/Kgを主として週1〜2回、あるい
は連日投与するのが好ましい。局所塗布、経口投
与法では更に投与量を増量することも可能であ
る。 なお、複合体()はX線造影剤リピオドール
(仏国ラボラトワール・ゲルベ製、リピオドール
ウルトラフルイドーヨード化ケシ油脂肪酸エチル
エステル)に溶解する。複合体()1〜2mg/
リピオドール1mlの油性製剤を動脈内投与する
と、腫瘍血管内にリピオドール及び当該薬物が長
期にとどまるので、強力に抗腫瘍効果を発揮す
る。また、リピオドールに溶解することにより、
複合体()が局所に滞留する状態がX線によつ
て観察することができる。 このような油性製剤として用いることは複合体
()の性質を活かした使用法の一つである。 また、複合体()は1〜9%重炭酸ナトリウ
ム水溶液に溶解する。この水溶液を静脈内投与す
ると、当該薬物はリンパ管に多く分布するので強
力に制癌作用を発揮する。 このような塩類水溶液剤として用いることも複
合体()の性質を活かして用いる使用法の一つ
である。 以下に実施例を挙げて本発明を具体的に説明す
る。 参考例 (a) p−シメン176mlを撹拌下に132〜134℃に加
熱し、無水マレイン酸29.4g、スチレン30.9g
及びベンゾイルパーオキシド1gをp−シメン
200mlに溶解して得られた溶液を3時間にわた
つて連続的に滴下した。滴下と同時に重合反応
が起り、白濁沈殿状のスチレン無水マレイン酸
共重合体が続々と形成された。重合反応終了
後、沈殿物を取し、洗滌、乾燥して、白色粉
末のスチレン無水マレイン酸共重合体58gを得
た。 このスチレン無水マレイン酸共重合体は各モ
ノマーの重合性より1:1交互共重合体と考え
られ、元素分折結果もこれを支持する。アセト
ニトリルを溶媒として蒸気圧法により
KNAUER社VPO装置を用い数平均分子量を
求めたところ1760であつた。 (b) このスチレン無水マレイン酸共重合体20gを
ジオキサン40mlに溶解し、得られた溶液にn−
ブタノール12ml及び酢酸リチウム0.2gを加え、
封管して90℃で25時間反応させた。反応終了
後、減圧乾燥により反応液より溶媒を揮発除去
し、得られた残渣をn−ヘキサン−アセトン混
液(容量比9:1)で洗つた後、減圧乾燥して
淡黄色フレーク状の一部無水マレイン酸環を残
した半ブチルエステル化スチレンマレイン酸共
重合体を得た。 この半ブチルエステル化スチレンマレイン酸
共重合体の分子量を蒸気圧法により求めたとこ
ろ2200であり、赤外線吸収スペクトルの
D1780/D700より無水マレイン酸環含量は平均
0.75個/分子と計算された。 元素分折値(実測値) C:67.29%、H:6.83%、N:0.19% 実施例 ネオカルチノスタチン0.2gを0.5Mの重炭酸ソ
ーダ水溶液80mlに溶解し、室温で撹拌下に、参考
例で得られた数平均分子量2200、無水マレイン酸
環含量平均0.75個/分子の半ブチルエステル化ス
チレン無水マレイン酸共重合体粉末0.9gを20分
間隔に4回に分割して添加した。半ブチルエステ
ル化スチレン無水マレイン酸共重合体粉末が全部
溶解したのち、さらに40分間撹拌した。反応液を
セロハンチユーブ中に移し、5mM重炭酸ソーダ
水溶液中で加圧下に透折した。5mM重炭酸ソー
ダ水溶液を数回とりかえて4℃、2日間透折した
のち、4℃の5mM重炭酸アンモニウム水溶液中
でさらに2日間透折し、次に4℃の1.25mM重炭
酸アンモニウム水溶液中でさらに2日間透折し
た。透折精製した反応液を凍結乾燥したのち、純
水中に懸濁、洗滌し、遠心分離機で不溶部を集め
る操作を3度操り返したのち、凍結乾燥し、白色
わた状の固形物としてネオカルチノスタチン−半
ブチルエステル化スチレンマレイン酸共重合体複
合体(以下、これをNeo SMANCSと略記する)
0.15gを得た。上記Neo SMANCSの元素分折値
(実測値)は以下の通りであつた。 C:60.52%、H:6.48%、N:3.33% この元素分折値より、Neo SMANCSにおい
てはNCS1分子当り平均して約5.6分子のSMAが
結合しているものと推定した。Neo SMANCS
の赤外線吸収スペクトル(KBr製剤法)を第1
図に、反応に使用した半ブチルエステル化スチレ
ン無水マレイン酸共重合体及びネオカルチノスタ
チン(NCS)の赤外線吸収スペクトル(KBr錠
剤法)をそれぞれ第2図及び第3図に示す。 また、Neo SMANCSをアクリルアミドゲル、
ドデシル硫酸ナトリウム0.1%添加電気泳動法に
より分子量の測定を行なつたところ約4.3万であ
つた。Neo SMANCSは、220℃で僅かに軟化
し、250℃で熱分解が始まる。 Neo SMANCSの溶媒に対する溶解性を反応
原料として用いたネオカルチノスタチン(NCS)
及び半ブチルエステル化スチレン無水マレイン酸
共重合体と比較して表1に示す。
The present invention relates to a novel method for producing neocarzinostatin complexes. More specifically, the present invention is based on the formula () SMA o - NCS () [wherein, NCS means a neocarzinostatin residue, SMA has an average of one or less maleic anhydride ring per molecule, and It means an alkyl esterified styrene-maleic acid copolymer residue having an average molecular weight of 1,000 to 10,000, and n means an integer of 1 to 35. ] The present invention relates to a method for producing a neocarzinostatin complex shown in the following. Neocarzinostatin is produced from Streptomyces carzinostaticus var. F-41.
41Kuroya) (see Japanese Patent Publication No. 42-21752 and US Pat. No. 3,334,022), and its primary structure was described by Maeda, one of the inventors of the present invention. It has been reported that the total number of amino acid residues is 109 and the estimated molecular weight is 10,700 [Science, vol. 178, 875-
876, 1972 and Archives of Biochemistry and Biophysics, Vol. 163, pp. 379-385). In the treatment of cancer, metastasis of cancer cells is the most important problem, and especially lymph node metastasis is the biggest problem. Previously, the present inventor conducted various studies on reducing the toxicity of neocarzinostatin, increasing the durability of its efficacy, and specifically transferring the drug to the lymphatic system, and found that it exists in the molecule of neocarzinostatin. It was discovered that a neocarzinostatin derivative obtained by reacting the two free amino groups of the polystyrene-maleic acid copolymer with a partial hydrolyzate of a water-soluble polystyrene-maleic acid copolymer met the above objectives, and a patent application was filed for the same. (See Publication No. 117095). However, in addition to the need for anticancer drugs to have the above-mentioned property of transferring to the lymphatic system in order to suppress cancer metastasis, it is also desirable that they have high tumor affinity. When the tumor affinity is high, the concentration of the anticancer drug in the tumor is selectively increased, and as a result, the occurrence of side effects is reduced, and the effects of the anticancer drug can be effectively exhibited. Therefore, as a result of further various studies, the present inventors found that the styrene-maleic anhydride copolymer or its partial hydrolyzate has a maleic anhydride ring different from that of the styrene-maleic anhydride copolymer or its partial hydrolyzate.
Half-alkyl esterified average molecular weight is 1000~
The neocarzinostatin complex represented by the formula () [hereinafter referred to as the complex ()] obtained by reacting 10,000 styrene maleic anhydride copolymer with neocarzinostatin is surprisingly It has been found that the above objectives can be achieved. That is, the complex (2) produced according to the present invention has the same useful properties as the neocarzinostatin derivatives described above, and has excellent fat solubility, so that it can be applied as an oil-based preparation. The complex () can be administered as an oil-based formulation to concentrate the drug at the tumor site. Furthermore, the complex () has excellent affinity for tumors, and can remain at the tumor site and exert a strong anticancer effect. On the other hand, since the complex () has water-soluble properties in addition to fat-solubility, it can be administered systemically through a water-soluble preparation, such as intravenous injection. The preferable properties of neocarzinostatin made of such a complex () include a semi-alkyl esterified styrene-maleic anhydride copolymer having one or less maleic anhydride rings (hereinafter referred to as this).
By using neocarzinostatin (hereinafter abbreviated as NCS),
This is thought to be due to the fact that it has both water-soluble properties and fat-soluble properties. What is required of an anticancer drug is that when the anticancer drug is used as an intravenous injection, it is released into the tissue through the capillaries and then specifically transferred to the lymphatic system; on the other hand, when the anticancer drug is used as an oil-based preparation, In such cases, anticancer drugs can be released in a sustained manner from oil-based preparations to the necessary sites such as blood, tissue fluid, or lymph. It must accumulate well in tissues (sites) and be safely excreted from the body. To meet this requirement, the complex () preferably has a molecular weight of 60,000 or less because it leaks into tissues from capillaries, and because of its solubility in oily bases and specific migration into the lymphatic system. It is desirable that the molecular weight is 20,000 or more. After the complex () reaches the designated site in the body, it undergoes hydrolysis as it is or in part.
It is presumed that neocarzinostatin is released and exhibits antitumor properties. The complex () forms a polyanion and is also expected to have the effect of activating the immune system in vivo. The complex () is a complex with 1 to 35 molecules, usually 5 to 15 molecules of SMA, per 1 molecule of NCS. NCS and
Although the details of the bonding state with SMA are unknown, NCS is not just a mixture, and the molecular weight of NCS is approximately 1.
It is thought to be a polypeptide of 1,000,000,000, and has two primary amino groups at both ends, as well as a number of functional groups such as secondary amino groups and hydroxyl groups, and these functional groups are responsible for the reaction with SMA. It is thought that this may be involved.
However, since the reaction between NCS and SMA is a reaction between polyfunctional polymers (or oligomers), it is impossible to specify the reaction position or molecular structure of each reaction product. However, the structure of the reaction product can be determined by molecular size analysis such as electrophoresis, gel permeation chromatography, and gel filtration, and by component analysis such as infrared absorption spectrum, ultraviolet absorption spectrum, and elemental analysis. Therefore, it is possible to solve it on average. The complex () is produced by reacting NCS and SMA. The reaction is usually performed by dissolving NCS in an aqueous sodium bicarbonate solution, and adding one or more molecules of SMA, preferably three or more molecules of SMA, to one molecule of NCS.
powder is added under stirring at room temperature. Alternatively, it can be produced by dissolving SMA in an organic solvent, adding an aqueous sodium bicarbonate solution of NCS to the solution, and then removing the solvent by drying under reduced pressure or the like. The complex () is thought to be formed when the maleic anhydride ring of SMA opens and reacts with the functional group of NCS, and 1 to 35 molecules of SMA react with one molecule of NCS to form a complex. It is thought that normally 5 to 15 molecules of SMA react to form a complex. Therefore,
There is no maleic anhydride ring in the SMA residues contained in the complex (). The SMA used in the present invention has an average of 1 molecule per molecule.
or less, preferably 0.1 to 0.8 maleic anhydride rings, and the remaining maleic anhydride is ring-opened and semi-alkyl esterified, and has an average molecular weight of
It is a styrene-maleic anhydride copolymer having a molecular weight of 1,000 to 10,000, preferably 1,500 to 2,500. The SMA used in the present invention has one or less maleic anhydride,
In addition, since it is semi-alkyl esterified, it is possible to avoid the formation of high molecular weight by-products due to cross-linking reactions, and the reaction with NCS can be easily controlled. Here, the term "half-alkyl ester" means that half of the two carboxylic acids possessed by maleic acid, which is ring-opened from maleic anhydride, is converted into alkyl ester, and this half-alkyl ester is completely converted into half-alkyl ester. It is preferable that the maleic acid be esterified, but even if some of the maleic acid is not semi-alkyl esterified, there is no problem as long as most of the maleic acid is semi-alkyl esterified.
Moreover, half-alkyl ester usually means lower alkyl ester, and includes, for example, methyl ester, ethyl ester, propyl ester, butyl ester, or a mixed ester thereof, with half-butyl ester being particularly preferred. In addition, (poly)
It may also be an ester of a polyhydric alcohol such as an ester of ethylene glycol monoether, and in the present invention, these polyhydric alcohol esters are also included in the semi-alkyl ester. To administer the complex () to humans, there are several ways to administer the complex (), including intradermal, subcutaneous, intramuscular, intravenous, intraarterial, transverse administration, etc., at the primary site of cancer, the site of cancer removal after surgery, etc. and external methods of administration such as topical application, spraying, suppositories, and intravesical injection are preferred. The dosage varies depending on the administration method, the malignancy of the cancer, the type of cancer, the patient's medical condition and general condition, the progress of the cancer, etc.
It also depends on whether the purpose is to prevent lymph node metastasis after surgery, etc., or for therapeutic purposes, but for example, once a day.
It is preferable to administer 0.1 to 10 mg/Kg once or twice a week or every day. It is also possible to further increase the dosage for topical application and oral administration. The complex () is dissolved in the X-ray contrast agent Lipiodol (Lipiodol Ultrafluid iodinated poppy oil fatty acid ethyl ester, manufactured by Laboratoire Guerbet, France). Complex () 1-2 mg/
When 1 ml of Lipiodol is administered intraarterially, Lipiodol and the drug remain in the tumor blood vessels for a long period of time, exerting a strong antitumor effect. In addition, by dissolving in Lipiodol,
The state in which the complex () remains locally can be observed using X-rays. Using it as such an oil-based preparation is one way of using it that takes advantage of the properties of the complex (). The complex () is also dissolved in a 1-9% aqueous sodium bicarbonate solution. When this aqueous solution is administered intravenously, the drug exhibits a strong anticancer effect because it is largely distributed in the lymph vessels. Using it as such an aqueous salt solution is also one of the ways to utilize the properties of the complex (). The present invention will be specifically described below with reference to Examples. Reference example (a) 176 ml of p-cymene was heated to 132-134°C with stirring, and 29.4 g of maleic anhydride and 30.9 g of styrene were added.
and 1 g of benzoyl peroxide to p-cymene.
The solution obtained by dissolving in 200 ml was continuously added dropwise over 3 hours. A polymerization reaction occurred simultaneously with the dropping, and a cloudy precipitate of styrene maleic anhydride copolymer was successively formed. After the polymerization reaction was completed, the precipitate was collected, washed, and dried to obtain 58 g of a white powder of styrene-maleic anhydride copolymer. This styrene-maleic anhydride copolymer is considered to be a 1:1 alternating copolymer based on the polymerizability of each monomer, and the results of elemental analysis also support this. By vapor pressure method using acetonitrile as a solvent
The number average molecular weight was determined to be 1760 using a KNAUER VPO device. (b) Dissolve 20 g of this styrene maleic anhydride copolymer in 40 ml of dioxane, and add n-
Add 12 ml of butanol and 0.2 g of lithium acetate,
The tube was sealed and reacted at 90°C for 25 hours. After the reaction was completed, the solvent was removed by evaporation from the reaction solution by drying under reduced pressure, and the resulting residue was washed with a mixture of n-hexane and acetone (volume ratio 9:1), and then dried under reduced pressure to obtain some pale yellow flakes. A half-butyl esterified styrene-maleic acid copolymer with maleic anhydride rings remaining was obtained. The molecular weight of this half-butyl esterified styrene-maleic acid copolymer was determined by vapor pressure method and was 2200, which was found in the infrared absorption spectrum.
Average maleic anhydride ring content from D 1780 / D 700
It was calculated to be 0.75 pieces/molecule. Elemental analysis values (actual measurements) C: 67.29%, H: 6.83%, N: 0.19% Example: 0.2 g of neocarzinostatin was dissolved in 80 ml of 0.5 M sodium bicarbonate aqueous solution, and the mixture was stirred at room temperature according to the reference example. 0.9 g of the obtained semi-butyl esterified styrene maleic anhydride copolymer powder having a number average molecular weight of 2200 and an average maleic anhydride ring content of 0.75/molecule was added in four portions at 20 minute intervals. After the half-butyl esterified styrene maleic anhydride copolymer powder was completely dissolved, the mixture was further stirred for 40 minutes. The reaction solution was transferred to a cellophane tube and filtered under pressure in a 5 mM aqueous sodium bicarbonate solution. After changing the 5mM sodium bicarbonate aqueous solution several times and performing diafiltration at 4°C for 2 days, diafiltration was performed in a 5mM ammonium bicarbonate aqueous solution at 4°C for another 2 days, and then in a 1.25mM ammonium bicarbonate aqueous solution at 4°C for an additional 2 days. It was transparent for several days. After freeze-drying the diafiltration-purified reaction solution, suspending it in pure water, washing it, and collecting the insoluble part using a centrifuge, repeat the process three times, and then freeze-dry it as a white cotton-like solid. Neocarzinostatin-semi-butyl esterified styrene maleic acid copolymer complex (hereinafter abbreviated as Neo SMANCS)
0.15g was obtained. The elemental analysis values (actually measured values) of the Neo SMANCS were as follows. C: 60.52%, H: 6.48%, N: 3.33% From these elemental analysis values, it was estimated that in Neo SMANCS, about 5.6 molecules of SMA were bound on average per molecule of NCS. Neo SMANCS
The infrared absorption spectrum (KBr formulation method) of
The infrared absorption spectra (KBr tablet method) of the half-butyl esterified styrene maleic anhydride copolymer and neocarzinostatin (NCS) used in the reaction are shown in FIGS. 2 and 3, respectively. In addition, Neo SMANCS can be used on acrylamide gel,
The molecular weight was determined to be approximately 43,000 by electrophoresis with the addition of 0.1% sodium dodecyl sulfate. Neo SMANCS softens slightly at 220℃ and begins to decompose at 250℃. Neocarzinostatin (NCS) using the solubility of Neo SMANCS in solvents as a reaction raw material
Table 1 shows a comparison with the styrene maleic anhydride copolymer and the semi-butyl esterified styrene maleic anhydride copolymer.

【表】 上表からも明らかな如く、Neo SMANCSが
NCSと半ブチルエステル化スチレン無水マレイ
ン酸共重合体との単なる混合物でなく複合体を形
成していることは明らかである。
[Table] As is clear from the table above, Neo SMANCS
It is clear that the NCS and the semi-butyl esterified styrene maleic anhydride copolymer form a complex, not just a mixture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はNeo SMANCSの赤外線吸収スペク
トルを、第2図は半ブチルエステル化スチレン無
水マレイン酸共重合体の赤外線吸収スペクトル
を、第3図はNCSの赤外線吸収スペクトルを示
す。
Figure 1 shows the infrared absorption spectrum of Neo SMANCS, Figure 2 shows the infrared absorption spectrum of the half-butyl esterified styrene maleic anhydride copolymer, and Figure 3 shows the infrared absorption spectrum of NCS.

Claims (1)

【特許請求の範囲】 1 ネオカルチノスタチンと、平均1分子当り1
個以下の無水マレイン酸環を有し、半アルキルエ
ステル化された平均分子量1000〜10000のスチレ
ン無水マレイン酸共重合体とを、反応させること
を特徴とする式() SMA o− NCS () 〔式中、 NCS はネオカルチノスタチン残基を
意味し、 SMA は平均1分子当り1個以下の無
水マレイン酸環を有し、半アルキルエステル化さ
れた平均分子量1000〜10000のスチレンマレイン
酸共重合体残基を意味し、nは1〜35の整数を意
味する。〕 で示されるネオカルチノスタチン複合体の製造
法。
[Claims] 1 neocarzinostatin and an average of 1 per molecule
Formula () SMA o − NCS () [ In the formula, NCS means a neocarzinostatin residue, and SMA is a styrene-maleic acid copolymer having an average molecular weight of 1,000 to 10,000 and having an average molecular weight of 1,000 to 10,000 and having an average of one or less maleic anhydride rings per molecule. refers to a combined residue, and n refers to an integer from 1 to 35. ] A method for producing a neocarzinostatin complex.
JP57031555A 1982-02-27 1982-02-27 Neocarcinostatin complex and its production Granted JPS58149903A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57031555A JPS58149903A (en) 1982-02-27 1982-02-27 Neocarcinostatin complex and its production
AT83301027T ATE23863T1 (en) 1982-02-27 1983-02-25 NEOCARZINOSTATIN COMPLEXES, PROCESS FOR THEIR PREPARATION AND ANTITUMORS AGENT CONTAINING THESE COMPLEXES AS ACTIVE COMPONENT.
DE8383301027T DE3367921D1 (en) 1982-02-27 1983-02-25 Neocarzinostatin complexes, a method for producing the same, and an antitumor agent containing said complexes as an active component
EP83301027A EP0087957B1 (en) 1982-02-27 1983-02-25 Neocarzinostatin complexes, a method for producing the same, and an antitumor agent containing said complexes as an active component
CA000422497A CA1214458A (en) 1982-02-27 1983-02-28 Neocarzinostatin complexes, a method for producing the same, and an antitumor agent containing said complexes as an active component
US06/730,823 US4732933A (en) 1982-02-27 1985-05-06 Neocarzinostatin complexes, a method for producing the same, and an antitumor agent containing said complexes as an active component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57031555A JPS58149903A (en) 1982-02-27 1982-02-27 Neocarcinostatin complex and its production

Publications (2)

Publication Number Publication Date
JPS58149903A JPS58149903A (en) 1983-09-06
JPH0244319B2 true JPH0244319B2 (en) 1990-10-03

Family

ID=12334426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57031555A Granted JPS58149903A (en) 1982-02-27 1982-02-27 Neocarcinostatin complex and its production

Country Status (1)

Country Link
JP (1) JPS58149903A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139396A (en) * 1983-01-31 1984-08-10 Kuraray Co Ltd Neocarzinostatin complex and its preparation
JPS63211238A (en) * 1987-02-27 1988-09-02 Masayasu Inoue Antiulcer agent
JP2556865B2 (en) * 1986-09-19 1996-11-27 山之内製薬株式会社 Composition for non-injection administration of neocarzinostatin derivative
GB0123232D0 (en) * 2001-09-26 2001-11-21 Smith & Nephew Polymers
PT1627645T (en) * 2003-05-26 2017-11-23 Maeda Hiroshi Antitumor agent and process for producing the same
CN101160354B (en) * 2005-04-18 2010-12-29 前田浩 Polymeric pharmaceutical agent for treatment of cancer and process for production of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117095A (en) * 1977-03-24 1978-10-13 Hiroshi Maeda Neocarcinostachin derivative and producing process thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117095A (en) * 1977-03-24 1978-10-13 Hiroshi Maeda Neocarcinostachin derivative and producing process thereof

Also Published As

Publication number Publication date
JPS58149903A (en) 1983-09-06

Similar Documents

Publication Publication Date Title
JP4745664B2 (en) Polymer derivatives of camptothecins
JP5369137B2 (en) Novel block copolymer, micelle preparation, and anticancer agent containing the same as an active ingredient
RU2384593C2 (en) Taxanes covalently bonded with hyaluronic acid or hyaluronic acid derivatives
JP4272537B2 (en) Y-shaped branched hydrophilic polymer derivatives, methods for their preparation, binding products of said derivatives and drug molecules, and pharmaceutical compositions comprising said binding products
JP4039466B2 (en) Novel anthracycline-based compound derivatives and pharmaceutical preparations containing the same
US5130126A (en) Polymer-drug conjugate and a method of producing it
JP4663233B2 (en) Polymeric thiol-linked prodrugs utilizing benzyl elimination systems
CN110591078B (en) Preparation method of reduction/pH dual-responsiveness adriamycin prodrug
JP2005513006A6 (en) Polymeric thiol-linked prodrugs utilizing benzyl elimination systems
EP0087957B1 (en) Neocarzinostatin complexes, a method for producing the same, and an antitumor agent containing said complexes as an active component
CN108026271A (en) The macromolecule conjugate of 6 coordinate platinum complex
EP4066860A1 (en) Polyethylene glycol conjugated drug, and preparation method therefor and use thereof
CN104548124A (en) Water-soluble biodegradable anti-tumor prodrug and preparation method of anti-tumor prodrug
JPH0244319B2 (en)
EP0354836A1 (en) Iodopolymers with a dextran skeleton, their processes of preparation and their applications as contrast agents
JPH0123480B2 (en)
KR100348380B1 (en) Antitumor Mitoxanthrone Polymer Composition
EP0452179A2 (en) Polymer-combined drug for gastric treatment and a method for producing the drug
JPS6330886B2 (en)
CN111346234B (en) Deferoxamine-eight-arm star-shaped polyethylene glycol conjugate and application thereof
JP2023537248A (en) Polyethylene glycol compound drug synergists, methods for their preparation and uses thereof
CN1206257C (en) Hydrophilic polymer-combo of silybum mariamum extract product as well as medicinal combination containing the combo
RU2805370C1 (en) Medicine, representing a conjugate with polyethylene glycol, method for its preparation and its application
CN114948926A (en) Mitochondrion-targeted cabazitaxel prodrug and preparation method and application thereof
CN117551008A (en) Deferoxamine conjugate and preparation method and application thereof