JPH0244001A - Fuel reformer - Google Patents

Fuel reformer

Info

Publication number
JPH0244001A
JPH0244001A JP63192138A JP19213888A JPH0244001A JP H0244001 A JPH0244001 A JP H0244001A JP 63192138 A JP63192138 A JP 63192138A JP 19213888 A JP19213888 A JP 19213888A JP H0244001 A JPH0244001 A JP H0244001A
Authority
JP
Japan
Prior art keywords
gas
combustion
hot air
fuel
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63192138A
Other languages
Japanese (ja)
Inventor
Youshiyuu Oota
太田 洋州
Hiroshi Uchida
洋 内田
Kazunari Shimada
一成 島田
Yoshio Naganuma
永沼 義雄
Ryokichi Yamada
山田 良吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Gas Co Ltd
Original Assignee
Hitachi Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Tokyo Gas Co Ltd filed Critical Hitachi Ltd
Priority to JP63192138A priority Critical patent/JPH0244001A/en
Publication of JPH0244001A publication Critical patent/JPH0244001A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To reduce the amt. of a preheated gaseous mixture, to miniaturize a preheater, and to decrease the power consumption by providing plural combustion catalyst beds along the passage for the combustion gas and air, and furnishing a premixed gas supply pipe on the upstream side of each catalyst bed. CONSTITUTION:Air is supplied from an air supply pipe 42, measured by a flowmeter 43, preheated by a gas preheater 44, and premixed with the natural gas from a natural gas supply pipe 45. The premixed gas is supplied to the first combustion catalyst bed 31 from a premixed gas supply pipe 37. The premixed gas of natural gas and air is blown into the combustion gas from a premixed gas supply pipe 38, the heating gas and oxygen are sufficiently mixed, and the temp. is uniformized. The process is repeated, natural gas is supplied to the combustion gas obtained from the fourth combustion catalyst bed 34, from a fuel diffusion pipe 41 made of alumina, and the natural gas is burned along the wall surface through an alumina grain-packed bed 35 and a honeycomb plate 36. The hot air from a hot air generating part 30 is supplied to a reaction tower 20, and a hydrogen-rich reformed gas is obtained from the natural gas and steam supplied to a reaction tube 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭化水素と水蒸気との反応による水素製造を目
的とした燃料改質装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fuel reformer for producing hydrogen through the reaction of hydrocarbons and steam.

(従来技術) この種の燃料改質装置は種々知られているが、その−例
として実開昭60−143742号に記載された燃料改
質装置を第5図に示す。
(Prior Art) Various fuel reformers of this type are known, and FIG. 5 shows an example of the fuel reformer described in Japanese Utility Model Application Publication No. 143742/1983.

例示した燃料改質装置1は上部のヘットA、中間部の反
応部B、そして下部の燃焼部Cから成り、ヘットAには
原料供給管2か設けられ、反応部Bは内部に二重構造の
反応管3か設けられ、反応管3には改質触媒4が充填さ
れ、燃焼部Cには燃料供給管5と空気供給管6か設けら
れている。
The illustrated fuel reformer 1 consists of an upper head A, an intermediate reaction section B, and a lower combustion section C. The head A is provided with a raw material supply pipe 2, and the reaction section B has a double structure inside. The reaction tube 3 is filled with a reforming catalyst 4, and the combustion section C is provided with a fuel supply pipe 5 and an air supply pipe 6.

原料の炭化水素(たとえばLNG)とスチームは原料予
熱装置(図示せず)て170°Cから400°Cに予熱
された後、燃料改質装置1の上部のヘツドAに原料供給
管2から供給される。原料供給管2から供給された原料
は反応管3の反応外管3aに入り、管内の約800°C
の改質触媒層4の存在で反応して水素リッチガスに改質
され、反応管ベント7、反応内管3bを通り、上部ヘッ
トA内のガス集合管8に集められ、ガス取出管9より発
生水素は取り出される。この際、反応管3の加熱は燃焼
FfBcからの燃焼ガスで行われる。
The raw material hydrocarbon (for example, LNG) and steam are preheated from 170°C to 400°C in a raw material preheating device (not shown), and then supplied to the head A in the upper part of the fuel reformer 1 from the raw material supply pipe 2. be done. The raw material supplied from the raw material supply pipe 2 enters the reaction outer tube 3a of the reaction tube 3, and the temperature inside the tube is approximately 800°C.
It reacts in the presence of the reforming catalyst layer 4 and is reformed into hydrogen-rich gas, passes through the reaction tube vent 7 and the reaction inner tube 3b, is collected in the gas collecting tube 8 in the upper head A, and is generated from the gas extraction tube 9. Hydrogen is extracted. At this time, the reaction tube 3 is heated with the combustion gas from the combustion FfBc.

燃焼部Cでは、燃料は燃料供給管5、空気は空気供給管
6を通って予混合室10に供給され、セラミックトレイ
11で保持された燃焼触媒層12を有する燃焼室で燃焼
されて高温の燃焼ガスとなり、燃焼ガスは加熱部13て
多数の反応管3を外熱式で加熱し、反応部已に設けられ
た燃焼ガス排出管14より排気される。
In the combustion section C, fuel is supplied to a premixing chamber 10 through a fuel supply pipe 5 and air through an air supply pipe 6, and is combusted in a combustion chamber having a combustion catalyst layer 12 held by a ceramic tray 11 to produce high-temperature gas. The combustion gas becomes combustion gas, which externally heats a large number of reaction tubes 3 in the heating section 13, and is exhausted from the combustion gas exhaust pipe 14 provided on the side of the reaction section.

ところて、炭化水素の水蒸気改質反応は吸熱反応である
ため、反応管3の外部から反応管内の改質触媒層4へ伝
熱する必要があり、安定燃焼および低NOx燃焼を目的
として燃焼触媒層12を有する燃焼部Cを設けて改質触
媒層4を加熱する方式か採用されている。
However, since the steam reforming reaction of hydrocarbons is an endothermic reaction, it is necessary to transfer heat from the outside of the reaction tube 3 to the reforming catalyst layer 4 inside the reaction tube. A method is adopted in which a combustion section C having a layer 12 is provided to heat the reforming catalyst layer 4.

この燃焼部Cは空気供給管6からの空気と燃料供給管5
からの燃料とを予混合室lOて混合し、燃焼触媒層12
て触媒燃焼させ、約1000’cないし1200°Cの
熱風を発生させて、改質触媒層4を常時的800 ’C
に保持する。
This combustion section C is connected to the air from the air supply pipe 6 and the fuel supply pipe 5.
is mixed with the fuel from the combustion catalyst layer 12 in the premixing chamber lO.
The reforming catalyst layer 4 is heated to a constant temperature of 800°C by catalytic combustion and generating hot air at about 1000'C to 1200°C.
to hold.

さて、触媒燃焼における燃焼開始温度は燃料によりて異
なるが、一般に水素やメタノールは常温、プロパンは2
00℃、メタンは370〜380°Cて、低級飽和炭化
水素はど燃焼開始温度か高いことか知られている。
Now, the combustion start temperature in catalytic combustion differs depending on the fuel, but in general, hydrogen and methanol are at room temperature, and propane is at room temperature.
It is known that the combustion start temperature of lower saturated hydrocarbons is higher than 00°C, methane is 370-380°C.

第6図は触媒燃焼における低濃度メタンの燃焼条件を調
べるための実験結果を示しており、この図から、メタン
を安定に触媒燃焼するには、燃焼触媒層入口での空気と
メタンの予混合ガスの予熱温度を360 ’C以上に保
持する必要かあり、360°C以下のたとえば340°
Cの場合、初期においては燃焼するが、燃焼か不安定で
、約40分経過後に温度か降下し、ついには消火するこ
とかわかる。この予熱温度360°Cは触媒燃焼開始温
度370〜380℃に近い。天然ガス(LNG)を燃料
とする場合は、主成分かメタンであるため、安定な触媒
燃焼を継続するには、燃焼触媒層人口でのLNG−空気
の予混合ガス温度をメタンの燃焼開始温度以上に常時保
持する必要かある。
Figure 6 shows the results of an experiment to investigate the combustion conditions for low-concentration methane in catalytic combustion. From this figure, it is clear that premixing of air and methane at the inlet of the combustion catalyst layer is necessary for stable catalytic combustion of methane. Is it necessary to maintain the preheating temperature of the gas above 360'C?
In the case of C, it burns in the initial stage, but the combustion is unstable, and after about 40 minutes the temperature drops, and it can be seen that the flame eventually goes out. This preheating temperature of 360°C is close to the catalytic combustion start temperature of 370 to 380°C. When natural gas (LNG) is used as fuel, the main component is methane, so in order to continue stable catalytic combustion, the temperature of the LNG-air premixed gas in the combustion catalyst layer must be adjusted to the combustion start temperature of methane. Is there a need to maintain this at all times?

このため従来の燃料改質装置ては空気予熱器を設けて空
気を燃料の触媒開始温度以上に予熱しておき、これに燃
料を予混合する方式か安全性の点から一般に採用されて
いる。
For this reason, conventional fuel reformers are generally equipped with an air preheater to preheat the air to a temperature above the catalyst starting temperature of the fuel, and then premix the fuel with the air preheater for safety reasons.

上述したような従来の燃料改質装置においては、燃焼に
必要な空気を特に起動時においては必要空気の全量を所
定温度まで予熱する必要かあり、そのため空気予熱器の
負担が大きく、特に起動時の消費電力量か大きい。たと
えば35Nm’、/hの水素を発生するためLNGを原
料とする燃料改質装置(50kW燃料電池用)では11
00°Cの熱風か15ONrn’/h必要であるため、
電気ヒータ方式の空気予熱器では15ONrn’/hの
工5℃の空気を380℃まで予熱する必要かある。電気
ヒータの熱効率を90%としても、下記の推算値のよう
に22KWhの電力消費か必要となり50kW用燃料電
池用改質姦として用いた場合には発生電力の44%の電
力をプラント内の空気予熱器の消費電力に当てなければ
ならず、性能的にも経済的にも問題となる。
In the conventional fuel reformer as described above, it is necessary to preheat the entire amount of air necessary for combustion to a predetermined temperature, especially at startup, which places a heavy burden on the air preheater, especially at startup. Power consumption is large. For example, in order to generate 35 Nm'/h of hydrogen, a fuel reformer (for 50 kW fuel cell) that uses LNG as raw material generates 11
00°C hot air or 15ONrn'/h is required,
With an electric heater type air preheater, it is necessary to preheat air at 5°C to 380°C at a rate of 15ONrn'/h. Even if the thermal efficiency of the electric heater is 90%, it will require a power consumption of 22KWh as estimated below, and when used as a reformer for a 50kW fuel cell, 44% of the power generated will be consumed by the air inside the plant. The power must be used for the power consumption of the preheater, which poses problems both in terms of performance and economy.

150 x 0112 x (380−Is)/(86
0’ x O,9)=22kWh(22150) X1
00=40% ここで、空気の熟容清を0.312k Cal/N m
J/ h°C1供給空気温度を15°C,電気ヒータを
90%とした。
150 x 0112 x (380-Is)/(86
0' x O,9) = 22kWh (22150) X1
00=40% Here, the mature air purity is 0.312k Cal/N m
J/h°C1 The supply air temperature was 15°C and the electric heater was 90%.

また、燃料改質装置を小型化するには反応管材料の耐熱
許容温度を考慮した上で、できるたけ温度の高い燃焼ガ
スを用いた方か有利であるため、燃焼触媒の耐熱温度よ
りも高い温度のガスを得るべく触媒燃焼出口ガスに直接
2次燃料を吹き込む方法か従来知られている。しかし2
次燃料吹込管の先端に火炎か形成されるため火炎か対面
の壁に接触しないよう燃焼空間を大きくする必要かあっ
たり、高温になる火炎部からのNOx発生量か増加する
などの問題かあった。
In addition, in order to downsize the fuel reformer, it is advantageous to use combustion gas with a temperature as high as possible after considering the allowable heat resistance temperature of the reaction tube material. Conventionally, a method is known in which secondary fuel is directly blown into the catalytic combustion outlet gas to obtain hot gas. But 2
Next, since a flame is formed at the tip of the fuel injection pipe, there may be problems such as the need to enlarge the combustion space to prevent the flame from coming into contact with the opposite wall, or an increase in the amount of NOx generated from the flame section, which becomes hot. Ta.

(発明の目的および構r&) 本発明は上記の点にかんがみてなされたものて、燃料改
質装置における燃焼に必要な空気または空気と燃料との
予混合ガスの予熱容量を減少して予熱器の小型化および
消費電力の低減を図ることを目的とし、この目的を達成
するために、燃料改質装置の反応管加熱用熱風発生部の
燃料ガス流路に沿って複数段の燃焼触媒層を設け、最上
段の燃焼触媒層を除く各燃焼触媒層の上流側に燃焼ガス
と空気との混合ガスを供給する予混合ガス供給管を設け
たものである。
(Objective and Structure of the Invention) The present invention has been made in view of the above-mentioned points. In order to achieve this goal, we installed multiple stages of combustion catalyst layers along the fuel gas flow path of the hot air generation section for heating the reaction tubes of the fuel reformer. A premixed gas supply pipe for supplying a mixed gas of combustion gas and air is provided upstream of each combustion catalyst layer except for the uppermost combustion catalyst layer.

(実施例) 以下本発明を図面に基づいて説明する。(Example) The present invention will be explained below based on the drawings.

第1図は本発明による燃料改質装置の一実施例の概略図
である。
FIG. 1 is a schematic diagram of an embodiment of a fuel reformer according to the present invention.

第1図に示した燃料改質装置は原料に天然ガス(主成分
メタン)を用いるものて、ヘットAには原料の天然ガス
と水蒸気を供給する原料供給管と改質ガスを取り出すた
めのガス取出管9とが設けられ、反応部Bには、熱損失
を防ぐための断熱材16が内張すされた反応塔20の内
部にニッケルーアルミナ系の改質触媒層4を充填した反
応管3か複数本設けられ、反応管3の外部の加熱部13
にはアルミナ製の伝熱粒子17か充填され、耐熱金属製
の多孔板18で保持されている。また、反応部Bには反
応塔20を貫いて燃焼ガス排出管14か設けられている
The fuel reformer shown in Figure 1 uses natural gas (main component methane) as a raw material, and head A has a raw material supply pipe for supplying the raw material natural gas and steam, and a gas pipe for taking out the reformed gas. The reaction section B includes a reaction column 20 lined with a heat insulating material 16 to prevent heat loss, and a reaction column 20 filled with a nickel-alumina reforming catalyst layer 4. 3 or more are provided, and a heating section 13 outside the reaction tube 3 is provided.
is filled with heat transfer particles 17 made of alumina and held by a perforated plate 18 made of heat-resistant metal. Further, the reaction section B is provided with a combustion gas discharge pipe 14 passing through the reaction tower 20.

燃焼部Cには反応管3を加熱するための熱風発生部30
が設けられている。
The combustion section C includes a hot air generating section 30 for heating the reaction tube 3.
is provided.

この熱風発生部30は、反応塔20の下部に形成された
空間19に連通した筒体30aの内部に、第1から第4
までの4段のランタン・ベータ・アルミナ系燃焼触媒層
31,32,33゜34か離間して配設され、さらにそ
の下流側にアルミナ粒子充填層35とハニカム板36と
か配設されている。第1段の燃焼触媒層31の上流側に
は予熱された空気と天然ガスとの予混合ガスを導入する
ための予混合ガス供給管37か接続され、第1段の燃焼
触媒層31と第2段の燃焼触媒層32との間には予熱し
ない空気と天然ガスとの混合ガスを導入するための予混
合ガスか供給管38か接続され、第2段の燃焼触媒層3
2と第3段の燃焼触媒層33との間には予熱しない空気
と天然ガスとの混合ガスを導入するための予混合ガス供
給管39か接続され、第3段の燃焼触媒層33と第4段
の燃焼触媒層34との間に予熱しない空気と天然ガスと
の混合ガスを導入するための予混合ガス供給管40か接
続されている。また、アルミナ粒子充填層35にはアル
ミナ製の燃料分散管41か導入されている。
This hot air generating section 30 has first to fourth sections inside a cylindrical body 30a communicating with a space 19 formed at the bottom of the reaction tower 20.
The four stages of lanthanum beta alumina combustion catalyst layers 31, 32, 33° 34 are arranged at a distance from each other, and an alumina particle packed bed 35 and a honeycomb plate 36 are further arranged on the downstream side thereof. A premixed gas supply pipe 37 for introducing a premixed gas of preheated air and natural gas is connected to the upstream side of the first stage combustion catalyst layer 31. A premixed gas supply pipe 38 for introducing a mixed gas of unpreheated air and natural gas is connected between the second stage combustion catalyst layer 32 and the second stage combustion catalyst layer 3.
A premixed gas supply pipe 39 for introducing a mixed gas of unpreheated air and natural gas is connected between the combustion catalyst layer 33 of the third stage and the combustion catalyst layer 33 of the third stage. A premixed gas supply pipe 40 for introducing a mixed gas of unpreheated air and natural gas is connected between the four stages of combustion catalyst layers 34. Furthermore, an alumina fuel dispersion tube 41 is introduced into the alumina particle packed bed 35.

各予混合ガス供給管37.38,39.40への空気は
空気供給管42から流量計43を介して供給され、予混
合ガス供給管37への空気のみがガス予熱器44により
加熱される。
Air to each premixed gas supply pipe 37.38, 39.40 is supplied from an air supply pipe 42 via a flow meter 43, and only air to the premixed gas supply pipe 37 is heated by a gas preheater 44. .

一方、各予混合ガス供給管37.38,39゜40への
天然ガスは天然ガス供給v45から流量計46を介して
供給される。
On the other hand, natural gas to each premixed gas supply pipe 37, 38, 39° 40 is supplied via a flow meter 46 from a natural gas supply v45.

以上が本発明による燃料改質装置の概略構成であるが、
実際の仕様の一例を示すと次のようになる。
The above is the schematic configuration of the fuel reformer according to the present invention,
An example of an actual specification is as follows.

反応塔20:塔径70口+mm 、高さ3000mm反
応管 3:直径1100II x長さ1800II1m
(7本)改質触媒7:50文 伝熱粒子17:直径10mmのアルミナ粒120 M熱
風発生部直径の筒体30:直径200+sm高さ100
0i11 燃焼触媒:直径100mm 、長さ50■〜1501m
次に上記の燃料改質装置を用いて行った燃料改質の実験
について説明する。
Reaction column 20: Column diameter 70 ports + mm, height 3000 mm Reaction tube 3: Diameter 1100 II x length 1800 II 1 m
(7 pieces) Reforming catalyst 7: 50mm Heat transfer particles 17: Alumina particles with a diameter of 10mm 120M Hot air generation part diameter cylinder 30: Diameter 200 + sm Height 100
0i11 Combustion catalyst: diameter 100mm, length 50cm ~ 1501m
Next, a fuel reforming experiment conducted using the above fuel reformer will be explained.

空気供給管42から15°Cの空気を送り込み、流量計
43て計量してその3ONm’/hをガス予熱器44で
400°Cまで予熱し、これに天然ガス供給管45から
の天然ガスを0.56Nm’/hだけ予混合し、予混ガ
ス供給管37から第1段の燃焼触媒層31に供給し、8
00°Cの燃焼ガス30.6Nrn’/hを得た。この
燃焼ガスに予混合ガス供給管38から15°Cの空気3
ONm’/hと天然ガス0.94Nm”/hと予混合し
た予混合ガスを旋回流で吹込んで加熱ガスと酸素か充分
混合し、均一温度になるようにした。なお、混合後のガ
ス温度は約390°Cてあった。第2段の燃焼触媒層3
2からは800℃の燃焼ガス61.5Nm”/hを得た
。同様の操作を繰返し、第4段の燃焼触媒層34から得
た燃焼ガス(温度800°C)247.2Nrn’/h
にアルミナ酸の燃料分散管41から天然ガス3.81N
m”/hを供給し、アルミナ粒子充填層35およびハニ
カム板36て壁面に沿って燃焼させ、1200°Cの燃
焼ガス251.2Nm’/hを得た。火炎はほとんど発
生せず、温度分布は均一となるため燃焼ガス中のNaX
6度は12ppmと極めて低い値てあった。
Air at 15°C is sent from the air supply pipe 42, measured by the flow meter 43, and the 3ONm'/h of air is preheated to 400°C by the gas preheater 44, and natural gas from the natural gas supply pipe 45 is The premixed gas is premixed by 0.56 Nm'/h and supplied to the first stage combustion catalyst layer 31 from the premixed gas supply pipe 37.
A combustion gas of 30.6 Nrn'/h at 00°C was obtained. This combustion gas is supplied with air 3 at 15°C from the premixed gas supply pipe 38.
ONm'/h and natural gas 0.94Nm''/h were injected into the premixed gas in a swirling flow to sufficiently mix the heated gas and oxygen to achieve a uniform temperature.The gas temperature after mixing The temperature was about 390°C.The second stage combustion catalyst layer 3
From No. 2, 61.5 Nrn'/h of combustion gas at 800°C was obtained. By repeating the same operation, 247.2 Nrn'/h of combustion gas (temperature 800°C) obtained from the fourth stage combustion catalyst layer 34 was obtained.
3.81N of natural gas from the alumina acid fuel dispersion pipe 41.
m''/h was supplied and burned along the wall surface using the alumina particle packed bed 35 and the honeycomb plate 36 to obtain 251.2 Nm'/h of combustion gas at 1200°C. Almost no flame was generated, and the temperature distribution was is uniform, so NaX in the combustion gas
At 6 degrees Celsius, the concentration was extremely low at 12 ppm.

こうして熱風発生部30て得られた熱風は燃焼部Cの空
間19を介して反応塔20に供給され、その結果、反応
管3に供給した天然ガス21.9N m’ / hおよ
び水蒸気37 k g/hから水素リッチな改質ガス(
水素70 N rn’ / h、二酸化炭素1ONm’
/h、−酸化炭素11Nm’/h)を得るとともに、改
質触媒出口温度を800°Cに保持して運転てきた。
The hot air thus obtained in the hot air generating section 30 is supplied to the reaction tower 20 through the space 19 of the combustion section C, and as a result, 21.9 N m'/h of natural gas and 37 kg of steam are supplied to the reaction tube 3. /h to hydrogen-rich reformed gas (
Hydrogen 70 Nrn'/h, carbon dioxide 1ONm'
/h, - carbon oxide 11 Nm'/h), and the reforming catalyst outlet temperature was maintained at 800°C.

上記実験の概要を別の表にまとめて示した。A summary of the above experiments is summarized in a separate table.

この表において、熱効率は熱風発生部の各部て精製した
燃焼ガス温度から推算したものて、各部とも90%以上
を示しており、筒体30aからの熱損失は小さく、熱風
発生部は効率的に作動した。
In this table, the thermal efficiency is estimated from the temperature of the combustion gas purified at each part of the hot air generation part, and each part shows 90% or more, and the heat loss from the cylinder 30a is small, and the hot air generation part is efficiently It worked.

本実施例によれば、251.2Nrn’/hの燃焼ガス
を得るのに、ガス予熱器44て予熱した空気量は燃焼ガ
スの約1/8の3ONm’/hてあり、ガス予熱器44
の容量やヒータ消費電力量を従来法(1段触媒燃焼法)
と比較して大幅に小さくてきた。さらに壁面に沿って燃
焼させる方法を採用することにより、燃焼ガス中のNo
。濃度を従来法の数分の1に低減することかできクリー
ンな熱風を発生させることかできた。
According to this embodiment, in order to obtain 251.2 Nrn'/h of combustion gas, the amount of air preheated by the gas preheater 44 is 3ONm'/h, which is about 1/8 of the combustion gas.
capacity and heater power consumption using the conventional method (single-stage catalytic combustion method)
has become significantly smaller compared to Furthermore, by adopting a method of burning along the wall surface, the No.
. We were able to reduce the concentration to a fraction of that of conventional methods and generate clean hot air.

第2図は本発明による燃料改質装置を組込んだ燃*4電
池発電システムの概略構成を示す。
FIG. 2 shows a schematic configuration of a fuel cell power generation system incorporating a fuel reformer according to the present invention.

図中1か本発明による燃料改質装置、100か燃料電池
である。
In the figure, numeral 1 represents a fuel reformer according to the present invention, and numeral 100 represents a fuel cell.

改質原料の天然ガスNGと水蒸気Wを水蒸気/炭素(モ
ル比)値か3.5になるよう調整して燃料改質装置lに
供給し、水素リッチガスに改質した。改質ガスをシフト
コンバータ50および51に導いて改質ガス中の一酸化
炭素を二酸化炭素に変換した後、冷却器52てガスを冷
却し、気水分離器53て凝縮水を分離したのち、改質ガ
スを燃料電池100のアノード1ooaに導入した。ア
ノード″C改質ガス中の約80%の水素か消費され、未
反応水素を含有するアノード排ガスの供給管1oobを
熱風発生部30の天然ガス供給管45(第1図参照)に
接続して、アノード排ガスを燃料として用いた。なお、
燃料改質装置lの起動時にはアノード排ガスを利用でき
ないので、燃料に天然ガスを用いて実施例1の操作要領
て熱風を発生させ、改質装置を起動させた。
Natural gas NG and steam W, which are raw materials for reforming, were adjusted to have a steam/carbon (molar ratio) value of 3.5 and supplied to the fuel reformer 1, where they were reformed into hydrogen-rich gas. After the reformed gas is introduced into shift converters 50 and 51 to convert carbon monoxide in the reformed gas into carbon dioxide, the gas is cooled with a cooler 52, and condensed water is separated with a steam/water separator 53. The reformed gas was introduced into the anode 1ooa of the fuel cell 100. Approximately 80% of the hydrogen in the anode "C reformed gas has been consumed, and the anode exhaust gas supply pipe 1oob containing unreacted hydrogen is connected to the natural gas supply pipe 45 (see FIG. 1) of the hot air generation section 30. , anode exhaust gas was used as fuel.
Since the anode exhaust gas could not be used when starting up the fuel reformer I, hot air was generated using natural gas as a fuel in accordance with the operating procedure of Example 1, and the reformer was started up.

一方、空気圧縮器54からの空気は燃料電池100のカ
ソード100cに供給し、ここで50%の酸素か消費さ
れたカソード排ガスの供給管55を改質装置1の熱風発
生部30に導き、空気供給管42(第1図参照)に接続
し、酸素源とした。
On the other hand, the air from the air compressor 54 is supplied to the cathode 100c of the fuel cell 100, where the supply pipe 55 of the cathode exhaust gas in which 50% of oxygen has been consumed is guided to the hot air generation section 30 of the reformer 1, and the air is It was connected to a supply pipe 42 (see FIG. 1) to serve as an oxygen source.

燃料電池100からのアノード排ガスおよびカソード排
ガスは熱交換器57や気水分離気58を通って熱風発生
部30に達するため、ガスの温度は燃料電池出口温度2
00°Cからいずれも約40°Cに低下していた。カソ
ード排カスの1/8(約25 N m’ / h )を
150℃に予熱し、これにアノード排ガスの一部を予混
合し、第1段の燃焼触媒層31の温度か500℃になる
ようにアノード排ガス量の混合賃を調整した。この燃焼
ガスに等量の予混合ガスを予混合ガス供給管38から旋
回流で吹込み混合して、次の第2段の燃焼触媒層32て
燃焼させ、同様に500°Cの燃焼ガスを得た。この操
作を繰返し、最後に残りのアノード排ガスと補助燃料の
メタンガスを壁面に沿って燃焼して、1150°Cの燃
焼ガスを発生させ改質反応管3の加熱に用いた。
The anode exhaust gas and cathode exhaust gas from the fuel cell 100 pass through the heat exchanger 57 and the steam/water separator 58 to reach the hot air generator 30, so the gas temperature is equal to the fuel cell outlet temperature 2.
In both cases, the temperature had dropped from 00°C to about 40°C. 1/8 (approximately 25 N m'/h) of the cathode exhaust gas is preheated to 150°C, and a part of the anode exhaust gas is premixed with this to bring the temperature of the first stage combustion catalyst layer 31 to 500°C. The mixed rate of anode exhaust gas amount was adjusted as follows. An equal amount of premixed gas is blown into this combustion gas from the premixed gas supply pipe 38 in a swirling flow, and the mixture is combusted in the next second stage combustion catalyst layer 32. Similarly, the combustion gas at 500°C is Obtained. This operation was repeated, and finally the remaining anode exhaust gas and the auxiliary fuel methane gas were combusted along the wall to generate combustion gas at 1150° C., which was used to heat the reforming reaction tube 3.

燃料改質装置lからは、実施例1と同様に水素リッチな
改質ガス(水J7ONm’/h、二酸化炭素1ONm’
/h、−酸化炭素11 Nrn’/ h )か得られた
From the fuel reformer l, hydrogen-rich reformed gas (water J7ONm'/h, carbon dioxide 1ONm'
/h, -carbon oxide 11 Nrn'/h) was obtained.

予混合ガス中の水素の安定触媒燃焼開始温度は90℃で
メタンの380°Cより低かった。
The stable catalytic combustion initiation temperature of hydrogen in the premixed gas was 90°C, lower than that of methane at 380°C.

第3図に実測した燃焼開始温度を他の燃料と比較して示
す。
Fig. 3 shows the actually measured combustion start temperatures in comparison with other fuels.

燃焼触媒入口ガス温度はいずれも250°Cであったの
で、触媒燃焼反応は安定に継続した。なお最終燃焼触媒
層34の温度のみ他の触媒層より250’C高い750
 ’Cとした。これは燃料の気相燃焼温度(水素580
°C)以上とし、後続の壁面に沿う燃焼を円滑に進める
ためである。
Since the combustion catalyst inlet gas temperature was 250°C in all cases, the catalytic combustion reaction continued stably. Note that only the temperature of the final combustion catalyst layer 34 is 750°C higher than the other catalyst layers by 250'C.
'C. This is the gas phase combustion temperature of the fuel (hydrogen 580
(°C) or above, in order to smoothly advance combustion along the subsequent wall surface.

本実施例によれば、燃料電池100からの低発熱量ガス
であるアノード排ガス(約100 kcal/N m’
 )を低酸素ガス(m素濃度10%)であるカンート排
ガスて安定に燃焼させるとともに、最初に予熱するガス
量を最終的に得られた燃焼ガス量の約1/8に低減てき
、ガス予熱器の容量およびヒータ消費電力量を小さくす
る効果がある。
According to this embodiment, the anode exhaust gas (approximately 100 kcal/N m'
) is stably combusted using Kanto exhaust gas, which is a low-oxygen gas (m element concentration 10%), and the amount of gas initially preheated is reduced to approximately 1/8 of the amount of combustion gas finally obtained. This has the effect of reducing the capacity of the device and the amount of power consumed by the heater.

第4図は本発明による燃料改質装置の熱風発生部のざら
に他の実施例を示しており、燃焼触媒層から得られる燃
焼ガスに予混合ガスをさらに良好に混合するための熱風
発生部の概略構造を示す。
FIG. 4 shows another embodiment of the hot air generating section of the fuel reformer according to the present invention, and shows the hot air generating section for better mixing the premixed gas into the combustion gas obtained from the combustion catalyst layer. The schematic structure of

図中第1図と同じ参照数字は構成部分を示す。In the figure, the same reference numerals as in FIG. 1 indicate constituent parts.

この実施例における熱風発生部か第1図に示した熱風発
生部と異なる点は、燃焼触媒層31゜32.33.34
の各触媒層間に粒径6■のアルミナ粒子を充填して固定
層47を形成し、この固定層47に内径3■、外径6■
のアルミナ製耐熱管に1msの孔を10個設けた燃料分
散管41a。
The hot air generating section in this embodiment is different from the hot air generating section shown in FIG.
A fixed bed 47 is formed by filling alumina particles with a particle size of 6 cm between each catalyst layer.
A fuel distribution tube 41a is a heat-resistant alumina tube with ten 1ms holes.

41b、41cをそれぞれ挿入した点である。このよう
な熱風発生部について実施例1とほぼ類似の操作を行っ
たところ後掲の運転結果と類似の燃焼ガスを得た。
This is the point where 41b and 41c are inserted, respectively. When such a hot air generating section was operated in substantially the same manner as in Example 1, combustion gas similar to the operation results described below was obtained.

予混合ガスの供給方法は実施例1の旋回吹込み法より簡
単な操作で行えること、燃焼触媒層の温度分布かさらに
均一であることから、燃焼ガスと予混合ガスとの混合か
さらに良好に行なわれたなどの効果かみられた。
Since the method of supplying the premixed gas is simpler than the swirl blowing method of Example 1, and the temperature distribution of the combustion catalyst layer is more uniform, the mixing of the combustion gas and the premixed gas is even better. The effects of this experiment were seen.

上記実施例ではいずれも熱R発生部に4段の燃焼触媒層
を設けているが、本発明においては、2段以上の燃焼触
媒層を設ければそれなりの効果か得られる。
In all of the above embodiments, four stages of combustion catalyst layers are provided in the heat R generating section, but in the present invention, a certain effect can be obtained by providing two or more stages of combustion catalyst layers.

(発明の効果) 以上説明したように1本発明においては、燃料改質装置
の反応管加熱用熱風発生部において、燃焼ガスと空気と
の流路に沿って燃焼触媒層を2段以上設け、各燃焼触媒
層の上流側にそれぞれ予混合ガス供給管を設けたので、
各燃焼触媒層により得られるガスに予熱しない予混合ガ
スを混合して下流の燃焼触媒層で燃焼させる操作を繰返
すことにより、第1段の燃焼触媒層で必要とする予熱し
た混合ガス量を低減できる効果かある。また、最終燃焼
触媒層の下流に設けた耐熱性の粒状もしくはハニカム状
物からなる固定層内に燃料分散管を挿入して壁面に沿っ
て燃焼させることにより燃焼触媒の耐熱温度以上のクリ
ーンな熱風を発生させて反応管を加熱できる効果かある
(Effects of the Invention) As explained above, in the present invention, two or more combustion catalyst layers are provided along the flow path of combustion gas and air in the hot air generation section for heating the reaction tube of the fuel reformer, Since a premixed gas supply pipe was installed on the upstream side of each combustion catalyst layer,
By repeating the operation of mixing unpreheated premixed gas with the gas obtained from each combustion catalyst layer and combusting it in the downstream combustion catalyst layer, the amount of preheated mixed gas required in the first stage combustion catalyst layer is reduced. There are some effects that can be done. In addition, by inserting a fuel distribution pipe into a fixed bed made of heat-resistant granular or honeycomb-like materials provided downstream of the final combustion catalyst layer and burning it along the wall surface, clean hot air with a temperature higher than the heat-resistant temperature of the combustion catalyst can be produced. This has the effect of generating heat in the reaction tube.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による燃料改質装置の一実施例の顆路線
図、第2図は本発明による燃料改質装置dを組込んだ燃
料電池システムの顆路線図、第31′Aは第1図に示し
た実施例による天然ガスの燃焼開始温度を他の燃料と比
較して示す実測図、第4図は本発明による燃料改質装置
の熱風発生部の他の実施例の要部概略線図、第5図は従
来の燃料改質装置の一例の断面図、第6図は従来の燃料
改質装置におけるメタンの燃焼条件と触媒温度との関係
を示すクラ7である。 l・・・燃料ay賀装置、2・・・原料供給管、3・・
・反応管、4・・・改質触媒、9・・・ガス取出管、2
0・・・反応塔、30・・・熱風発生部、31,32,
33.34・・・燃焼触媒層、37.38,39.40
・・・予混合ガス供給管、35・・・アルミナ粒子充填
層、36・・・ハニカム板、42・・・空気供給管、4
5・・・天然ガス供給管
FIG. 1 is a condyle diagram of an embodiment of the fuel reformer according to the present invention, FIG. 2 is a condyle diagram of a fuel cell system incorporating the fuel reformer d according to the present invention, and FIG. Fig. 1 is an actual measurement diagram showing the combustion start temperature of natural gas according to the embodiment shown in comparison with other fuels, and Fig. 4 is a schematic diagram of the main part of another embodiment of the hot air generating section of the fuel reformer according to the present invention. 5 is a cross-sectional view of an example of a conventional fuel reformer, and FIG. 6 is a graph 7 showing the relationship between methane combustion conditions and catalyst temperature in the conventional fuel reformer. l...Fuel aeration device, 2...Raw material supply pipe, 3...
・Reaction tube, 4... Reforming catalyst, 9... Gas extraction pipe, 2
0... Reaction tower, 30... Hot air generation section, 31, 32,
33.34... Combustion catalyst layer, 37.38, 39.40
... Premixed gas supply pipe, 35 ... Alumina particle packed bed, 36 ... Honeycomb plate, 42 ... Air supply pipe, 4
5...Natural gas supply pipe

Claims (2)

【特許請求の範囲】[Claims] (1)熱風発生部を有し、該熱風発生部により発生され
た熱風を利用して改質触媒を充填した反応管を加熱し、
該反応管に導入した原料ガスを前記改質触媒の作用で改
質して水素リッチなガスを生成する燃料改質装置におい
て、前記熱風発生部が、熱風用空気を予熱する予熱器と
、予熱された空気と燃料ガスとの混合ガスの流路に沿っ
て配設された複数段の燃焼触媒層と、最上段の燃焼触媒
層を除く各燃焼触媒層の上流側に燃焼ガスと空気との混
合ガスを供給する予混合ガス供給管とを設けて成ること
を特徴とする燃料改質装置
(1) having a hot air generating section and heating a reaction tube filled with a reforming catalyst using the hot air generated by the hot air generating section;
In the fuel reformer that generates hydrogen-rich gas by reforming the raw material gas introduced into the reaction tube by the action of the reforming catalyst, the hot air generation section includes a preheater that preheats the air for hot air, and a preheater that preheats the hot air. A multi-stage combustion catalyst layer is arranged along the flow path of a mixed gas of air and fuel gas, and a combustion catalyst layer is arranged upstream of each combustion catalyst layer except for the uppermost combustion catalyst layer. A fuel reformer comprising a premixed gas supply pipe for supplying mixed gas.
(2)前記熱風発生部の最終段燃焼触媒層の下流側に、
粒状またはハニカム構造の固定層を設け、該固定層中に
燃料導入用の燃料分散管を設けた請求項1に記載の燃料
改質装置。(3)前記熱風発生部の燃焼触媒層間に耐熱
性物質の粒子を充填して固定層を形成し、該固定層中に
燃料導入用の燃料分散管を設けた請求項1に記載の燃料
改質装置。
(2) On the downstream side of the final stage combustion catalyst layer of the hot air generation section,
2. The fuel reformer according to claim 1, further comprising a fixed bed having a granular or honeycomb structure, and a fuel dispersion pipe for introducing fuel into the fixed bed. (3) The fuel reformer according to claim 1, wherein particles of a heat-resistant material are filled between the combustion catalyst layers of the hot air generating section to form a fixed bed, and a fuel dispersion pipe for introducing fuel is provided in the fixed bed. quality equipment.
JP63192138A 1988-08-02 1988-08-02 Fuel reformer Pending JPH0244001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63192138A JPH0244001A (en) 1988-08-02 1988-08-02 Fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63192138A JPH0244001A (en) 1988-08-02 1988-08-02 Fuel reformer

Publications (1)

Publication Number Publication Date
JPH0244001A true JPH0244001A (en) 1990-02-14

Family

ID=16286318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63192138A Pending JPH0244001A (en) 1988-08-02 1988-08-02 Fuel reformer

Country Status (1)

Country Link
JP (1) JPH0244001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354403A (en) * 2000-04-13 2001-12-25 L'air Liquide Manufacturing method for mixture containing hydrogen and co

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354403A (en) * 2000-04-13 2001-12-25 L'air Liquide Manufacturing method for mixture containing hydrogen and co

Similar Documents

Publication Publication Date Title
US7976594B2 (en) Method and system for vaporization of liquid fuels
KR101102804B1 (en) Method of starting solid oxide fuel cell system
RU2579584C2 (en) Membrane system of oxygen transportation and method of heat transportation into catalytic/technological reactors
US4642272A (en) Integrated fuel cell and fuel conversion apparatus
US6481207B2 (en) Single-pipe cylinder type reformer and method of operating the same
US7625414B2 (en) Partial oxidation reactor
US8372170B2 (en) Fuel steam reformer system and reformer startup process
JP2002510272A (en) Method and apparatus for autothermal reforming of hydrocarbons
US8931283B2 (en) Reformed multi-fuel premixed low emission combustor and related method
US20020110711A1 (en) Method and device for starting a reacator in a gas-generating system
US7988925B2 (en) Fuel processing device
US7517372B2 (en) Integrated fuel processor subsystem with quasi-autothermal reforming
KR100848047B1 (en) Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range
JP2002187705A (en) Single tube cylindrical reformer
US20030188475A1 (en) Dynamic fuel processor with controlled declining temperatures
US20020007595A1 (en) Method for reforming hydrocarbons autothermally
JP2010513835A (en) Hybrid combustor for fuel processing applications
US20060143983A1 (en) Apparatus for producing hydrogen gas and fuel cell system using the same
KR20220041007A (en) Process for producing pure hydrogen with low steam export
JPS63282410A (en) Method and device for forming high-temperature pressurized gas flow by catalyst type combustion
JP5078165B2 (en) Steam reforming unit
US9162887B2 (en) Reformer reactor and method for converting hydrocarbon fuels into hydrogen rich gas
JPH0154820B2 (en)
US20020064487A1 (en) Compact Multiple tube steam reformer
JPH0270928A (en) Gas turbine