JPH0244119A - Optimum combustion control method for boiler - Google Patents

Optimum combustion control method for boiler

Info

Publication number
JPH0244119A
JPH0244119A JP63193057A JP19305788A JPH0244119A JP H0244119 A JPH0244119 A JP H0244119A JP 63193057 A JP63193057 A JP 63193057A JP 19305788 A JP19305788 A JP 19305788A JP H0244119 A JPH0244119 A JP H0244119A
Authority
JP
Japan
Prior art keywords
boiler
combustion
value
index
factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63193057A
Other languages
Japanese (ja)
Other versions
JP2512536B2 (en
Inventor
Fumio Ito
文夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP63193057A priority Critical patent/JP2512536B2/en
Publication of JPH0244119A publication Critical patent/JPH0244119A/en
Application granted granted Critical
Publication of JP2512536B2 publication Critical patent/JP2512536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feedback Control In General (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To perform total optimum combustion control of a power plant while taking the environmental condition into consideration and taking good care of the boiler installation concerned by a method wherein at the time of integrated evaluation of the combustion state of a boiler, based on indexes obtained by an environmental factor, a safety factor, and an efficiency factor, a determined integrated index is compared with an ideal value to control the combustion of a boiler. CONSTITUTION:In consideration of a weight between an integrated index T of combustion, an index Tu obtained from an environmental factor, an index Ts obtained from a safety factor, and an index Tw obtained from an efficiency factor and the tolerance grade of each measurement, a value of T=Tu+Ts+Tw is determined, through the comparison of the value with 100 being the ideal value of a combustion state integrated index T, operation of a boiler is effected in a state in which the value of the integrated value is increased to a maximum. In which case, Tu, Ts, and Tw are determined by formulas I-III, and betau+betas+betaw is equal to 100, wherein betau, betas, and betaw are weighted factors of an environment, a safety, and an efficient element, alphaun, alphasn, and alphawn are measurements of the (n) of environment, safetly, and efficiency factors, and [alphaui] is a constant value obtained by providing measurements of alphaui, alphasi, and alphawi factor according to tolerance grades of 1, 2, 3...m.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、火力発電に用いるボイラの最適燃焼制御方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optimal combustion control method for a boiler used in thermal power generation.

(従来の技術) 従来、総合的にボイラの燃焼の環境・安全・効率因子を
評価し、ボイラの最適燃焼制御をする方法はなかった。
(Prior Art) Until now, there has been no method for comprehensively evaluating the environment, safety, and efficiency factors of boiler combustion and performing optimal boiler combustion control.

(発明が解決しようとする課題) 発電用のボイラの燃焼の際には、その運転要請に対する
高度化・複雑化のため、その燃焼状態を総合的に監視し
、その評価・診断、さらには異常状態での措置、指示お
よび運転状態の予測が求められている。しかし、従来、
これらの監視・評価・診断・措置の機能は、熟練した運
転員の技能に頼っていることが多かった。また、燃焼状
態の自動制御は、負荷指令等に見合った燃料・空気制御
に限られており、異常時の調整は、運転員の手動操作に
頼っていた。
(Problem to be solved by the invention) When burning a boiler for power generation, the combustion state must be comprehensively monitored, evaluated and diagnosed, and even abnormal Measures, instructions and predictions of operating conditions are required. However, conventionally,
These monitoring, evaluation, diagnosis, and action functions often relied on the skills of experienced operators. Furthermore, automatic control of combustion conditions is limited to fuel and air control commensurate with load commands, etc., and adjustments in the event of an abnormality rely on manual operations by an operator.

さらに、従来、火力発電システムのボイラ設備では、そ
れ自身の老朽度あるいは使いこみによる効率低下・安全
性ないしは火力発電所周辺の環境条件等を総合的に評価
する明確な方法が存在しなかった。
Furthermore, conventionally, there has been no clear method for comprehensively evaluating boiler equipment for thermal power generation systems, such as the degree of deterioration of the boiler equipment, its efficiency loss and safety due to overuse, or the environmental conditions around the thermal power plant.

そこで、本発明では、このような問題点を解決するため
に発電用ボイラの燃焼評価を環境・安全・効率の3要素
を総合的に把握評価・診断を行ない、周辺の環境に気を
使い、かつ、ボイラ設備をいたわりつつ運用する発電プ
ラントの全体的な最適燃焼制御方法を提供することを目
的としている。
Therefore, in the present invention, in order to solve such problems, the combustion evaluation of power generation boilers is performed by comprehensively grasping and diagnosing the three elements of environment, safety, and efficiency, and paying attention to the surrounding environment. It also aims to provide an overall optimal combustion control method for a power generation plant that operates while taking care of the boiler equipment.

ところで、ボイラ設備は、火力発電システムの中で燃料
のもつエネルギを燃焼により蒸気エネルギに変換するの
が主たる任務であるが、タービンによる蒸気エネルギか
ら回転エネルギへの変換あるいは発電機による回転エネ
ルギから電気エネルギへの変換と比較して、現象が複雑
でかつ工学的問題が多い。とくに、ボイラ設備の中でも
燃焼に関連する部分の故障が多く、また、ボイラ設備は
、その燃料の種別から始まり、運用特性の多種な規定に
見合った個別設計となっている。しかも、実際の運用に
入ると個々のボイラにより個性の異なる特性を示すこと
が多い。これらの異なった特性は、基本的には、燃焼に
原因があるので燃焼状態の評価は、ボイラ設備の適正な
運用上、極めて重要である。とくに、この燃焼状態が環
境、安全、効率という面からボイラ設備の運用に大いに
影響するので、これらの3要素を分析し、それらの相互
関係を総合評酒することは、この種設備の運用上、必須
不可欠である。
By the way, the main mission of boiler equipment in a thermal power generation system is to convert the energy of fuel into steam energy through combustion. Compared to conversion to energy, the phenomenon is more complex and there are many engineering problems. Particularly, there are many failures in combustion-related parts of boiler equipment, and boiler equipment is individually designed to meet various regulations for operational characteristics, starting from the type of fuel. Furthermore, in actual operation, each boiler often exhibits unique characteristics. These different characteristics are basically caused by combustion, so evaluation of the combustion state is extremely important for proper operation of boiler equipment. In particular, since this combustion state greatly affects the operation of boiler equipment from the aspects of environment, safety, and efficiency, it is important to analyze these three elements and comprehensively evaluate their interrelationships in terms of the operation of this type of equipment. , essential.

ここで、環境要素としては、現在、政府の規制の他に地
方自治体の制定した公害防止協定中の規制対象であるボ
イラ排ガス中のS OX % N Ox −。
Here, the environmental factors include SOX%NOx- in boiler exhaust gas, which is currently subject to regulations under pollution control agreements established by local governments in addition to government regulations.

煤塵、さらには排ガス温度等がある。また、安全要素と
して、運転中の安全要素と停止中の設備保全要素とがあ
り、前者には、連続運転の確保、安全燃焼、爆発・パフ
の防止、局部加熱の防止、ボイラチューブ損傷の防止が
、また、後者には、設備劣化の軽減、設備診断・予防保
全、修繕工事の合理化、改良工事の実施等がある。さら
に、効率要素として、タービン側の復水器損失とボイラ
側の排ガス損失による熱損失の低減、0□%の低減、ボ
イラ設備の所内動力の監視等を挙げることができる。
There are soot and dust, and even exhaust gas temperature. In addition, safety elements include safety elements during operation and equipment maintenance elements while stopped; the former includes ensuring continuous operation, safe combustion, prevention of explosions and puffs, prevention of local heating, and prevention of boiler tube damage. However, the latter also includes reducing equipment deterioration, equipment diagnosis and preventive maintenance, streamlining repair work, and implementing improvement work. Furthermore, efficiency factors include reduction of heat loss due to condenser loss on the turbine side and exhaust gas loss on the boiler side, reduction of 0□%, and monitoring of the internal power of the boiler equipment.

(課題を解決するための手段) 本発明のボイラの最適燃焼制御方法に用いる燃焼状態制
御システムは、第1図に示すように、ボイラ1、燃焼状
態監視・診断部を構成する燃焼状態監視部2.燃焼状態
診断部3、燃焼状態の最適調整計画部4および燃焼状態
調整部5からなる。
(Means for Solving the Problems) As shown in FIG. 1, the combustion state control system used in the boiler optimum combustion control method of the present invention includes a boiler 1, a combustion state monitoring section that constitutes a combustion state monitoring/diagnosis section. 2. It consists of a combustion state diagnosis section 3, a combustion state optimum adjustment planning section 4, and a combustion state adjustment section 5.

その作用を説明すると、まず、外部要因とじての例えば
給電指令および光化学ス(トング警報の発令等により定
當状態のボイラに変化が生じる。この時のボイラの運転
状態の変化を測定する役目をするのが燃焼状態監視部2
である。こ・−で、火炎温度や排ガスの性状などの燃焼
状態の泰化を表わす状態量のみならず、それらによって
生ずる管壁温度変化や熱吸収量の変化等ボイラの運転状
態が総合的に把握される。さらに、燃焼状態診断部3で
は、各種の制限条件を考慮1−で、七のボイラ特Hの重
みを加味i−だ指標で燃焼状態を表わ+7て、現在の運
転状態の適否を判断する。かりに運転状態が適当でない
と判断すると、その情報を燃焼状態の最適調整計画部4
へ伝スる。ここでは、診断部3と監視部2からの情報と
により2つの機#Mを動作させ60すなわち、一つは、
最適調整機能であり、調整すべき燃焼条件、その調整量
および1凋整−b法を指示する。j−た、他の機能は、
最適51画機能であって、調整すべき燃焼条件についで
の最適なタイムスケジュールを設定する。燃焼法曹調整
部5では、最適調整¥1画部4からの指令に基ゴいて燃
焼の、バー整を行うようになっている。もし、指令がな
い場合には、定値のフィードバック制御を行ない、自動
的な最適燃焼制御が可能先なる。
To explain its function, first, changes occur in the boiler in a steady state due to external factors such as power supply commands and issuance of photochemical tong alarms.The function is to measure changes in the boiler operating state at this time. This is the combustion state monitoring section 2.
It is. This allows us to comprehensively understand not only the state variables that represent the optimization of combustion conditions such as flame temperature and exhaust gas properties, but also the operating conditions of the boiler, such as changes in tube wall temperature and heat absorption caused by these variables. Ru. Furthermore, the combustion state diagnosis section 3 expresses the combustion state using an index that takes into account various limiting conditions (1-), takes into account the weight of boiler characteristic H (7), +7, and determines whether the current operating state is appropriate. . If it is determined that the operating condition is not appropriate, that information is sent to the optimum combustion condition adjustment planning section 4.
Passed on to. Here, two machines #M are operated 60 based on the information from the diagnostic section 3 and the monitoring section 2, that is, one is
This is an optimal adjustment function, which instructs the combustion conditions to be adjusted, the amount of adjustment, and the 1-b method. j-ta, other functions are,
This is an optimal 51-screen function that sets the optimal time schedule for the combustion conditions to be adjusted. The combustion adjustment unit 5 performs combustion bar adjustment based on the command from the optimum adjustment unit 4. If there is no command, constant value feedback control is performed and automatic optimal combustion control becomes possible.

上記構成からなるボイラ燃焼状態制御システムによりボ
イラ燃焼の総合評価を行うために、本発明では、環境、
安全、効率の3観点からボイラの計測項目について計1
’lP] 1−る。ニアかし、その測定値をそのまま総
合評価に使用するのではなく、#J定値の良否を各種条
件から判定I7てランク向けを行う裕度階級を導入(2
てそれらの測定値を定数値化し、さらに、前記3観点I
XI l::相lJ′間のすfみをfI宜つけT:重み
係数と12で定量化するもので、()る。
In order to comprehensively evaluate boiler combustion using the boiler combustion state control system configured as described above, the present invention
A total of 1 boiler measurement items from the three perspectives of safety and efficiency.
'lP] 1-ru. Instead of using the measured value as it is for comprehensive evaluation, we have introduced a tolerance class that judges the quality of the #J constant value from various conditions and ranks it (2).
Convert those measured values into constant values, and further calculate the above three viewpoints I.
XI l:: The distance f between phases lJ' is quantified by fI and T: weighting coefficient and 12, which is ().

すなわち本発明は、ボイラの燃焼状態の総合評価を、燃
焼の総合指標をT1環境因子から得られた指標を1゛、
安全因子から得られた指標をTTsI        
                   S効率因子か
ら得られ、た指標をT と1.たJ−き、ν T、、T、、T、の各指標間の重みと各測定値の裕度1
階級を考慮I2て1、 ′1−−r+T+T IJ      S      ν の値を求め5、この値を燃焼状態総合指標Tの理想値で
ある]−CI +)と対月二i〜て総合tF標′夏゛の
値をM大限高くした状態で、ボイラの運転を行うもので
ある。
That is, the present invention provides a comprehensive evaluation of the combustion state of the boiler, and a comprehensive combustion index obtained from the T1 environmental factor.
TTsI index obtained from safety factors
The index obtained from the S efficiency factor is T and 1. The weight between each index and the tolerance of each measurement value 1
Considering the class I2, find the value of 1, '1--r+T+T IJ S ν5, and use this value as the ideal value of the combustion state comprehensive index T]-CI+) and the overall tF target' The boiler is operated with the summer value M as high as possible.

ここに、Tu、Ts  おコ、び′r はぞ−れゼれ+
1      S           ν(ここに、
β :f!3境要素の重み係数、1」 α0.■、αlJ2’ ”’αlJn ”個の環境囚〕
−のdll[定値、 〔α 〕 ;α 、因子の測定値を1:2Ts1   
    1J 1 3・・・n】のン谷度階級に区分12.、その階級に応
じ′r−1jえら4−16定数Ts1(ここに、β ;
安全要素の重み係数、σsl’  ”S2’ ””SI
I”個の安全因子の測定値、 〔α、iJ  ;α、1因子の測定値を1.23・・・
mの裕度階級に区分し7、その階級に応(二てI−>え
られ6定数値)(ここに、β ;効率要素の重み係数、
ν σ5.■、α、2.・・・αWn;n個の効率因子の測
定値、 1’、 a 、 t ]  ;αvi因子の測定値を1
.23・・・mの裕度階級に区分し、7、モ・の階級に
応じて+4え]−)ね、ろ定数値)β →−β、2@−
β = 1. OOとすヒ3゜1」+1      υ であり、か・“)、 (作 用) まず、本発明によりボイラの燃焼状態の総合評価をj−
7うためには、第一ステップと1−、−<7 、ボイラ
計It項目の選定を行う。一般に、ボイラ設備に関係慢
−る計測項[1は、ボイラ1缶当り]、 OoO−・3
000程度あるが、そのうちで燃焼評価指標に関係する
項「1を選定−すると表1のようになる。
Here, Tu, Ts Oko, bi'r hazorezere+
1 S ν (here,
β:f! Weight coefficient of three boundary elements, 1” α0. ■, αlJ2'``'αlJn'' environmental prisoners]
-dll [constant value, [α]; α, the measured value of the factor is 1:2Ts1
1J 1 3...n] Classification 12. , depending on the class'r-1j gill 4-16 constant Ts1 (here, β;
Weighting factor of safety element, σsl'"S2'""SI
The measured value of I'' safety factors, [α, iJ; α, the measured value of 1 factor is 1.23...
Divided into m wealth classes 7, and according to the class (2 I - > obtained 6 constant value) (where, β ; weight coefficient of efficiency element,
ν σ5. ■, α, 2. ... αWn; Measured value of n efficiency factors, 1', a, t ] ; Measured value of αvi factor is 1
.. 23... divided into m tolerance classes, 7, +4 according to the m class] -), filtration constant value) β → -β, 2@-
β = 1. OO and Hi3゜1"+1 υ, and ka・"), (Function) First, according to the present invention, the overall evaluation of the combustion state of the boiler is j-
7, the first step is 1-, -<7, and the selection of boiler total It items. In general, measurement items related to boiler equipment [1 is per boiler], OoO-・3
There are approximately 000, but if you select the term ``1'' related to the combustion evaluation index, the result will be as shown in Table 1.

次いで、第2ステツプとして、総合評価の指標化を行う
ために環境、安全、効率に関した基本式の導入を行う。
Next, as a second step, basic formulas related to the environment, safety, and efficiency will be introduced in order to index comprehensive evaluation.

その理由は、発電ボイラの運転中における燃焼の良否の
判定は、これら3要素の定量化によるからである。
The reason for this is that the quality of combustion during operation of the power generation boiler is determined by quantifying these three elements.

ここで、これら3要素の指標をT (環境囚子)、T 
(安全因子)、T (効率因子)とし、S      
           ν燃焼の総合評価指標(理想状
態で100とする)をTとする。ところで、T  、T
  、T  は、互u     S     ν に独立して評価されるべき指標であるので、総合指標と
して、大別してそれらの和または積を検討する手法があ
る。
Here, the indicators of these three elements are T (environmental prisoner), T
(safety factor), T (efficiency factor), and S
Let T be the comprehensive evaluation index of ν combustion (100 in an ideal state). By the way, T, T
, T are indicators that should be evaluated independently of each other u S ν , so there is a method of broadly classifying them and considering their sum or product as a comprehensive indicator.

すなわち、それらの和に対しては、 T−T+T+T       ・・・・・・・・・(1
)u     S     v また、それらの積に対しては、 T−T  XT  XT       −・−−−−−
・−(2)υ     S      v となる。
In other words, for their sum, T-T+T+T ・・・・・・・・・(1
) u S v Also, for their product, T-T XT XT −・−−−−−
・−(2) υ S v .

上記式(2)の両辺の対数をとると、 !og T−1og T  +Iog T  +log
S となり、式(3)を対数指標でみると、T ・・・(3
) 1−1+1+1         ・・・・・・・・・
(4)υ     S      w となる。
Taking the logarithm of both sides of the above equation (2), we get ! og T-1og T +Iog T +log
S, and looking at equation (3) with a logarithmic index, T...(3
) 1-1+1+1 ・・・・・・・・・
(4) υ S w .

すなわち、式(2)は、対数指標で表わした式(4)と
してよいことが分る。さらに、式(1)と式(4)とを
比較すると、式(1)は、システム全体の評価の高いレ
ベル(定格点)に対して、その精度が良く、一方、式(
4)は評価の低いレベル(いわゆる異常時)に対して精
度が高くなることが分る。
That is, it can be seen that equation (2) may be replaced by equation (4) expressed using a logarithmic index. Furthermore, when comparing Equation (1) and Equation (4), Equation (1) has good accuracy for a high level of evaluation (rating point) of the entire system, whereas Equation (
It can be seen that 4) has higher accuracy for low evaluation levels (so-called abnormal times).

実際、ボイラの運用の際には、環境値の悪化に対しては
警報システムが働き、安全に対しては、この警報システ
ムに加えて自動緊急停止システムが装備されている。し
かし、ボイラの効率悪化に対する警報システムは、通常
、装備されていない。
In fact, when operating a boiler, an alarm system is activated in case of deterioration of environmental values, and for safety, in addition to this alarm system, an automatic emergency stop system is installed. However, warning systems for boiler efficiency deterioration are usually not provided.

このことは、ボイラの総合燃焼評価は、通常の運転時を
対象として実施すれば良く、異常発生時には、別の迅速
性のあるシステムに頼る必要があることを意味している
。したがって、ここでは上記式(1)の和を検討すれば
よい。
This means that the comprehensive combustion evaluation of the boiler only needs to be performed during normal operation, and when an abnormality occurs, it is necessary to rely on another system that is quick. Therefore, here, it is sufficient to consider the sum of the above equation (1).

よって、このような考え方を基礎にして、式(1)の内
容を以下に定義する。
Therefore, based on this idea, the contents of equation (1) are defined below.

ずなわぢ、式(1)から、 環境因子から得られる指標′r は、 亀」 となる。Zunawaji, from formula (1), The index 'r obtained from environmental factors is turtle" becomes.

ここに、β :環境要素の重み係数、 1」 α1.■、α1,2.・・・α3.。:n個の環境因子
の測定値、 〔α 、〕:αLJI因子の1llll定値を1.2゜
J1 3・・・nlの裕度階級に区分し、その階級に応じて与
えられる定数値 lである。
Here, β: Weight coefficient of environmental element, 1" α1. ■, α1, 2. ...α3. . : Measured values of n environmental factors, [α,]: αLJI factor constant values are divided into 1.2°J1 3...nl tolerance classes, and the constant value l given according to the class is be.

同様に17で、安全因子から得られる指標T は、吉な
る。
Similarly, in 17, the index T obtained from the safety factor is good.

ここに、β ・安全賞素の重み係数、 αsl’  αs2’ ・・・αsn二〇個の安全因子
の測定値、 〔α、1〕:α、i因了の測定(16を1゜2゜3・・
・mの裕度階級に区分174、その階級に応じて与えら
れる定数値 である。
Here, β ・Weighting coefficient of safety prize, αsl'αs2' ...αsn Measured value of 20 safety factors, [α, 1]: α, i factor measurement (16 to 1°2° 3...
- Class 174 is given to m's wealth class, and it is a constant value given according to that class.

さらに同様に17で、効率因子からの指標Tνは、とな
る。
Furthermore, in the same manner as 17, the index Tν from the efficiency factor becomes.

1二に、β :効率要素の重み係数、 α、α、2.・・・αwn”個の効率因子の測定値、 〔αvl):α、内因子測定値を1,2.3・・・【n
の裕度階級に区分17、その階級に応じて与えらイ1ン
)定数値 である。
12, β: weighting coefficient of efficiency element, α, α, 2. ... αwn'' efficiency factor measurements, [αvl): α, intrinsic factor measurements as 1, 2.3... [n
It is a constant value given to the wealth class of 17 and given according to that class.

ここで β 十β +β −100・・・・・・・・・(8)u
     S     v したがって、本発明では、式(5) 、(if)および
(7)から、各因子の重み係数と各因子の裕度1椅級(
′rul” lJ2’   ””um’   asl’
   ”s2’  ””sn’αwl’  αv2’ 
・・・、αい、1)とを考慮(、°乙、環境囚−了(T
 )、安全因子(T  )および効率因子U     
               S(′r )を算出し
、3因子の指標1直のfit(T”)をとって、理想値
(100点)と比較ニアて、特定の燃焼状態におけるボ
ーイラの総合燃焼評価を行う。
Here, β 10 β + β −100 (8) u
S v Therefore, in the present invention, from equations (5), (if) and (7), the weighting coefficient of each factor and the tolerance of each factor 1 class (
'rul'lJ2'''um'asl'
"s2'""sn'αwl'αv2'
..., αi, 1) (, °B, environmental prisoner (T)
), safety factor (T) and efficiency factor U
S('r) is calculated, the three-factor index 1st shift fit(T'') is taken, and compared with the ideal value (100 points), a comprehensive combustion evaluation of the boiler in a specific combustion state is performed.

本究明による総合燃焼評価は、表1(3二あろような1
;・ト価項[1を適性に選定し、/Pつ、そイ1ぞれの
計価項[Iに対ずろ裕度階級を現実的1.奪シ定・t’
 <; 1とにより、ますよツ″信・顕性の高い評価シ
ステムにしていくことができる。ざらに、計Al+値の
追υTsおよび複数の計測値の合成などにより新たな評
価項目庖設定することがb目iEで島る。
The comprehensive combustion evaluation according to this study is shown in Table 1 (32 Aroyo 1
;・Select the price term [1 appropriately, /P, and set the wealth class to realistic 1 for each price term [I]. Deprivation/t'
<; By 1, it is possible to create an evaluation system with high reliability and clarity.Roughly, new evaluation items can be set by adding the total Al+ value and composing multiple measured values. That's the b-th iE.

そし、て1.得られたボイラの総合燃焼19(′価結1
.vに限づいで煽焼状態制両システムの燃焼状;75 
JJ整部を1′l・動させてボイラの燃焼運転を行う。
Then, 1. Comprehensive combustion 19 of the obtained boiler ('value 1
.. Combustion status of the incineration state control system limited to v; 75
Move the JJ adjustment section 1'l to perform combustion operation of the boiler.

(実施例) 本望明の実施例に爪づくボイラの総合燃焼評価、ペテ・
ツブについて説明ずろ。
(Example) Comprehensive combustion evaluation of boiler based on the example of Akira Akira, Pete
Please explain about the whelk.

まず、)三S暗・安二′i!、、−肋ン釡ヅ諦貴の【偵
ろ1系;;文をそれぞれ経験則からβ −30,β −
30,β −・II             S  
           W2Cとする。
First of all,) 3S Anji'i! ,, - Ripenkazu Taitaka's [Teniro 1 series;
30,β-・IIS
W2C.

環境因子 表1によれば、環境因子の総数は5 (n”5)で、ち
るが、S Ox濃度は、燃料中の8分より決定さね、ま
た、オバシティに・ついCは、十分なデ・−夕蓄積がな
いので除!AL、ここでは、NOx、CO,煤塵(ばい
しん)の各濃度を対象とする(ずなわぢ、n・−3とな
る)。
According to the environmental factors Table 1, the total number of environmental factors is 5 (n"5), but the SOx concentration is determined from the 8 minutes in the fuel, and the overcity and C are sufficient. Since there is no data accumulation, AL, here, the concentrations of NOx, CO, and soot are targeted (Zunawaji, n.-3).

NOx濃度については5、地方自治体等との公害防正協
定値との差(ΔN)により、表2のように裕度階級1−
V(m−5)を設定する。
The NOx concentration is 5, and depending on the difference (ΔN) from the pollution prevention agreement value with local governments, etc., the tolerance class is 1-1 as shown in Table 2.
Set V(m-5).

表2 に符度の単位;ppm) また、CO濃度(C)について、現在、この濃度につい
て協定値あるいは規制値はない。しかし、過去の運転実
績から表3のように裕度階級1〜■(m−4)を設定す
る。
Table 2 shows the unit of scale: ppm) Regarding the CO concentration (C), there are currently no agreed or regulated values for this concentration. However, tolerance classes 1 to 2 (m-4) are set as shown in Table 3 based on past driving results.

表3 表 (濃度の単位;ppm) さらに、煤塵(ばいじん)a度(D)について、この濃
度については集塵器入口(節炭器出口)で表4のように
裕度階級1−V(m−5)を設定す(濃度の単位;mg
/N尻) したがって、環境因子関係の運転状況について、測定結
果からNOx濃度(ΔN)が協定値より15ppm下廻
り、CO濃度が80ppm、煤塵濃度がECO出口で1
30mg/NTrlとすると、上記式(5)より、 となる。
Table 3 Table (concentration unit: ppm) Furthermore, regarding soot and dust degree (D), this concentration is determined at the dust collector inlet (economy unit outlet) as shown in Table 4, tolerance class 1-V ( m-5) (concentration unit; mg
/N end) Therefore, regarding the operating conditions related to environmental factors, the measurement results show that the NOx concentration (ΔN) is 15 ppm below the agreed value, the CO concentration is 80 ppm, and the soot and dust concentration is 1 at the ECO exit.
When it is 30 mg/NTrl, from the above formula (5), it becomes as follows.

安全因子 次に、安全因子について、表1によれば、その総数は8
 (n−8)である。しかし、ここでは現在、データ蓄
積が十分あり、かつ、分析し易いSH,RHメタル温度
と火炉ドラフトを考察の対象とする。まず、SH,RH
メタル温度裕度(Δt)については、表5のように裕度
階級I〜V (m−5)を設定できる。
Safety factors Next, regarding safety factors, according to Table 1, the total number is 8.
(n-8). However, here we will focus on SH and RH metal temperatures and furnace draft, for which there is sufficient data and is easy to analyze. First, SH, RH
Regarding metal temperature tolerance (Δt), tolerance classes I to V (m-5) can be set as shown in Table 5.

表5 表6 (裕度単位;設計値との温度差℃) また、火炉圧力変動(ΔP)については、表6のように
裕度階級1−V(m−5)を設定する。
Table 5 Table 6 (Tolerance unit: Temperature difference from design value °C) Furthermore, regarding furnace pressure fluctuation (ΔP), tolerance class 1-V (m-5) is set as shown in Table 6.

(単位;mmAq) したがって、安全因子関係の運転状況について、ここで
、測定値からSH,RHメタル温度裕度(設計値からの
余裕)を7℃とし、火炉圧力変動を12mmAqとすれ
ば、 となる。
(Unit: mmAq) Therefore, regarding the operating conditions related to safety factors, if the SH and RH metal temperature margin (margin from the design value) is 7°C from the measured value and the furnace pressure fluctuation is 12mmAq, then Become.

効率因子 効率因子については、表1によれば、その総数は6 (
n−6)である。ここでは、現在、データ蓄積の十分な
プラント効率、ボイラ効率と02濃度を対象とする。
Efficiency Factors Regarding efficiency factors, according to Table 1, the total number is 6 (
n-6). Here, we will focus on plant efficiency, boiler efficiency, and 02 concentration, for which sufficient data is currently available.

まず、プラント効率については、表7のようにその裕度
階級1=IV(m−4)を設定する。
First, regarding plant efficiency, tolerance class 1=IV(m-4) is set as shown in Table 7.

表7 さらに、ボイラEeo出口02a度に一ついて、同様に
表9のようにその裕度階級■〜rV(rrn =4)を
設定する。
Table 7 Furthermore, one is placed at the boiler Eeo outlet 02a, and its tolerance class 1 to rV (rrn = 4) is similarly set as shown in Table 9.

表9 (プラント効率変化(Δ  )の単位:絶対値ηp での設計値との差%) また、ボイラ効率については、表8のようにその裕度階
級I〜IV(m=4)を設定する。
Table 9 (Unit of plant efficiency change (Δ): % difference from design value in absolute value ηp) Also, regarding boiler efficiency, the tolerance classes I to IV (m = 4) are set as shown in Table 8. do.

表8 (02a度変化(Δξ)のJν位;絶対値での設計値と
の差%) したがって、効率因子関係の運転状況が測定結果より、
プラント効率か設定値より0.15%良く、ボイラ効率
が設旧値より0.3%」二廻り、かつ、02濃度が設計
値より0.15%低かったとすると、上記式(7)より
、 (ボイラ効率変化 の設計値との差%) (Δ7、))の単位;絶対値で となる。
Table 8 (Jν position of 02a degree change (Δξ); % difference from design value in absolute value) Therefore, from the measurement results, the operating conditions related to efficiency factors are
Assuming that the plant efficiency is 0.15% better than the set value, the boiler efficiency is 0.3% better than the old value, and the 02 concentration is 0.15% lower than the design value, from the above equation (7), (% difference in boiler efficiency change from design value) (Δ7, )) unit: Absolute value.

総合評価 そ(−で、上記した運転状態における環境(T )、安
全(T )、効率(T  )因子の3IJ      
        S              ν要
素についての総合評価をすると、式(1)より、総合評
価Tは、 T−=−T  +T  十T ロ       S       シ ー19−1−18+32−69 したがって、ボイラ燃焼状態の総合評価は、理想値IC
〕0点満点1対して69点ということになる。
Comprehensive evaluation (-), 3IJ of environment (T), safety (T), and efficiency (T) factors in the above-mentioned operating conditions
When making a comprehensive evaluation of the S ν element, from equation (1), the comprehensive evaluation T is: T-=-T +T value IC
] 69 points per 0 points.

そして、この総合評価に基づいてボイラの燃焼状態の制
御を燃焼状態調整部により行い一つつボイラの燃焼運転
を行う。
Then, based on this comprehensive evaluation, the combustion state of the boiler is controlled by the combustion state adjustment section, and the combustion operation of the boiler is performed one by one.

(発明の効果) 本発明によれば、ボイラの環境・安全Q効率に関係した
因−rを所定抛所で測定I7、裕度階級を重み係数を考
慮して、前述]7た計算式から環境因子からの指IT 
 、安全因子からの指標T およびJS 効率因子からの指1iT  を算出し、その和を理想ν 値(100)と対比することによりボイラの燃焼状態を
総合的に評価出来るとともに、総合指標Tを最大限高く
I−た状態でボイラの燃焼運転が可能となる。その結果
、燃焼の自動制御が可能となり、火力発電所周辺の環境
、ボイラ設備の老朽度等を考慮した発電プラントの全体
的な運転支援システムが構築される。
(Effects of the Invention) According to the present invention, the factors related to the environment/safety Q/efficiency of the boiler are measured at a predetermined location, and the tolerance class is calculated from the above calculation formula in consideration of the weighting coefficient. Finger IT from environmental factors
By calculating the index T from the safety factor and the index 1iT from the JS efficiency factor, and comparing the sum with the ideal ν value (100), it is possible to comprehensively evaluate the combustion state of the boiler, and also to maximize the comprehensive index T. It is possible to operate the boiler in a state where the I- is at the highest possible level. As a result, automatic control of combustion will become possible, and an overall operation support system for the power plant will be constructed that takes into consideration the environment around the thermal power plant, the age of the boiler equipment, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明ボイラの最適燃焼制御方法に用いるボイ
ラの燃焼状態制御のシステム概念図を示す。 1・・・ボイラ、2・・・燃焼状態監視部、3・・・燃
焼状態診断部、4・・・最適調整計画部、5・・・燃焼
状態4調整部。
FIG. 1 shows a conceptual diagram of a system for controlling the combustion state of a boiler used in the optimum combustion control method for a boiler according to the present invention. DESCRIPTION OF SYMBOLS 1... Boiler, 2... Combustion state monitoring part, 3... Combustion state diagnosis part, 4... Optimal adjustment planning part, 5... Combustion state 4 adjustment part.

Claims (1)

【特許請求の範囲】 ボイラ、ボイラの燃焼状態を監視し診断する燃焼状態監
視・診断部、この燃焼状態監視・診断部の総合評価に基
づいて最適なボイラの燃焼状態を設定する最適調整計画
部およびこの最適調整計画部からの指令によりボイラの
燃焼制御を行う燃焼状態調整部とからなるボイラの最適
燃焼制御方法において、前記燃焼状態監視・診断部によ
るボイラの燃焼状態の総合評価に際し、燃焼の総合指標
をT、環境因子から得られた指標をT_u、安全因子か
ら得られた指標をT_s効率因子から得られた指標をT
_wとしたとき、 T_u、T_sおよびT_wをそれぞれ T_u=β_u([〔α_u_1〕+〔α_u_2〕+
・・・〔+α_u_n〕]/n)、 (ここに、β_u;環境要素の重み係数、 α_u_1、α_u_2、・・・α_u_n;n個の環
境因子の測定値、 〔α_u_i〕;α_u_i因子の測定値を1、2、3
・・・mの裕度階級に区分し、その階級に応じて与えら
れる定数値) T_s=β_s([〔α_s_1〕+〔α_s_2〕+
・・・+〔α_s_n〕]/n)、(ここに、β_s;
安全要素の重み係数、 α_s_1、α_s_2、・・・α_s_n;n個の安
全因子の測定値、 〔α_s_i〕;α_s_i因子の測定値を1、23・
・・mの裕度階級に区分し、その階級に応じて与えられ
る定数値) T_w=β_w([〔α_w_1〕+〔α_w_2〕+
・・・+〔α_w_n〕]/n)(ここに、β_w;効
率要素の重み係数、 α_w_1、α_w_2、・・・α_w_n;n個の効
率因子の測定値、 〔α_w_i〕;α_w_i因子の測定値を1、23・
・・mの裕度階級に区分し、その階級に応じて与えられ
る定数値) かつ、β_u+β_s+β_w=100として、T=T
_u+T_s+T_w を求め、燃焼状態の総合評価を理想値(指標値;100
)と対比して総合指標Tの値を最大限高くした状態でボ
イラの燃焼制御を行うことを特徴とするボイラの最適燃
焼制御方法。
[Scope of Claims] A boiler, a combustion state monitoring/diagnosis section that monitors and diagnoses the combustion state of the boiler, and an optimal adjustment planning section that sets the optimum combustion state of the boiler based on the comprehensive evaluation of the combustion state monitoring/diagnosis section. In the optimum combustion control method for a boiler, which comprises a combustion state adjustment section that controls combustion of the boiler based on commands from the optimum adjustment planning section, when the combustion state monitoring/diagnosis section comprehensively evaluates the combustion state of the boiler, The comprehensive index is T, the index obtained from environmental factors is T_u, the index obtained from safety factors is T_s, the index obtained from efficiency factors is T
When _w, T_u, T_s and T_w are respectively T_u=β_u([[α_u_1]+[α_u_2]+
...[+α_u_n]]/n), (here, β_u; weighting coefficient of environmental factors, α_u_1, α_u_2, ... α_u_n; measured value of n environmental factors, [α_u_i]; measured value of α_u_i factor 1, 2, 3
...divided into m wealth classes and a constant value given according to the class) T_s = β_s ([[α_s_1] + [α_s_2] +
...+[α_s_n]]/n), (here, β_s;
Weight coefficients of safety factors, α_s_1, α_s_2, ... α_s_n; Measured values of n safety factors, [α_s_i]; Measured values of α_s_i factors are set to 1, 23.
... a constant value that is divided into m wealth classes and given according to the class) T_w = β_w ([[α_w_1] + [α_w_2] +
...+[α_w_n]]/n) (where, β_w; weighting coefficient of efficiency element, α_w_1, α_w_2, ...α_w_n; measured value of n efficiency factors, [α_w_i]; measured value of α_w_i factor 1, 23・
...m of wealth classes and a constant value given according to the class) And, assuming β_u + β_s + β_w = 100, T = T
_u+T_s+T_w is calculated, and the overall evaluation of the combustion state is set as the ideal value (index value; 100
) An optimal combustion control method for a boiler, characterized in that the boiler combustion is controlled in a state where the value of the comprehensive index T is maximized compared to the above.
JP63193057A 1988-08-02 1988-08-02 Boiler optimal combustion control method Expired - Lifetime JP2512536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63193057A JP2512536B2 (en) 1988-08-02 1988-08-02 Boiler optimal combustion control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63193057A JP2512536B2 (en) 1988-08-02 1988-08-02 Boiler optimal combustion control method

Publications (2)

Publication Number Publication Date
JPH0244119A true JPH0244119A (en) 1990-02-14
JP2512536B2 JP2512536B2 (en) 1996-07-03

Family

ID=16301474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63193057A Expired - Lifetime JP2512536B2 (en) 1988-08-02 1988-08-02 Boiler optimal combustion control method

Country Status (1)

Country Link
JP (1) JP2512536B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101710A (en) * 1994-09-30 1996-04-16 Babcock Hitachi Kk Operation controller for plant
JPH1194206A (en) * 1997-09-22 1999-04-09 Mitsubishi Heavy Ind Ltd Boiler furnace operating system
CN113869760A (en) * 2021-10-01 2021-12-31 西安特种设备检验检测院 Energy efficiency evaluation method for gas industrial boiler
CN115169680A (en) * 2022-07-04 2022-10-11 空间液态金属科技发展(江苏)有限公司 Method and system for evaluating operation effect of indirect cooling preheating system
CN117150879A (en) * 2023-07-14 2023-12-01 华能国际电力股份有限公司上海石洞口第二电厂 Super-heater overtemperature early warning method and device based on fuzzy comprehensive evaluation model

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180829A (en) * 1985-02-01 1986-08-13 Hitachi Ltd Burning control method
JPS62108903A (en) * 1985-11-07 1987-05-20 株式会社日立製作所 Boiler-stress monitor controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180829A (en) * 1985-02-01 1986-08-13 Hitachi Ltd Burning control method
JPS62108903A (en) * 1985-11-07 1987-05-20 株式会社日立製作所 Boiler-stress monitor controller

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101710A (en) * 1994-09-30 1996-04-16 Babcock Hitachi Kk Operation controller for plant
JPH1194206A (en) * 1997-09-22 1999-04-09 Mitsubishi Heavy Ind Ltd Boiler furnace operating system
CN113869760A (en) * 2021-10-01 2021-12-31 西安特种设备检验检测院 Energy efficiency evaluation method for gas industrial boiler
CN115169680A (en) * 2022-07-04 2022-10-11 空间液态金属科技发展(江苏)有限公司 Method and system for evaluating operation effect of indirect cooling preheating system
CN115169680B (en) * 2022-07-04 2023-08-25 空间液态金属科技发展(江苏)有限公司 Method and system for evaluating operation effect of indirect cooling preheating system
CN117150879A (en) * 2023-07-14 2023-12-01 华能国际电力股份有限公司上海石洞口第二电厂 Super-heater overtemperature early warning method and device based on fuzzy comprehensive evaluation model
CN117150879B (en) * 2023-07-14 2024-04-09 华能国际电力股份有限公司上海石洞口第二电厂 Super-heater overtemperature early warning method and device based on fuzzy comprehensive evaluation model

Also Published As

Publication number Publication date
JP2512536B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
US8442853B2 (en) Targeted equipment monitoring system and method for optimizing equipment reliability
Krishnasamy et al. Development of a risk-based maintenance (RBM) strategy for a power-generating plant
US8046191B2 (en) Method for monitoring performance of a heat transfer device
KR970004261B1 (en) Automated system to prioritize repair of plant equipment
CN100444070C (en) Setting method for fault diagnosis and accident prediction
KR101480130B1 (en) Incineration facility for heat calculate, design program and operator(Operater) analysis of the operation of the form and diagnosis and control of solid fuel boilers and equipment life-cycle management system and method
Özgür-Ünlüakın et al. A DBN based reactive maintenance model for a complex system in thermal power plants
JP2002155708A (en) System and method of providing guidance for power- generating plant
KR910004915B1 (en) Thermal operation state monitor apparatus for steam turbine generator
CN110598878A (en) Maintenance plan TIER4 assessment technology based on refinery device shutdown overhaul
JPH0244119A (en) Optimum combustion control method for boiler
JP2003173206A (en) Remote operation support method and system for power generating facility
Lucente Condition monitoring system in wind turbine gearbox
JP2016081104A (en) Process diagnosis support device
JP2666974B2 (en) Gas turbine life monitoring device
Krause et al. Improvement of operation and availability of MSF plants
Samal Use of Data Analytics for Power Plant Operation Optimization
Sarunac et al. Sootblowing Optimization Helps Reduce Emissions from Coal-Fired Utility Boilders
Donahoe Jr A Practical Approach to Gas Turbine Maintenance
Beattie PROPOSED AMENDMENTS TO RULE 2.27, LARGE BOILERS
JPH03100306A (en) Diagnostic device for steam turbine performance
Sarunac et al. Sootblowing operation: the last optimization frontier
Vasudeva Power plant operation and maintenance cost reduction through control system improvements
CN113741359A (en) Thermal power plant safety monitoring system and method in mixed coal blending combustion mode
Oberhoff et al. Safety Management in a Chemical Plant