JPH0244243A - Galvanic battery type oxygen sensor - Google Patents

Galvanic battery type oxygen sensor

Info

Publication number
JPH0244243A
JPH0244243A JP63195171A JP19517188A JPH0244243A JP H0244243 A JPH0244243 A JP H0244243A JP 63195171 A JP63195171 A JP 63195171A JP 19517188 A JP19517188 A JP 19517188A JP H0244243 A JPH0244243 A JP H0244243A
Authority
JP
Japan
Prior art keywords
diaphragm
electrode
catalyst electrode
type oxygen
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63195171A
Other languages
Japanese (ja)
Inventor
Naoya Kitamura
直也 北村
Hisashi Kudo
工藤 寿士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP63195171A priority Critical patent/JPH0244243A/en
Publication of JPH0244243A publication Critical patent/JPH0244243A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a galvanic battery type oxygen sensor excellent in performance such as output stability and response speed by setting an amount of a catalyst electrode joined integrally with a diaphragm to be 400-1,000Angstrom in thickness. CONSTITUTION:A catalyst electrode 2 is formed at a specified thickness by a sputtering or vacuum evaporation on one side of a diaphragm 1 comprising a fluorine based high polymer thin film. Then, parts, that is, a negative pole 4, a current collector 8 comprising porous carbon or the like to collect current evenly from the entire surface of the catalyst electrode, a thermistor 6 for temperature compensation of a sensor output and a resistor 7, are mounted in a container body 5. A junction body of the electrode 2 and the diaphragm 1 is mounted at the tip of the body 5 to obtain a galvani battery type oxygen sensor. Here, when the catalyst electrode is formed at a specified thickness, time of the sputtering or vacuum evaporation, the temperature of a substrate, voltage temperature and the like are controlled to make the thickness of a porous metal layer as catalyst electrode range from 400 to 1,000Angstrom thereby enabling the obtaining of a sensor excellent in performance such as output stability, response speed and the like.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は正極としての機能を有する触媒電極と、負極と
しての機能を有する鉛tf!と、電解液および前記触媒
電極が一体に接合されている隔膜とにより構成されるガ
ルバニ電池式酸素センサに関するしのである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a catalyst electrode that functions as a positive electrode and a lead tf! electrode that functions as a negative electrode. and a diaphragm to which an electrolytic solution and the catalyst electrode are integrally joined.

ガルバニ電池式酸素センサは小形・軽量で常温常圧で作
動し、しかも安価であることがら、船舶内、マンホール
、トンネル内あるいは暖房器を使用している室内等の酸
欠状態をチエツクしたり、麻酔器や人工呼吸器等の医療
用機器における酸素濃度の監視等の広い分野で利用され
ている。またセンサを防水構造の容器中に収納し、水中
で使用可能な構造にしたものは、水溶液の溶存酸素セン
サとして魚の養殖や野菜の水耕栽培における溶存酸素濃
度の監視等に利用されている。
Galvanic cell-type oxygen sensors are small, lightweight, operate at room temperature and pressure, and are inexpensive, so they can be used to check oxygen deficiency conditions inside ships, manholes, tunnels, or rooms where heaters are used. It is used in a wide range of fields such as monitoring oxygen concentration in medical equipment such as anesthesia machines and ventilators. Additionally, sensors housed in waterproof containers that can be used underwater are used as dissolved oxygen sensors for aqueous solutions to monitor dissolved oxygen concentrations in fish farming and hydroponic vegetable cultivation.

従来の技術 ガルバニ電池式酸素センサは、第2図に示す構造を持つ
ものが一般的である。すなわち、原理的にのべると、酸
素の選択的透過性を有する隔[1を通ってきた酸素は、
正極としての触a電径2上で還元され、電解液3を介し
て負極4との間で電気化学反応を起こし、その結果、触
媒電[i2と負f!4との間に酸素濃度に応じた電流が
生じる。電流は温度補償用のサーミスタ6を通して、セ
ンサ出力電圧として得られる。
Conventional galvanic cell type oxygen sensors generally have the structure shown in FIG. In other words, in principle, oxygen passing through the barrier [1] that has selective oxygen permeability is
It is reduced on the catalytic electrode 2 as a positive electrode, and causes an electrochemical reaction with the negative electrode 4 via the electrolytic solution 3, resulting in a catalytic charge [i2 and a negative f! 4, a current is generated depending on the oxygen concentration. The current is obtained as a sensor output voltage through a thermistor 6 for temperature compensation.

このようなガルバニ電池式酸素センサにおいては、酸素
が反応を起こす部分、すなわち隔膜およひ触媒電極の部
分の構造が、性能の良好なセンサを得る上で非常に重要
となる。ガルバニ電池式酸素センサを隔膜と触媒電極の
構造から大別すると、隔膜と触媒電極とが単にtIM械
的に接触しているだけのタイプ(例えば、特開昭58−
187846号)と、両者が蒸着や圧着等の手段によっ
て一体に接合されているタイプ(例えば、英国特許第1
200595号)とに分類することができる。前者の場
合には、触媒電極は金属の円板もしくは円柱より構成さ
れ、被検知気体中らしくは被検知水溶液中の酸素は、先
ず隔膜を透過し、次いで隔膜と触媒電極との間に形成さ
れる電解液膜中に溶解していき、触媒電極上で反応に与
かる。この場合、常に隔膜と触媒電極との接触状態を一
定に保ち、電解液膜の厚さが変わらないようにするのが
肝要である。そのようにしないと、センサの置かれてい
る環境の圧力が変化したり、相対湿度が変化することに
より、隔膜と触媒電極との接触状態が変化して、センサ
出力が不安定になるからである。
In such a galvanic cell type oxygen sensor, the structure of the parts where oxygen reacts, that is, the diaphragm and the catalyst electrode, is very important in obtaining a sensor with good performance. Galvanic cell type oxygen sensors can be broadly classified based on the structure of the diaphragm and catalyst electrode.
187846), and a type in which both are integrally joined by means such as vapor deposition or pressure bonding (for example, British Patent No. 1).
No. 200595). In the former case, the catalytic electrode is composed of a metal disk or cylinder, and oxygen in the gas to be detected, most likely in the aqueous solution to be detected, first permeates through the diaphragm and then forms between the diaphragm and the catalytic electrode. It dissolves in the electrolyte film and takes part in the reaction on the catalyst electrode. In this case, it is important to always maintain a constant state of contact between the diaphragm and the catalyst electrode so that the thickness of the electrolyte film does not change. If this is not done, changes in the pressure or relative humidity of the environment in which the sensor is placed will change the contact status between the diaphragm and the catalyst electrode, making the sensor output unstable. be.

一方、後者の場合には、隔膜を透過してきた酸素は多孔
性の触媒電極の孔中にしみ込んだ電解液と触媒電極との
界面で反応に与かる。この場合、隔膜と触媒電極とは一
体化されているので、外圧が変化して隔膜が膨らんだり
凹んだりしたとしても、センサ出力が不安定になること
はない。
On the other hand, in the latter case, the oxygen that has permeated through the diaphragm participates in a reaction at the interface between the electrolytic solution that has soaked into the pores of the porous catalyst electrode and the catalyst electrode. In this case, since the diaphragm and the catalyst electrode are integrated, even if the diaphragm swells or dents due to changes in external pressure, the sensor output will not become unstable.

発明が解決しようとする問題点 隔膜と触l電極とを一体に接合した構造のガルバニ電池
式酸素センサの場合、触媒の量が問題となるが、今まで
触媒の量的なことについては、あまり考慮されていなか
った。これは隔膜を透過してくる酸素の量が微少なもの
であり、触媒は多かれ少なかれ、あればよいと考えられ
、また、触媒の量をある値に保つための適当な方法がな
かったためである。
Problems to be Solved by the Invention In the case of a galvanic cell type oxygen sensor that has a structure in which a diaphragm and a catalytic electrode are integrally joined, the amount of catalyst is a problem, but until now, little has been done about the amount of catalyst. It wasn't taken into account. This is because the amount of oxygen that permeates through the diaphragm is minute, so it is thought that more or less catalyst is sufficient, and there was no suitable method to maintain the amount of catalyst at a certain value. .

しかしながら、センサの応答速度の向上や、長期にわた
る出力の安定性の確保を目的として試験を繰り返すうち
に、触媒量が重要な問題であることが明らかになってき
た。すなわち、触媒量が少なすぎる場合には、隔膜を透
過してきた酸素の全量が速やかに反応しきれないで隔膜
近傍に残存し、センサの応答性が悪くなったり、出力が
不安定になったりする。また、触媒量が多すぎる場合に
は触媒を極の多孔性が阻害され、酸素の反応する界面の
量が少なくなり、出力が低下したり、不安定になったつ
する。
However, as tests were repeated with the aim of improving sensor response speed and ensuring long-term output stability, it became clear that the amount of catalyst was an important issue. In other words, if the amount of catalyst is too small, the entire amount of oxygen that has passed through the diaphragm cannot be reacted quickly and remains near the diaphragm, resulting in poor sensor response and unstable output. . In addition, if the amount of catalyst is too large, the porosity of the catalyst electrode is inhibited, and the amount of the interface where oxygen reacts is reduced, resulting in a decrease in output or instability.

問題点を解決するための手段 本発明は隔膜と触媒電極を一体に接合してなるガルバニ
電池式酸素センサにおいて、隔膜上に蒸着等によって形
成され、触媒電極となる多孔性金属層の厚さを400〜
1000オングストロームに制御することによって、上
述の問題点を解決したものである。
Means for Solving the Problems The present invention provides a galvanic cell type oxygen sensor in which a diaphragm and a catalyst electrode are integrally bonded, and the thickness of the porous metal layer that is formed on the diaphragm by vapor deposition or the like and becomes the catalytic electrode is determined. 400~
By controlling the thickness to 1000 angstroms, the above-mentioned problems are solved.

作   用 前述の如く、被検知気体もしくは被検知水溶液から隔膜
を透過してきた酸素は、適当な厚さに形成された触媒電
極となる多孔性金属層内で反応する。この際、適量の触
媒が存在するので、透過してきた酸素はその全量が速や
かに反応する。したがって、センサの応答速度は十分に
速いものとなる。また、酸素が反応する場である電解液
と触媒電極の界面も十分にあるために、高濃度の酸素雰
囲気中に長時間置かれた場合でも、安定したセンサ出力
が得られる。
Function As described above, oxygen that has permeated through the diaphragm from the gas to be detected or the aqueous solution to be detected reacts within the porous metal layer formed to an appropriate thickness and serving as the catalyst electrode. At this time, since an appropriate amount of catalyst is present, the entire amount of oxygen that has permeated reacts quickly. Therefore, the response speed of the sensor is sufficiently fast. Furthermore, since there is a sufficient interface between the electrolyte and the catalyst electrode where oxygen reacts, stable sensor output can be obtained even if the sensor is placed in a high-concentration oxygen atmosphere for a long time.

触媒電極となる金属の材質としては、反応性耐蝕性等の
面から金または白金等の貴金属が望ましい。
Preferably, the metal material for the catalyst electrode is a noble metal such as gold or platinum from the viewpoint of reactive corrosion resistance.

この様に、隔膜と一体に接合する触媒電極の触媒量を4
00〜1000オングストロームの厚さにすることによ
り、出力安定性や応答速度等の性能に優れたガルバニ電
池式酸素センサを得ることができる。
In this way, the amount of catalyst in the catalyst electrode that is integrally joined to the diaphragm is set to 4.
By setting the thickness to 00 to 1000 angstroms, it is possible to obtain a galvanic cell type oxygen sensor with excellent performance such as output stability and response speed.

実施例 隔膜上に蒸着によって形成する触媒金属の厚みを50〜
3000オングストロームの間で種々に変えた酸素セン
サを試作し、その性能を調べた。
Example The thickness of the catalyst metal formed by vapor deposition on the diaphragm was 50~
We prototyped oxygen sensors with various thicknesses between 3000 angstroms and investigated their performance.

試作したガルバニ電池式酸素センサの基本構造を第1図
に示す、試作は以下に述べるようにして行った。
The basic structure of the prototype galvanic cell type oxygen sensor is shown in FIG. 1, and the prototype was made as described below.

先ず、フッ素系高分子薄膜より成る隔1111の片面に
、スパッタリングもしくは真空蒸着により触媒電極2を
所定の厚さに形成しな0次に、負極4、触a電極の全面
より均一に電流を集めるための多孔性カーボン等よりな
る集電体8、センサ出力を温度補償するためのサーミス
タ6および抵抗7の各部品を容器本体5内に装着しな。
First, a catalyst electrode 2 is formed to a predetermined thickness on one side of the partition 1111 made of a fluoropolymer thin film by sputtering or vacuum deposition.Next, a current is uniformly collected from the entire surface of the negative electrode 4 and the contact electrode. A current collector 8 made of porous carbon or the like for temperature compensation, a thermistor 6 and a resistor 7 for temperature compensation of the sensor output are mounted inside the container body 5.

容器本体の先端に上述の触媒電極2と隔膜1との接合体
を装着し、ガルバニ電池式酸素センサを得な、なお、触
媒電極の材質として金を用いたが、白金やイリジウム等
の貴金属を用いても効果は同じである。また、触媒電極
を所定の厚さに形成する方法としては、スパッタリング
または真空蒸着の蒸着時間、基板温度、電圧電流値等を
制御することによった。
A galvanic cell type oxygen sensor was obtained by attaching the above-mentioned catalytic electrode 2 and diaphragm 1 assembly to the tip of the container body.Although gold was used as the material for the catalytic electrode, precious metals such as platinum and iridium could also be used. The effect is the same no matter how you use it. Further, as a method for forming the catalyst electrode to a predetermined thickness, the deposition time of sputtering or vacuum evaporation, the substrate temperature, the voltage and current value, etc. are controlled.

得られたガルバニ電池式酸素センサの各サンプルについ
て、応答速度、100%酸素雰囲気中に2時間センサを
保持した場合の出力変化ΔV(初期センサ出力に対する
変化分の割合)、およびセンサ出力の酸素濃度に対する
直線性■^/V100(ただし、VAは大気中でのセン
サ出力値、Vlooは酸素100%雰囲気中でのセンサ
出力値を示ず、 VA /’V100 =20.9/1
00 =0.209で完全に直線性がある)の値を測定
した。その結果を第1表に示す。
For each sample of the galvanic cell type oxygen sensor obtained, the response speed, the output change ΔV (ratio of change to the initial sensor output) when the sensor is held in a 100% oxygen atmosphere for 2 hours, and the oxygen concentration of the sensor output Linearity for ■^/V100 (however, VA indicates the sensor output value in the atmosphere, Vloo indicates the sensor output value in the 100% oxygen atmosphere, VA /'V100 = 20.9/1
00 = 0.209 (perfectly linear) was measured. The results are shown in Table 1.

第1表から試料No、3.4.5のサンプルが諸特性に
おいて良好な値を示したことがら、触媒電極の厚さとし
ては400がら1000オングストロームの範囲が適当
であることが判った。すなわち、触媒電極の厚さが40
0オングストロームより薄いNo、1および2のサンプ
ルでは応答速度が遅くなると共に、高酸素濃度雰囲気中
で出力が不安定になり直線性も悪くなる。また、触媒電
極の厚さが1000オングストロームより厚いNo、6
および7のサンプルでは、やはり、出力が不安定になり
直線性も悪くなる。
From Table 1, sample No. 3.4.5 showed good values in various properties, and it was found that the appropriate thickness of the catalyst electrode was in the range of 400 to 1000 angstroms. That is, the thickness of the catalyst electrode is 40
Samples No. 1 and 2 that are thinner than 0 angstroms have a slow response speed, unstable output in a high oxygen concentration atmosphere, and poor linearity. In addition, No. 6, in which the thickness of the catalyst electrode is thicker than 1000 angstroms,
In samples 7 and 7, the output becomes unstable and the linearity also deteriorates.

発明の効果 第1表中の試料No、4のサンプルを種々の酸素濃度雰
囲気中に長時間保持して、センサ出力の安定性を調べた
。すなわち、酸素0%中に1時間、大気中(酸素20.
9%)に1時間、酸素100%中に1時間それぞれ保持
する試験を10,000回繰り返してセンサ出力の変化
を調べた。その結果、第1表中に示した値が、はとんど
変化すること無く、出力は大変に安定したものであった
Effects of the Invention Samples No. 4 in Table 1 were held in atmospheres with various oxygen concentrations for long periods of time to examine the stability of the sensor output. That is, in 0% oxygen for 1 hour and in the atmosphere (20% oxygen).
Changes in sensor output were examined by repeating the test 10,000 times in which the sample was held in 100% oxygen for 1 hour and 1 hour in 100% oxygen. As a result, the values shown in Table 1 hardly changed, and the output was very stable.

以上詳述した如く、本発明によって出力安定性や応答速
度等の性能に優れたガルバニ電池式酸素センサを得るこ
とができる。
As described in detail above, the present invention makes it possible to obtain a galvanic cell type oxygen sensor with excellent performance such as output stability and response speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明ガルバニ電池式酸素センサの一実施例を
示す断面図、第2図は一般的なガルバニ電池式酸素セン
サの断面図である。
FIG. 1 is a sectional view showing an embodiment of the galvanic cell type oxygen sensor of the present invention, and FIG. 2 is a sectional view of a general galvanic cell type oxygen sensor.

Claims (1)

【特許請求の範囲】[Claims] 正極として機能する触媒電極と、負極として機能する鉛
電極と、電解液および隔膜とにより構成されるガルバニ
電池式酸素センサにおいて、前記隔膜の片面に触媒電極
を一体に接合し、該触媒電極の量、すなわち触媒電極の
厚みを400乃至1000オングストロームとしたこと
を特徴とするガルバニ電池式酸素センサ。
In a galvanic cell type oxygen sensor composed of a catalytic electrode functioning as a positive electrode, a lead electrode functioning as a negative electrode, an electrolyte and a diaphragm, the catalytic electrode is integrally joined to one side of the diaphragm, and the amount of the catalytic electrode is That is, a galvanic cell type oxygen sensor characterized in that the thickness of the catalyst electrode is 400 to 1000 angstroms.
JP63195171A 1988-08-04 1988-08-04 Galvanic battery type oxygen sensor Pending JPH0244243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63195171A JPH0244243A (en) 1988-08-04 1988-08-04 Galvanic battery type oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63195171A JPH0244243A (en) 1988-08-04 1988-08-04 Galvanic battery type oxygen sensor

Publications (1)

Publication Number Publication Date
JPH0244243A true JPH0244243A (en) 1990-02-14

Family

ID=16336622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63195171A Pending JPH0244243A (en) 1988-08-04 1988-08-04 Galvanic battery type oxygen sensor

Country Status (1)

Country Link
JP (1) JPH0244243A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509195A (en) * 1993-12-29 1996-04-23 Molex Incorporated Apparatus for changing intervals at which selected wires are arranged in a lateral arrangement of wires

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173456A (en) * 1984-02-20 1985-09-06 Japan Storage Battery Co Ltd Production of joined diaphragm-catalyst electrode for gas sensor
JPS60200156A (en) * 1984-03-24 1985-10-09 Japan Storage Battery Co Ltd Preparation of diaphragm-catalyst electrode unit for gas sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173456A (en) * 1984-02-20 1985-09-06 Japan Storage Battery Co Ltd Production of joined diaphragm-catalyst electrode for gas sensor
JPS60200156A (en) * 1984-03-24 1985-10-09 Japan Storage Battery Co Ltd Preparation of diaphragm-catalyst electrode unit for gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509195A (en) * 1993-12-29 1996-04-23 Molex Incorporated Apparatus for changing intervals at which selected wires are arranged in a lateral arrangement of wires

Similar Documents

Publication Publication Date Title
Korotcenkov et al. Review of electrochemical hydrogen sensors
US7601250B2 (en) Hybrid film type sensor
US4076596A (en) Apparatus for electrolytically determining a species in a fluid and method of use
US4267023A (en) Chemically integrating dosimeter and gas analysis methods
EP0640212A4 (en) Microsensors for gaseous and vaporous species.
JPS61138154A (en) Electrochemical battery with filament-shaped electrode
EP1332358A1 (en) Acid gas measuring sensors and method of making same
US4018660A (en) Gas electrode
CA2449549C (en) Hybrid film type sensor
JPH0640092B2 (en) Humidity measurement method
JPH0244243A (en) Galvanic battery type oxygen sensor
US5908546A (en) Detection of hydrogen chloride
JP2003149194A (en) Controlled potential electrolytic gas sensor and gas detector
JPS6254154A (en) Oxygen partial-pressure measuring electrode device and membrane used for said device
JP2003075394A (en) Detector for oxidizing-gas
JPH0239740B2 (en)
JPH0375063B2 (en)
Nei Some milestones in the 50-year history of electrochemical oxygen sensor development
Bergman Amperometric oxygen sensors: problems with cathodes and anodes of metals other than silver
JP3650919B2 (en) Electrochemical sensor
JPH0738848Y2 (en) Constant potential electrolytic hydrogen sensor
JPH0233165Y2 (en)
JPS5819475Y2 (en) oxygen concentration meter
JP2002310974A (en) Acidic air detector
JPH0334824B2 (en)