JPH0243953B2 - - Google Patents

Info

Publication number
JPH0243953B2
JPH0243953B2 JP59080637A JP8063784A JPH0243953B2 JP H0243953 B2 JPH0243953 B2 JP H0243953B2 JP 59080637 A JP59080637 A JP 59080637A JP 8063784 A JP8063784 A JP 8063784A JP H0243953 B2 JPH0243953 B2 JP H0243953B2
Authority
JP
Japan
Prior art keywords
transport pipe
pipe
tube
evacuation
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59080637A
Other languages
Japanese (ja)
Other versions
JPS60222690A (en
Inventor
Mitsuhiro Sato
Osamu Nitsuta
Masami Murayama
Koichi Sugyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP59080637A priority Critical patent/JPS60222690A/en
Publication of JPS60222690A publication Critical patent/JPS60222690A/en
Publication of JPH0243953B2 publication Critical patent/JPH0243953B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明、極低温の冷媒を輸送する管において積
層断熱材の層に対する真空排気を効果的に行える
ように改良された冷媒輸送管及びそのための真空
排気方法を提供しようとするものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides an improved refrigerant transport pipe that is capable of effectively evacuation of a layer of laminated insulation material in a pipe that transports cryogenic refrigerant, and a refrigerant transport pipe therefor. The present invention attempts to provide a vacuum evacuation method.

〔従来の技術〕[Conventional technology]

一般に、液体ヘリウム等の極低温の冷媒を輸送
する管では、冷媒通路を確保する管の周上におい
て、真空断熱と超熱絶縁;スーパーインシユレー
シヨン(以下、SIと称する。)とを併用して極低
温状態を維持するための断熱構造を構成してい
る。
Generally, in tubes that transport cryogenic refrigerants such as liquid helium, vacuum insulation and super insulation (hereinafter referred to as SI) are used in combination on the circumference of the tube to secure the refrigerant passage. It has a heat insulating structure to maintain the cryogenic temperature.

第1図は、そうした基本構想に基づいて具現さ
れた従来の冷媒輸送管を示したものであつて、冷
媒通路1を確保する内管2の上にスペーサ10を
介して第一中管4を同軸配置してそれらの間に真
空断熱層3を形成し、前記第一中管4の上にスペ
ーサ10を介して第二中管6を同軸配置してそれ
らの間に冷媒帰路空間5を確保し、さらに第二中
管6の上にSI材を多層に巻いたSI層7を形成し、
その上にスペーサ10を介して外管9を同軸配置
してそれらの間に真空排気空間8を確保した構造
としてある。
FIG. 1 shows a conventional refrigerant transport pipe realized based on such a basic concept, in which a first inner pipe 4 is installed via a spacer 10 on an inner pipe 2 that secures a refrigerant passage 1. A vacuum insulation layer 3 is formed between them by coaxial arrangement, and a second middle pipe 6 is coaxially arranged over the first middle pipe 4 via a spacer 10 to secure a refrigerant return space 5 between them. Then, an SI layer 7 made of multiple layers of SI material is formed on the second middle pipe 6,
The structure is such that an outer tube 9 is placed coaxially thereon with a spacer 10 interposed therebetween, and a vacuum evacuation space 8 is secured between them.

しかして、SI層7は、両面にアルミニウムを蒸
着したポリエチレンテレフタレート(例えばデイ
ポン社の「マイラー」)をナイロンの商標で知ら
れたポリアミドまたはテトロンの商標で知られて
いるポリエステル等の合成繊維からなるネツトで
挟んでサンドイツチ構造としたSI材を、多層(10
層以上)に纒巻したものである。
The SI layer 7 is made of synthetic fibers such as polyethylene terephthalate (for example, "Mylar" from Dapon) with aluminum deposited on both sides, polyamide known under the trademark nylon, or polyester known under the trademark Tetron. Multi-layer (10
It is wrapped in layers (more than one layer).

かかる、SI材には、輻射断熱効果を低下させ得
るガスが付着しているため、SI層7に隣接して確
保してある真空排気層8を通じて真空排気を行
い、当該ガスの気化剥離を促進している。
Since this SI material has gas attached to it that can reduce the radiation insulation effect, it is evacuated through the evacuation layer 8 provided adjacent to the SI layer 7 to promote vaporization and separation of the gas. are doing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

かかるSI層7に対する真空排気作業は、管の端
末側から真空ポンプ等による真空引きで行つてい
るが、上記のように多層に巻回されたものである
と、完全な真空排気を行うことが困難であるのが
実情である。
The SI layer 7 is evacuated by evacuation using a vacuum pump or the like from the end of the tube, but if the tube is wound in multiple layers as described above, complete evacuation cannot be performed. The reality is that it is difficult.

因に、SI層内部まで完全に真空引きするために
は、SI層の径方向及び長手方向ともにコンダクタ
ンスが小さく、そうした多層密巻構造では、真空
排気に要する時間が極めて長くかかり、実際的で
はなかつた。
Incidentally, in order to completely evacuate the inside of the SI layer, the conductance of the SI layer is small in both the radial and longitudinal directions, and in such a multilayer tightly wound structure, it takes an extremely long time to evacuate, which is impractical. Ta.

そこで、上記の問題を解決する一手段として、
吸着材(例えば、米国ユニオンカーバイドコーポ
レーシヨン製「モレキユラー・シーブス」等)を
紐状にしてSI層に縦添またはロングピツチで巻い
て、SI層からのガス吸着を行つてこれを捕捉さ
せ、真空排気作業を効率化させる方法が採用され
ている。
Therefore, as a way to solve the above problem,
Adsorbent material (for example, "Molecular Thieves" manufactured by Union Carbide Corporation in the United States) is made into a string and wrapped around the SI layer vertically or in long pitches to adsorb and capture gas from the SI layer, and then vacuum pumped. Methods are being adopted to make work more efficient.

しかしながら、かかるガス吸着方法によつても
輸送管の長さが大きくなるに従つて排気コンダク
タンスが管の長さに反比例して小さくなることか
ら、必ずしも満足する結果が得られていなかつ
た。
However, even with such a gas adsorption method, as the length of the transport tube increases, the exhaust conductance decreases in inverse proportion to the length of the tube, so that satisfactory results have not always been obtained.

因に、かかる吸着材では、該吸着材がガスを吸
着してそれが飽和状態に達すると、それ以降のガ
ス吸着が行われなくなり、完全なガス放出により
高い真空度を得る場合には不完全な方法といわざ
るを得なかつた。そして、かかる吸着材のガス吸
着飽和問題に対しては、ガス吸着が飽和した吸着
材を80〜100℃に加熱して吸着したガスを吐き出
させる所謂ベーキング(焼枯処理)する方法が採
られていたが、実際に採用され得た加熱方法とし
ては、管の端末から熱風を送り込む手段によつり
行つていたことから、管の長さが長くなればなる
程ベーキング効果が低下することは避けられず、
特に管の長手方向の中央部では、熱風が十分に入
り込めないことと折角送り込んだ熱風の温度が低
下することと相まつて、吸着したガスの吐き出し
が十分に行われない傾向があつた。
Incidentally, with such an adsorbent, when the adsorbent adsorbs gas and reaches a saturated state, no further gas adsorption occurs, and if a high degree of vacuum is obtained by complete gas release, it is incomplete. I have to say it was a great method. In order to solve the gas adsorption saturation problem of such adsorbents, a method has been adopted that involves heating the adsorbent whose gas adsorption is saturated to 80 to 100°C and expelling the adsorbed gas. However, the heating method that could actually be used was to blow hot air from the end of the tube, so it could be avoided that the baking effect deteriorates as the length of the tube increases. Unable to do so.
Particularly in the longitudinal center of the tube, there was a tendency for the adsorbed gas to not be discharged sufficiently due to the fact that hot air could not enter sufficiently and the temperature of the hot air that had been sent into the tube decreased.

本発明は、以上の問題点に鑑み、特に管の長さ
方向の中央部でのSI層からのガス吸着を十分に行
えるようにし、もつてSI層に対する真空排気時間
の短縮及び真空度向上を図れる、新規な真空排気
構造をもつた冷媒輸送管とそのための真空排気方
法の提供を目的としている。
In view of the above-mentioned problems, the present invention makes it possible to sufficiently adsorb gas from the SI layer, especially at the central portion in the longitudinal direction of the tube, thereby shortening the evacuation time for the SI layer and improving the degree of vacuum. The purpose of the present invention is to provide a refrigerant transport pipe with a new vacuum evacuation structure and a vacuum evacuation method therefor.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の冷媒輸送管
は、SI材に隣接して真空排気空間を確保させるた
めに当該SI材に接してその長手方向に配設される
スペーサを、径方向に貫通する多数の穴を有した
穴付管で構成し、この穴付管内に該管の内径より
も小さな外径とした球状の吸着材を収容してなる
ことにある。
In order to achieve the above object, the refrigerant transport pipe of the present invention penetrates in the radial direction through a spacer that is arranged in the longitudinal direction in contact with the SI material in order to secure a vacuum evacuation space adjacent to the SI material. It consists of a perforated tube having a large number of holes, and a spherical adsorbent having an outer diameter smaller than the inner diameter of the tube is housed inside the perforated tube.

また、かかる冷媒輸送管に対しての真空排気方
法は、前記のようにして構成された冷媒輸送管に
対して、これを巻き取つたドラムを回転させるこ
とにより前記球状の吸着材を輸送管の長手方向中
央に位置させた状態で、輸送管の両端末からの真
空引きにより真空排気を行い、該真空排気による
真空度が飽和状態に達した際に、輸送管の中央に
置かれガスを吸着した球状の吸着材を前記ドラム
の回転により輸送管の端末側に移動させてこれを
ベーキングして吸着したガスを吐き出させ、それ
により再生された球状の吸着材を再び前記ドラム
の回転により輸送管の中央に移動させ、真空排気
を行うことにある。
In addition, the vacuum evacuation method for such a refrigerant transport pipe is such that the spherical adsorbent is removed from the refrigerant transport pipe constructed as described above by rotating a drum wound around the refrigerant transport pipe. With the tube placed in the center in the longitudinal direction, the tube is evacuated by drawing a vacuum from both ends of the tube, and when the vacuum reaches saturation, the tube is placed in the center of the tube and adsorbs gas. The spherical adsorbent is moved to the end of the transport pipe by the rotation of the drum and baked to discharge the adsorbed gas, and the regenerated spherical adsorbent is transferred to the transport pipe by the rotation of the drum again. The main purpose is to move it to the center and perform vacuum evacuation.

〔作用〕[Effect]

上記した本発明の冷媒輸送管よれば、SI層を構
成するSI材に付着したガスは、該SI材に接したス
ペーサの穴付管の径方向に貫通する多数の穴を通
じて、当該管内に収容された吸着材に吸着され
る。しかして、吸着材は、球状として穴付管内に
その内径よりも小さな外径として収容されている
ため、穴付管内を転がすことで冷媒輸送管の長手
方向に移動可能となり、冷媒輸送管の長手方向任
意の位置でSI材のガスを吸着することを可能に
し、特に真空引きによつてガスの気化剥離を行い
にくい冷媒輸送管の長手方向中央部でのガス吸着
を集中的に行うことにより、真空排気作業を効率
的に且つ極めて短時間で行うことができる。
According to the refrigerant transport pipe of the present invention described above, the gas adhering to the SI material constituting the SI layer is contained in the pipe through the numerous holes penetrating in the radial direction of the holed pipe of the spacer in contact with the SI material. It is adsorbed by the adsorbent material. However, since the adsorbent is housed in a spherical shape with an outer diameter smaller than the inner diameter of the perforated tube, it can be moved in the longitudinal direction of the refrigerant transport pipe by rolling it inside the perforated pipe. By making it possible to adsorb gas from the SI material at any position in any direction, and by concentrating gas adsorption in the longitudinal center of the refrigerant transport pipe, where it is difficult to vaporize and separate the gas by vacuuming, Evacuation work can be performed efficiently and in an extremely short time.

なお、SI材に接したスペーサの両側には、該SI
材に隣接した空間が形成されるので、該空間の真
空排気を行うことにより、スペーサの穴付管内も
それ自身の管壁に有する径方向の多数の貫通穴を
通じて付随的に真空排気され、輻射断熱効果を減
殺させる要因を排除することができる。
In addition, on both sides of the spacer in contact with the SI material,
Since a space is formed adjacent to the material, by evacuating this space, the inside of the spacer's holed tube is also evacuated through the numerous radial through holes in its own tube wall, and radiation is emitted. Factors that reduce the heat insulation effect can be eliminated.

ガスを吸着し続ける吸着材は、ガスを吸着しな
くなる所謂飽和状態となり、そのままでは利用価
値がなくなるが、ベーキング(焼枯処理)によつ
てガスを吐き出させることで再生できる。
An adsorbent that continues to adsorb gas will reach a so-called saturated state where it no longer adsorbs gas, and will no longer be of any use as it is, but it can be regenerated by expelling the gas through baking.

しかして、吸着材は、前述した通り冷媒輸送管
に対して長手方向に移動可能とされていることか
ら、これを穴付管の長手方向に転がして移動させ
ることにより、80〜100℃に加熱してベーキング
する条件の最も良い位置となり而も排気コンダク
タンスが最も大きくなる冷媒輸送管の端末側に移
すことができる。
As mentioned above, the adsorbent can be moved in the longitudinal direction of the refrigerant transport pipe, so by rolling and moving it in the longitudinal direction of the perforated pipe, the adsorbent can be heated to 80 to 100°C. It can be moved to the end side of the refrigerant transport pipe where the conditions for baking are best and the exhaust conductance is greatest.

上記のようにして真空排気構造に改良を加えた
冷媒輸送管に対する本発明の真空排気方法によれ
ば、前述の構成からなる冷媒輸送管に対して、こ
れを巻き取つたドラムの回転によつて吸着材がこ
れを収容する穴付管内を転がつて、冷媒輸送管の
中央に移動されることとなる。
According to the vacuum evacuation method of the present invention for a refrigerant transport pipe whose evacuation structure has been improved as described above, the refrigerant transport pipe having the above-mentioned structure is evacuated by rotating a drum that winds up the refrigerant transport pipe. The adsorbent rolls within the perforated tube that houses it and is moved to the center of the refrigerant transport tube.

上記のようにして冷媒輸送管の中程に移動され
た吸着材は、穴付管内で特に固定されている訳で
はないが、冷媒輸送管の両端末からの真空引きに
よりその位置から容易に移動することなく、当該
管中央部で集中的にガス吸着を行うものとなる。
The adsorbent moved to the middle of the refrigerant transport pipe as described above is not particularly fixed inside the perforated pipe, but can be easily moved from that position by drawing a vacuum from both ends of the refrigerant transport pipe. The gas adsorption is performed intensively at the center of the tube without causing any damage.

ガスを吸着し続けそれが行われない飽和状態に
達した吸着材は、ドラムの回転により排気コンダ
クタンスの大きな冷媒輸送管の端末に移動される
ので、ベーキングにより吸着したガスを効率良く
吐き出させることができる。
When the adsorbent reaches a saturated state where it continues to adsorb gas and cannot do so, it is moved to the end of the refrigerant transport pipe with a large exhaust conductance by the rotation of the drum, so the adsorbed gas can be efficiently discharged by baking. can.

以上のようにして、ベーキングされガスを吸着
し得るように再生された吸着材は、再びドラムの
回転によつて輸送管の中程に移動させ、吸着しき
れなかつた残りのガスを吸着し、真空排気を続け
ることによりより高い真空度が得られる。
The adsorbent that has been baked and regenerated to be able to adsorb gas as described above is moved to the middle of the transport pipe by the rotation of the drum again, and adsorbs the remaining gas that could not be adsorbed completely. A higher degree of vacuum can be obtained by continuing evacuation.

〔実施例〕〔Example〕

第2図は、本発明にかかる真空排気構造を付与
した冷媒輸送管の好ましい構造例を示したもので
ある。なお、本図では、冷媒通路確保用の内管か
ら第二中管内に確保する冷媒帰路までの構造を省
略してある。これらについては、だい1すのもの
と同じであるので、同図及びそれに対する前述し
た説明を参照されたい。
FIG. 2 shows a preferred structural example of a refrigerant transport pipe provided with an evacuation structure according to the present invention. In this figure, the structure from the inner pipe for securing the refrigerant passage to the refrigerant return path secured in the second intermediate pipe is omitted. Since most of these are the same as those in the first part, please refer to the same figure and the above-mentioned explanation thereof.

本実施例の冷媒輸送管は、その全体構造を示す
図aから明らかなように、第二中管6の外面にお
いて、3条のスペーサ11,11,11を円周方
向に等間隔(120゜の間隔)にして、長さ方向に縦
添またはロングピツチで巻き付けて配置してあ
り、その上からSI材の多層巻によるSI層7を設け
ている。
As is clear from Figure a showing the overall structure of the refrigerant transport pipe of this embodiment, three spacers 11, 11, 11 are arranged at equal intervals (120°) in the circumferential direction on the outer surface of the second middle pipe 6. They are arranged vertically in the length direction or wound in long pitches with a distance of , and an SI layer 7 made of multilayer winding of SI material is provided on top of the SI layer 7.

かかるスペーサ11の介在によつて非円形状態
で巻回形成されているSI層7の外側に外管9を第
二中管6に対して同軸に配置させ、120゜間隔で当
該SI層7の外面に内接させるとともに、隣り合う
接触部分の間に形成される空隙を真空排気空間8
として確保してあり、また、スペーサ11の両側
にもSI層7の内面が浮き上がることによつて形成
された空隙が形成され、該空隙も真空排気空間8
として利用される。
The outer tube 9 is disposed coaxially with the second inner tube 6 on the outside of the SI layer 7 which is wound in a non-circular manner due to the interposition of the spacer 11, and the outer tube 9 is arranged coaxially with the second inner tube 6, and the outer tube 9 is arranged coaxially with the second inner tube 6. It is inscribed in the outer surface and the gap formed between adjacent contact parts is used as an evacuated space 8.
In addition, a gap is formed on both sides of the spacer 11 by the lifting of the inner surface of the SI layer 7, and this gap is also secured as an evacuation space 8.
used as.

かかるスペーサ11は、図bにその具体的構造
を示したように、径方向に貫通する穴12を多数
有する穴付管(即ちスペーサ本体)11からな
り、その中に当該管の内径よりも外径を小さくし
た穴あきの球状カバー14の中に粒状の吸着材1
3を適宜個数収容したものからなり、当該カバー
14の穴付管11に対する転がりによつて管長手
方向の移動を可能にしている。
The spacer 11, as shown in FIG. A granular adsorbent 1 is placed inside a spherical cover 14 with a hole with a small diameter.
3 is housed in an appropriate number, and the cover 14 rolls against the holed tube 11 to enable movement in the longitudinal direction of the tube.

図cは、穴付管11に対する吸着材収容の別な
構造例を示したもので、吸着材13はそれ自身を
球状に成形したものとしてあり、その収容態様は
図aのものと同様である。
Figure c shows another example of the structure for accommodating the adsorbent in the perforated tube 11, in which the adsorbent 13 itself is formed into a spherical shape, and the manner in which it is accommodated is the same as that in Figure a. .

このような構造とされたスペーサ11は、球状
の吸着材13を任意の数だけ穴付管の中にセツト
して穴付管がSI層7に内接するように配設されて
いる。
The spacer 11 having such a structure is arranged such that an arbitrary number of spherical adsorbents 13 are set inside a tube with holes so that the tube with holes is inscribed in the SI layer 7.

上記のようにして、吸着材を組み込んだ冷媒輸
送管は、ドラムに巻き取られて長尺なものとされ
るが、特に数10m以上の長尺とされれば、本発明
にかかる真空排気方法の有為性が発揮される。
As described above, the refrigerant transport pipe incorporating the adsorbent is wound around a drum and made into a long piece, but especially if it is made to be a long piece of several tens of meters or more, the evacuation method according to the present invention can be used. The meaningfulness of is demonstrated.

真空排気に先立つて、上記のようにドラム巻き
された冷媒輸送管の巻始め端並びに巻終り端の両
端を封鎖し、そして当該輸送管の両端から真空ポ
ンプで真空引きを行うが、その準備段階として、
冷媒輸送管を巻き取つた当該ドラムを回転させ
て、スペーサを構成する穴付管11内に収容され
た球状の吸着材を穴付管の長手方向に徐々に移動
させた冷媒輸送管の中程つまり長手方向の中央に
移設する。
Prior to vacuum evacuation, both ends of the drum-wound refrigerant transport pipe, including the beginning and end of the roll, are sealed, and a vacuum is drawn from both ends of the transport pipe using a vacuum pump. As,
The drum around which the refrigerant transport pipe is wound is rotated, and the spherical adsorbent contained in the perforated pipe 11 constituting the spacer is gradually moved in the longitudinal direction of the perforated pipe at the middle of the refrigerant transport pipe. In other words, it is relocated to the center in the longitudinal direction.

上記のようにして吸着材が冷媒輸送管の中程に
移動されたならば、冷媒輸送管の中程でのSI層7
におけるSI材に付着したガスの吸着を穴付管11
の多数の穴12を通じて行われ、それとともにSI
層11の外側及びその内側でスペーサ11の両側
に形成される真空排気通路8を通じて真空排気を
行う。
If the adsorbent is moved to the middle of the refrigerant transport pipe as described above, the SI layer 7 at the middle of the refrigerant transport pipe
Adsorption of gas adhering to SI material in holed tube 11
through the numerous holes 12 of the SI
Evacuation is performed through evacuation passages 8 formed on both sides of the spacer 11 outside and inside the layer 11 .

上記作業が続けられて真空度がそれ以上上がら
ない飽和状態に達した時点つまり吸着材のガス吸
着が飽和状態に達したならば、ドラムの回転によ
り当該飽和状態の吸着材を穴付管11内を転がし
て冷媒輸送管の端部まで移設する。そして、吸着
材が移設された端部において、プロパンガスその
他の加熱手段により管外部から加熱して、吸着材
を80〜100℃の温度で加熱し、吸着したガスを吐
き出させるベーキングを行う。なお、吐き出した
ガスは、真空ポンプにより管外部に排気させる。
When the above operation continues and the degree of vacuum reaches a saturated state where the degree of vacuum does not increase any further, that is, when the gas adsorption of the adsorbent reaches a saturated state, the drum rotates to move the saturated adsorbent into the perforated tube 11. Roll it to the end of the refrigerant transport pipe. Then, at the end where the adsorbent has been transferred, heating is performed from the outside of the tube using propane gas or other heating means to heat the adsorbent at a temperature of 80 to 100°C and perform baking to discharge the adsorbed gas. Note that the discharged gas is exhausted to the outside of the tube by a vacuum pump.

冷媒輸送管の外部から行う加熱においては、輸
送管の端末部つまりステンレス等の金属より構成
される部分で処理されるので、加熱によるSI材の
溶損等の問題が無くなる。
When heating is performed from the outside of the refrigerant transport pipe, the end portion of the transport pipe, that is, the part made of metal such as stainless steel, is heated, so there is no problem such as melting of the SI material due to heating.

上記のようにしてベーキングによりガスが吐き
出され再生された吸着材は、再びドラムの回転に
より穴付管11内を転がして冷媒輸送管の中程に
移設し、輸送管中程においてSI層に残存するガス
をさらに吸着し、真空排気作業を続ける。
The adsorbent, whose gas has been discharged and regenerated by baking as described above, is again rolled in the perforated tube 11 by the rotation of the drum and transferred to the middle of the refrigerant transport pipe, where it remains in the SI layer. It absorbs more gas and continues vacuum evacuation work.

このようにして、吸着材を、冷媒輸送管の長手
方向の中央配置によるガス吸着→ガス吸着飽和後
の輸送管端部への移動→ベーキング(ガス吐き出
し及び再生)→冷媒輸送管中央への再移動による
さらなるガス吸着というようなサイクルを繰り返
すことにより、冷媒輸送管の中程での真空度を高
める。
In this way, the adsorbent is gas adsorbed by placing it in the center of the refrigerant transport pipe in the longitudinal direction → moved to the end of the transport pipe after being saturated with gas adsorption → baking (gas discharge and regeneration) → redirected to the center of the refrigerant transport pipe. By repeating the cycle of further gas adsorption due to movement, the degree of vacuum in the middle of the refrigerant transport pipe is increased.

なお、冷媒輸送管の端末側におけるガスの気化
剥離のための真空排気は、真空排気のためのコン
ダクタンスが大きいので、吸着材を輸送管の端末
側に固定的に置くだけで、上述した方法により得
られる真空度と同程度の真空度にすることが可能
であるが、前述した吸着材の管長手方向の徐々の
移動により行つても差支えない。
In addition, since the conductance for vacuum evacuation is large in evacuation for gas vaporization and separation at the terminal side of the refrigerant transport pipe, the above-mentioned method can be used simply by placing the adsorbent material fixedly on the terminal side of the transport pipe. Although it is possible to obtain a degree of vacuum comparable to the degree of vacuum obtained, it may also be achieved by gradually moving the adsorbent in the longitudinal direction of the tube as described above.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明の冷媒
輸送管及びそのための真空排気方法によれば、従
来困難とされていた、冷媒輸送管の長手方向中央
部でのSI層のガス排出つまり真空排気を効率良く
行うことが可能となり、その真空度も常温におい
て1×10-4Torr以上に高めることが可能となつ
たものである。
As is clear from the above description, according to the refrigerant transport pipe and evacuation method for the same of the present invention, gas discharge from the SI layer at the longitudinal center of the refrigerant transport pipe, which has been difficult in the past, ie vacuum evacuation. It has become possible to carry out this process efficiently, and it has become possible to increase the degree of vacuum to 1×10 -4 Torr or higher at room temperature.

従つて、冷媒輸送管の長さ方向の中央部におけ
るSI層からのガス吸着を十分に行え而も吸着した
ガスの吐き出しが容易に行え、もつてSI層に対す
る真空排気時間の短縮及び真空度の向上を図ると
いう、所期の目的は十分に達成され、実益の大き
いものである。
Therefore, gas adsorption from the SI layer in the longitudinal center of the refrigerant transport tube can be sufficiently performed, and the adsorbed gas can be easily discharged, thereby shortening the evacuation time for the SI layer and improving the degree of vacuum. The intended purpose of improvement has been fully achieved and the benefits are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の冷媒輸送管の構造を示す横断
面説明図、第2図aは本発明にかかる冷媒輸送管
の構造例を示す横断面説明図、第2図b,cは同
上図に示す輸送管において用いられるスペーサの
構造例を示す横断面説明図である。 符号において、1は冷媒通路、2は内管、3は
真空断熱層、4は第一中管、5は冷媒帰路空間、
6は第二中管、7はSI層、8は真空排気空間、9
は外管、10は従来のスペーサ、11は本発明の
スペーサ(即ち穴付管)、12は穴、13は吸着
材、14は球状のカバーである。
Fig. 1 is an explanatory cross-sectional view showing the structure of a conventional refrigerant transport pipe, Fig. 2 a is an explanatory cross-sectional view showing an example of the structure of the refrigerant transport pipe according to the present invention, and Figs. 2 b and c are the same as above. FIG. 2 is a cross-sectional explanatory diagram showing a structural example of a spacer used in the transport pipe shown in FIG. In the symbols, 1 is a refrigerant passage, 2 is an inner pipe, 3 is a vacuum insulation layer, 4 is a first middle pipe, 5 is a refrigerant return space,
6 is the second middle pipe, 7 is the SI layer, 8 is the vacuum evacuation space, 9
10 is an outer tube, 10 is a conventional spacer, 11 is a spacer of the present invention (ie, a tube with holes), 12 is a hole, 13 is an adsorbent, and 14 is a spherical cover.

Claims (1)

【特許請求の範囲】 1 積層断熱材に隣接して真空排気空間を確保さ
せるために当該積層断熱材に接してその長さ方向
に配設されるスペーサを、径方向に貫通する多数
の穴を有した穴付管で構成し、この穴付管の中に
該管の内径よりも小さな外径とした球状の吸着材
を収容してなることを特徴とする冷媒輸送管。 2 積層断熱材に隣接して真空排気空間を確保さ
せるために当該積層断熱材に接してその長手方向
に配設されるスペーサを、径方向に貫通する多数
の穴を有した穴付管で構成し、この穴付管内に該
管の内径よりも小さな外径とした球状の吸着材を
収容してなる冷媒輸送管に対して、これを巻き取
つたドラムを回転させることにより前記球状の吸
着材を輸送管の長手方向中央に位置させた状態
で、輸送管の両端末からの真空引きにより真空排
気を行い、該真空排気による真空度が飽和状態に
達した際に、輸送管の中央に置かれガスを吸着し
た球状の吸着材を前記ドラムの回転により輸送管
の端末側に移動させてこれをベーキングして吸着
したガスを吐き出させ、それにより再生された球
状の吸着材を再び前記ドラムの回転により輸送管
の中央に移動させ、真空排気を行うことを特徴と
する冷媒輸送管の真空排気方法。
[Claims] 1. In order to secure a vacuum evacuation space adjacent to the laminated insulation material, a large number of holes are provided that penetrate in the radial direction through a spacer that is arranged in the length direction in contact with the laminated insulation material. What is claimed is: 1. A refrigerant transport pipe comprising a perforated pipe, the perforated pipe containing a spherical adsorbent having an outer diameter smaller than the inner diameter of the perforated pipe. 2. In order to secure a vacuum evacuation space adjacent to the laminated insulation material, the spacer is arranged in the longitudinal direction of the laminated insulation material in contact with the laminated insulation material, and is composed of a perforated tube having a large number of holes passing through it in the radial direction. Then, by rotating a drum around which the refrigerant transport tube is wound up, the spherical adsorbent material is stored in the perforated tube and the spherical adsorbent material has an outer diameter smaller than the inner diameter of the refrigerant transport pipe. is placed in the center of the transport pipe in the longitudinal direction, and the transport pipe is evacuated by evacuation from both ends of the pipe. When the degree of vacuum due to the evacuation reaches saturation, The spherical adsorbent that has adsorbed the gas is moved to the end side of the transport pipe by the rotation of the drum, and is baked to discharge the adsorbed gas, and the regenerated spherical adsorbent is then returned to the drum. A method for evacuation of a refrigerant transport pipe, characterized by moving the refrigerant to the center of the transport pipe by rotation and performing vacuum evacuation.
JP59080637A 1984-04-20 1984-04-20 Method of evacuating refrigerant transport pipe Granted JPS60222690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59080637A JPS60222690A (en) 1984-04-20 1984-04-20 Method of evacuating refrigerant transport pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59080637A JPS60222690A (en) 1984-04-20 1984-04-20 Method of evacuating refrigerant transport pipe

Publications (2)

Publication Number Publication Date
JPS60222690A JPS60222690A (en) 1985-11-07
JPH0243953B2 true JPH0243953B2 (en) 1990-10-02

Family

ID=13723882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59080637A Granted JPS60222690A (en) 1984-04-20 1984-04-20 Method of evacuating refrigerant transport pipe

Country Status (1)

Country Link
JP (1) JPS60222690A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229394U (en) * 1988-08-11 1990-02-26

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715192A (en) * 1980-07-02 1982-01-26 Nippon Oxygen Co Ltd Heat insulation pipings for high temperature and high pressure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5063854U (en) * 1973-10-11 1975-06-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715192A (en) * 1980-07-02 1982-01-26 Nippon Oxygen Co Ltd Heat insulation pipings for high temperature and high pressure

Also Published As

Publication number Publication date
JPS60222690A (en) 1985-11-07

Similar Documents

Publication Publication Date Title
US20070209516A1 (en) Vacuum heat insulation tube
US5494740A (en) Method of high vacuum heat insulation and a vacuum heat insulator used therein
JP2000291879A (en) Heat insulation method for cryogenic container, and multi-layer heat insulation blanket with package used therefor
US3149742A (en) Vacuum device
US6883549B2 (en) Conduit for the transport of cyrogenic media
JPH0243953B2 (en)
JP2003269690A (en) Conduit for transport of cryogenic fluid
US3609062A (en) Getter pump
JP2607417B2 (en) Multi-layer vacuum insulation method and insulated double tube
JP4704931B2 (en) Low temperature maintenance device for superconducting cable including net layer with adsorbent
JP2001267261A (en) Electric heater in heat treatment equipment for semiconductor
US5651255A (en) High efficiency loose multi-foil thermal insulation structure with integral load bearing system
JPH0243949B2 (en)
WO2007119654A1 (en) Process for manufacturing superconductive cable
US3764266A (en) Pump for producing a vacuum free of hydrogen
JP4385394B2 (en) Cryostat
JPH10288293A (en) Heat insulated pipe
JP2763840B2 (en) Insulated pipe body and its manufacturing method
JP3711595B2 (en) Adsorption element
JP3401600B2 (en) Vacuum insulated flexible hose
JP2601589B2 (en) High vacuum insulation method
JPH0243950B2 (en)
US5285181A (en) Superconducting winding and support structure
CN113418084A (en) Vacuum maintaining method for superconducting cable heat-insulating pipe
JP2001271970A (en) Flexible conduit