JPH0243952A - Catalyst for steam modification - Google Patents

Catalyst for steam modification

Info

Publication number
JPH0243952A
JPH0243952A JP1089993A JP8999389A JPH0243952A JP H0243952 A JPH0243952 A JP H0243952A JP 1089993 A JP1089993 A JP 1089993A JP 8999389 A JP8999389 A JP 8999389A JP H0243952 A JPH0243952 A JP H0243952A
Authority
JP
Japan
Prior art keywords
catalyst
nickel
porous body
pore volume
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1089993A
Other languages
Japanese (ja)
Other versions
JPH0616850B2 (en
Inventor
Nobuhiro Sato
佐藤 延弘
Kozo Osaki
功三 大崎
Katsutoshi Kikuchi
菊地 克俊
Yoshiji Hirota
広田 美嗣
Toru Numaguchi
徹 沼口
Noboru Mochizuki
昇 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Kenmazai Kogyo Co Ltd
Fujimi Inc
Toyo Engineering Corp
Original Assignee
Fujimi Abrasives Co Ltd
Fujimi Kenmazai Kogyo Co Ltd
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Abrasives Co Ltd, Fujimi Kenmazai Kogyo Co Ltd, Toyo Engineering Corp filed Critical Fujimi Abrasives Co Ltd
Priority to US07/345,430 priority Critical patent/US4990481A/en
Priority to CN89103400A priority patent/CN1017029B/en
Publication of JPH0243952A publication Critical patent/JPH0243952A/en
Priority to US07/620,489 priority patent/US5100857A/en
Publication of JPH0616850B2 publication Critical patent/JPH0616850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain a catalyst for steam modification whose activity is not lowered even under a condition exposed to high temp. by immersing an alpha-alumina porous body having specific properties in a nickel-containing aqueous solution and subsequently drying the impregnated porous body naturally before baking the same. CONSTITUTION:As a carrier of a catalyst for performing the steam modification of hydrocarbon to prepare a hydrogen/carbon monoxide-containing gaseous mixture, an aluminum oxide porous body wherein a pore volume of a pore size of 0.1-0.5mum is 0.2ml/g or more, a pore volume of a pore size of 0.5mum or more is 0.05ml/g or more and purity after ignition drying is 98wt.% or more is used. This porous body is impregnated with a nickel-containing solution to be dried and baked. Nickel is contained in an amount of 3-30% by wt. or the whole of the catalyst as nickel oxide. The catalyst thus obtained is stable to heat and not lowered in its activity even under a condition exposed to high temp. of a certain degree or more.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭化水素等を水蒸気改質して水素、−酸化炭素
含有混合ガスを製造するために使用する触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a catalyst used for steam reforming hydrocarbons and the like to produce a mixed gas containing hydrogen and carbon oxide.

〔従来の技術とその課題〕[Conventional technology and its issues]

炭化水素等の水蒸気改質用としてアルミナ、シリカなど
の耐熱性担体を使用し、ニッケルを触媒活性の主成分と
した触媒を使用することは既に知られている。しかしな
がら、低温度において活性を有するこれらの触媒は熱に
対して非常に不安定であり、ある程度以上の高温度に曝
されるときは、その活性が低下するという欠点を有して
いる。
It is already known to use a heat-resistant carrier such as alumina or silica for steam reforming of hydrocarbons and the like, and to use a catalyst containing nickel as a main component for catalytic activity. However, these catalysts, which are active at low temperatures, are very unstable with respect to heat, and have the disadvantage that their activity decreases when exposed to high temperatures above a certain level.

〔課題を解決するための手段〕[Means to solve the problem]

斯かる欠点を解決する触媒として、出願人らは先に特公
昭57−50533号において、ベーマイトゲルを焼成
して得られたT−アルミナを主体とする活性アルミナ多
孔体に酸化ニッケルを担持させた、メタンを主成分とす
る燃料ガス製造用の水蒸気改質触媒を提案したが、その
後さらにこの系統の触媒について、水素と一酸化炭素を
主成分とするガス製造用の炭化水素、低級アルコールの
水蒸気改質への利用を検討した。
As a catalyst to solve these drawbacks, the applicants previously proposed in Japanese Patent Publication No. 57-50533 that nickel oxide was supported on an active alumina porous material mainly made of T-alumina obtained by firing boehmite gel. proposed a steam reforming catalyst for the production of fuel gas containing methane as the main component, but later on this type of catalyst was developed for the production of hydrocarbon and lower alcohol steam reforming catalysts for the production of gas containing hydrogen and carbon monoxide as the main components. We considered its use in reforming.

即ち、この活性アルミナ多孔体の多孔体性状を変化せし
めて触媒を種々試作し、触媒活性の精密な比較実験を行
った。多孔体性状の変化は活性アルミナ多孔体の熱処理
温度を変えることによりなされた。
That is, various catalysts were prepared by changing the porous properties of this activated alumina porous material, and experiments were conducted to precisely compare the catalytic activities. The properties of the porous material were changed by changing the heat treatment temperature of the activated alumina porous material.

その結果、ベーマイトアルミナを出発原料とし、熱処理
によってT−アルミナ、δ−アルミナを経てα−アルミ
ナとなった高純度酸化アルミニウム多孔体であって、見
掛気孔率50乃至80%、好ましくは50乃至70%の
多孔組織体であり、孔径0.1乃至0.5mの範囲内の
細孔容積が0.2mZ/g以上であり、孔径0.5−以
上の細孔容積が0、05m /g以上であり、成分中に
酸化アルミニウムを98重量%以上含有するα−アルミ
ナに、活性成分としてニッケルを酸化ニッケルに換算し
て触媒全体重量中3乃至20重量%、好ましくは5乃至
15重量%、特に好ましくは5乃至10重量%含有させ
た触媒が、本発明が目的とする炭化水素等の水蒸気改質
に優れた性能を持つことを知った。なお、α−アルミナ
への転化温度は約1150〜1200℃といわれるが、
後記実施例に用いた触媒担体を得る為の熱処理温度は1
300士約40℃であった。この熱処理は好ましくは1
200〜1380℃、より好ましくは1250〜135
0℃の温度でなされる。一般にこれより低温では担体に
小径細孔が多く表面積が大となり、逆にこれより高温で
は小径細孔が減じ表面積が小となり、本発明に適する担
体が得難い。α−アルミナに転化させる熱処理は空気に
代表される酸化雰囲気下で行う。
As a result, a high-purity aluminum oxide porous body is obtained using boehmite alumina as a starting material, which becomes α-alumina through T-alumina and δ-alumina through heat treatment, and has an apparent porosity of 50 to 80%, preferably 50 to 80%. 70% porous structure, the pore volume within the range of pore diameters of 0.1 to 0.5 m is 0.2 mZ/g or more, and the pore volume of pore diameters of 0.5- or more is 0.05 m/g The above, α-alumina containing 98% by weight or more of aluminum oxide as an active component, 3 to 20% by weight, preferably 5 to 15% by weight of nickel based on the total weight of the catalyst, in terms of nickel oxide, It has been found that a catalyst containing preferably 5 to 10% by weight has excellent performance in the steam reforming of hydrocarbons and the like, which is the object of the present invention. The conversion temperature to α-alumina is said to be about 1150 to 1200°C,
The heat treatment temperature for obtaining the catalyst carrier used in the examples below was 1.
The temperature was about 40°C. This heat treatment is preferably 1
200-1380°C, more preferably 1250-135
It is done at a temperature of 0°C. Generally, at temperatures lower than this, the carrier has many small pores and a large surface area, and conversely, at temperatures higher than this, the number of small pores decreases and the surface area becomes small, making it difficult to obtain a carrier suitable for the present invention. The heat treatment for converting into α-alumina is performed in an oxidizing atmosphere such as air.

転化処理は、前後に適当な昇温、降温時間を与えて、転
化に充分な時間、通常3〜5時間、好ましくは2〜4時
間行われる。
The conversion treatment is carried out for a sufficient period of time, usually 3 to 5 hours, preferably 2 to 4 hours, by giving appropriate temperature raising and cooling times before and after.

また孔径0.1乃至0.5−範囲内の細孔容積の上限、
孔径0.5−以上の細孔容積の上限は特にないが、夫々
0.5m1./g以下、0.3 ml/ g以下である
のが、見掛気孔率を前記好ましい範囲内にして担体ひい
ては本発明触媒の圧縮強度を実用に耐える様にするのに
とり好ましい。
Also, the upper limit of the pore volume within the range of pore diameter 0.1 to 0.5,
There is no particular upper limit for the pore volume with a pore diameter of 0.5- or more, but it is 0.5 m1. /g or less and 0.3 ml/g or less is preferable in order to keep the apparent porosity within the above-mentioned preferred range and to make the compressive strength of the carrier and thus the catalyst of the present invention suitable for practical use.

α−アルミナは電融アルミナ、あるいはバイヤライト、
ギブサイトなどのアルミナ3水和物を焼成しても得られ
るが、このように得られたアルミナでは一般に上記に特
定された細孔構造となり得ないため、これらを担体とし
ても目的とする活性を得られない。
α-Alumina is fused alumina or bayerite,
It can also be obtained by firing alumina trihydrate such as gibbsite, but since the alumina obtained in this way generally cannot have the pore structure specified above, it is difficult to obtain the desired activity using these as a carrier. I can't.

本発明の触媒はメタン等の低級炭化水素やメタノール等
の低級アルコールの改質に好適だが、特に低級炭化水素
に適する。
The catalyst of the present invention is suitable for reforming lower hydrocarbons such as methane and lower alcohols such as methanol, and is particularly suitable for lower hydrocarbons.

担体とするα−アルミナ多孔体へのニッケル成分の付加
の手段は、特に制限されるものではないが、ニッケルも
くしは酸化ニッケルが可及的に大なる表面積を以てα−
アルミナ多孔体組織中に均質に分布されることが必要で
あり、周知手段であるニッケル塩溶液への浸漬による方
法が適当である。
The means for adding the nickel component to the α-alumina porous material used as a support is not particularly limited, but nickel or nickel oxide can be added to α-alumina with as large a surface area as possible.
It is necessary that the alumina be uniformly distributed in the structure of the porous alumina material, and a well-known method of immersion in a nickel salt solution is suitable.

例えば、前記性状を有するα−アルミナを硝酸ニッケル
の水溶液に浸漬し、水溶液が多孔体中心部分まで浸透し
た後、自然乾燥し、次に常法により100〜130℃程
度において強制乾燥ののち、更に熱処理(焼成)を施す
ことにより本発明の触媒が得られる。
For example, α-alumina having the above properties is immersed in an aqueous solution of nickel nitrate, and after the aqueous solution penetrates into the center of the porous material, it is naturally dried, and then forced drying at about 100 to 130°C by a conventional method, and then further The catalyst of the present invention can be obtained by heat treatment (calcination).

ここで、焼成温度は730〜950℃が好ましく、80
0〜920 ℃がより好ましく、850〜900 ℃が
最も好ましい。この範囲から低すぎても高すぎても触媒
の活性が低下する。
Here, the firing temperature is preferably 730 to 950°C, and 80°C to 950°C.
The temperature is more preferably 0 to 920°C, most preferably 850 to 900°C. If it is too low or too high from this range, the activity of the catalyst will decrease.

焼成時間は1〜10時間が適当である。担持されたニッ
ケルが多い程、焼成温度が低い程、焼成時間を長くする
とよい。850〜900℃で焼成し、酸化ニッケル換算
8冗程度のニッケルを担持する触媒を得るには通常2.
5〜4時間程度の焼成がなされればよい。
A suitable firing time is 1 to 10 hours. The more nickel supported, the lower the firing temperature, the longer the firing time. Usually, 2.
Firing may be performed for about 5 to 4 hours.

焼成は空気に代表される酸化雰囲気で行われる。Firing is performed in an oxidizing atmosphere such as air.

尚、この焼成はそれが不十分なものに対し、事情が許せ
ば、触媒利用の前に例えば触媒を使用する反応器の中で
、少なくとも部分的に行われても良い。
However, if this is not sufficient, this calcination may, if circumstances permit, be carried out at least partially prior to the use of the catalyst, for example in a reactor in which the catalyst is used.

本発明の触媒は先の特公昭57−50533号と同様、
ニッケルが限定された細孔を有する担体に均一に分散さ
れていることにより、アルカリ金属元素等の添加なしで
従来品市販品に比べて炭素析出量が極めて小である。
The catalyst of the present invention is similar to that of the previous Japanese Patent Publication No. 57-50533,
Since nickel is uniformly dispersed in a carrier having limited pores, the amount of carbon deposited is extremely small compared to conventional commercially available products without the addition of alkali metal elements or the like.

〔実施例〕〔Example〕

以下に実施例をあげて本発明を更に詳しく説明するが、
本発明はこれらに限定されるものではない。
The present invention will be explained in more detail with reference to Examples below.
The present invention is not limited to these.

実施例1 孔径0,1乃至0.57μmの細孔容積が0.22”/
g。
Example 1 Pore volume with pore diameter of 0.1 to 0.57 μm is 0.22”/
g.

孔径0,5−以上の細孔容積が0.07I117/gの
細孔構造を有する平均粒径5mmのα−アルミナ多孔体
を、硝酸ニッケル(Nl (NO3) 2・6H20)
 1.3kgを水に溶解し全量を11とした溶液に浸漬
した後、−昼夜自然乾燥し、その後120℃において6
時間乾燥後、さらに加熱し、5乃至6時間かけて850
乃至900℃にし、この温度で3時間保持して焼成して
本発明の触媒を得た。
An α-alumina porous body with an average particle size of 5 mm and having a pore structure with a pore size of 0.5- or more and a pore volume of 0.07I117/g was prepared using nickel nitrate (Nl (NO3) 2.6H20).
After dissolving 1.3 kg in water and immersing it in a solution with a total volume of 11, it was naturally dried day and night, and then heated to 6
After drying for an hour, it is further heated to 850°C over 5 to 6 hours.
The temperature was raised to 900° C., maintained at this temperature for 3 hours, and fired to obtain the catalyst of the present invention.

この触媒はニッケルを酸化ニッケルに換算して8重量%
含有している。これを触媒Aと略記する。
This catalyst contains 8% by weight of nickel converted to nickel oxide.
Contains. This is abbreviated as catalyst A.

また上記触媒への製造に於いて昇温時間、焼成温度、焼
成時間を夫々5時間、690〜710℃、10時間とし
た以外は触媒Aと同様にして得たニッケル含量も同じ触
媒を触媒A−1と略記する。
Catalyst A with the same nickel content was obtained in the same manner as Catalyst A, except that the heating time, calcination temperature, and calcination time were respectively 5 hours and 690 to 710°C for 10 hours in the production of the above catalyst. It is abbreviated as -1.

更に上記触媒Aの製造に於いて昇温時間、焼成温度、焼
成時間を夫々6時間、990〜1010℃、3時間とし
た以外は触媒Aと同様にして得たニッケル含量も同じ触
媒を触媒A−2と略記する。
Further, in the production of Catalyst A, a catalyst with the same nickel content was prepared in the same manner as Catalyst A, except that the heating time, calcination temperature, and calcination time were 6 hours and 990 to 1010°C for 3 hours, respectively. It is abbreviated as -2.

また下記触媒B、触媒Cを用意した。In addition, the following catalysts B and C were prepared.

触媒B 孔径0.1乃至0.5μmの細孔容積が0.05ffi
/ /gであり、孔径0.5n以上の細孔容積が0.2
+al/gの細孔構造を有する平均粒径5+t++nの
α−アルミナ多孔体に実施例1と同様の処理をして得た
、ニッケルを酸化ニッケルに換算して8.6重量%含有
する触媒。
Catalyst B: pore size 0.1 to 0.5 μm, pore volume 0.05ffi
/ /g, and the pore volume with a pore diameter of 0.5n or more is 0.2
A catalyst containing 8.6% by weight of nickel in terms of nickel oxide, obtained by subjecting an α-alumina porous material having a pore structure of +al/g and an average particle size of 5+t++n to the same treatment as in Example 1.

触媒C 孔径0.1乃至0.5μmの細孔容積が0.21m1 
/gであり、孔径0.5踊以上の細孔容積が0m17g
の細孔構造を有する平均粒径5mmのα−アルミナ多孔
体に実施例1と同様の処理をして得た、ニッケルを酸化
ニッケルに換算して8.6重量%含有する触媒。
Catalyst C: pore size 0.1 to 0.5 μm, pore volume 0.21 m1
/g, and the pore volume with a pore diameter of 0.5 or more is 0m17g
A catalyst containing 8.6% by weight of nickel in terms of nickel oxide, obtained by subjecting an α-alumina porous material having a pore structure of 5 mm and an average particle size to the same treatment as in Example 1.

上記触媒を夫々内径12.3mmの反応管に充填した後
、触媒層の温度を800℃に上昇させて、水蒸気、メタ
ンにて、水蒸気モル数とメタンが有する炭素数の比S/
C=7.0.空間速度5Vo=1.000h−にて20
時時間光した後、水蒸気改質実験に使用した。反応条件
は、S/C・3.01反応圧力P・0.2kg/cm2
・G、 5Vo=8,000h−’として、メタンと水
蒸気を反応管内に供給した。
After each of the above catalysts was filled into a reaction tube with an inner diameter of 12.3 mm, the temperature of the catalyst layer was raised to 800°C, and the ratio of the number of moles of water vapor to the number of carbon atoms in methane was S/
C=7.0. 20 at space velocity 5Vo=1.000h-
After being exposed to light for several hours, it was used for steam reforming experiments. The reaction conditions are S/C・3.01 reaction pressure P・0.2kg/cm2
-G, 5Vo = 8,000h-', and methane and steam were supplied into the reaction tube.

反応生成物は冷却器、ガス計量器を経て得られ、ガスク
ロマトグラフィーによって分析された。この反応を継続
して500時間実施した。表1に実験結果を示す。なお
反応時間0は還元直後の反応開始時、アプローチ温度は
反応系組成から算出される平衡温度と実測温度との差で
ある。
The reaction product was obtained via a condenser and a gas meter, and analyzed by gas chromatography. This reaction was continued for 500 hours. Table 1 shows the experimental results. Note that the reaction time 0 is the start of the reaction immediately after reduction, and the approach temperature is the difference between the equilibrium temperature calculated from the reaction system composition and the actually measured temperature.

表   −1 触媒Aでの実験結果は平衡に近い値が示され活性が高か
った。また、活性低下もほとんど見られなかった。
Table 1 The experimental results for Catalyst A showed values close to equilibrium and high activity. Further, almost no decrease in activity was observed.

触媒A−1は初期活性は高いが活性低下が大きかった。Catalyst A-1 had high initial activity, but the activity decreased significantly.

触媒A−2は初期活性がやや劣り活性低下もかなり大き
かった。
Catalyst A-2 had a slightly inferior initial activity and a considerable decrease in activity.

触媒Bは、孔径0.5f1以上の細孔容積は0.05m
17g以上であるが、一方の条件のみを満たす細孔構造
であるため、活性は低かった。
Catalyst B has a pore volume of 0.5 m or more with a pore diameter of 0.5 f1.
Although the weight was 17 g or more, the activity was low because the pore structure satisfied only one condition.

触媒Cは、孔径0.1乃至0.5nの範囲内の細孔容積
は、0.2ral/g以上有しているものの、方の条件
のみを満たす細孔構造であるため、大きな活性低下が見
られた。
Catalyst C has a pore volume of 0.2 ral/g or more within the pore diameter range of 0.1 to 0.5 n, but because it has a pore structure that only satisfies the first condition, there is a large decrease in activity. It was seen.

実施例2 実施例1で使用した触媒Aのn−ヘキサンに対する水蒸
気改質活性を測定した。反応条件は、S/C=3.0.
反応圧力P=0.2kg/cm2・G、 5Vo42.
000h−’とした。表−2に実験結果を示す。メタン
同様高い活性が示された。
Example 2 The steam reforming activity of catalyst A used in Example 1 with respect to n-hexane was measured. The reaction conditions were S/C=3.0.
Reaction pressure P=0.2kg/cm2・G, 5Vo42.
000h-'. Table 2 shows the experimental results. It showed high activity similar to methane.

表−2 実施例3 実施例1で使用した触媒Aの温度変化に対する活性の変
化を調べた。反応条件は、S/[1:=3.0゜P=0
.2kg/cm2・G、 5Vo=lO,000h−’
として、メタンと水蒸気を反応管内に供給し、触媒層出
口温度(反応温度)を650〜850℃に変化させた。
Table 2 Example 3 Changes in activity of catalyst A used in Example 1 with respect to temperature changes were investigated. The reaction conditions were S/[1:=3.0°P=0
.. 2kg/cm2・G, 5Vo=lO,000h-'
Then, methane and steam were supplied into the reaction tube, and the catalyst layer outlet temperature (reaction temperature) was changed from 650 to 850°C.

結果を表−3,第1ノに示す。The results are shown in Table 3, No. 1.

表−3Table-3

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の触媒の温度変化に対する活性の変化を
示すグラフである。 手続補正@(自発) 平成1年4月17日 平成1年4月10日出願の特許願 発明の名称 水蒸気改質用の触媒 補正をする者 +r件との関係   特許出願人 不二見研磨材工業株式会社 (外1名) (1)同5頁8行「低級アルコールの改質」を「低級ア
ルコールの水蒸気による改質」と訂正 (1)同6頁5〜6行「この・・・低下する。」を「こ
の範囲より高すぎると触媒の活性が低下し、一方低すぎ
ると初期活性は充分高いがそれが使用時間に伴い次第に
低下する。」と訂正 (1)  同10頁末行〜11頁1行「やや劣り・・・
大きかった。」を「やや劣った。」と訂正埋入 東京都中央区日本橋横山町1の3中井ビル補正の対象 明細書の発明の詳細な説明の欄 補正の内容
FIG. 1 is a graph showing changes in activity of the catalyst of the present invention with respect to changes in temperature. Procedural amendment @ (spontaneous) April 17, 1999 Name of the patented invention filed on April 10, 1999 Person making the amendment to catalyst for steam reforming + Relationship with r cases Patent applicant Fujimi Abrasives Industry Co., Ltd. (1 other person) (1) ``Modification of lower alcohols'' on page 5, line 8, was corrected to ``reformation of lower alcohols with steam.'' (1) ``This...decrease'' on page 6, lines 5-6. " is corrected to "If it is too high than this range, the activity of the catalyst will decrease, while if it is too low, the initial activity will be sufficiently high, but it will gradually decrease as the usage time increases." (1) From the end of page 10. Page 11, line 1: “Slightly inferior…
It was big. " was corrected to "slightly inferior." Nakai Building, 1-3 Nihonbashi Yokoyama-cho, Chuo-ku, Tokyo Contents of the amendment

Claims (1)

【特許請求の範囲】 1 孔径0.1乃至0.5μmの範囲内の細孔容積が0
.2ml/g以上であり、孔径0.5μm以上の細孔容
積が0.05ml/g以上であり、かつ灼熱乾燥後の純
度が98重量%以上である酸化アルミニウム多孔体に、
ニッケルを含有する溶液を含浸、乾燥させたのち焼成し
た、ニッケルが触媒全体重量中に酸化ニッケルに換算し
て3乃至20重量%の範囲内において含有せしめられて
いることを特徴とする水蒸気改質用の触媒。 2 焼成が730〜950℃でなされた請求項1記載の
触媒。 3 焼成雰囲気が酸化雰囲気である請求項2記載の触媒
[Claims] 1. Pore volume within the pore diameter range of 0.1 to 0.5 μm is 0.
.. 2 ml/g or more, a pore volume of 0.5 μm or more and a pore volume of 0.05 ml/g or more, and a purity after scorching drying of 98% by weight or more,
Steam reforming characterized in that nickel is impregnated with a nickel-containing solution, dried, and then calcined, and the nickel is contained in the range of 3 to 20% by weight in terms of nickel oxide in the total weight of the catalyst. catalyst for. 2. The catalyst according to claim 1, wherein the calcination is carried out at 730-950°C. 3. The catalyst according to claim 2, wherein the firing atmosphere is an oxidizing atmosphere.
JP1089993A 1988-05-20 1989-04-10 Catalyst for steam reforming Expired - Fee Related JPH0616850B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/345,430 US4990481A (en) 1988-05-20 1989-04-28 Catalyst for steam reforming
CN89103400A CN1017029B (en) 1988-05-20 1989-05-19 Ni/al2o3 catalyst for steam reforming
US07/620,489 US5100857A (en) 1988-05-20 1990-11-29 Catalyst for steam reforming

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12322188 1988-05-20
JP63-123221 1988-05-20

Publications (2)

Publication Number Publication Date
JPH0243952A true JPH0243952A (en) 1990-02-14
JPH0616850B2 JPH0616850B2 (en) 1994-03-09

Family

ID=14855200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1089993A Expired - Fee Related JPH0616850B2 (en) 1988-05-20 1989-04-10 Catalyst for steam reforming

Country Status (1)

Country Link
JP (1) JPH0616850B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459052A (en) * 1990-06-22 1992-02-25 Toyo Eng Corp Catalyst for steam reforming
JPH0459048A (en) * 1990-06-19 1992-02-25 Sekiyu Sangyo Kasseika Center Catalyst for steam reforming
KR100388029B1 (en) * 1998-12-21 2003-09-19 주식회사 포스코 Manufacturing method of heat resistant gamma alumina by nickel addition
KR20210032498A (en) 2018-08-03 2021-03-24 가부시키가이샤 르네상스 에너지 리서치 Steam reforming catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459048A (en) * 1990-06-19 1992-02-25 Sekiyu Sangyo Kasseika Center Catalyst for steam reforming
JPH0683787B2 (en) * 1990-06-19 1994-10-26 財団法人石油産業活性化センター Catalyst for steam reforming
JPH0459052A (en) * 1990-06-22 1992-02-25 Toyo Eng Corp Catalyst for steam reforming
KR100388029B1 (en) * 1998-12-21 2003-09-19 주식회사 포스코 Manufacturing method of heat resistant gamma alumina by nickel addition
KR20210032498A (en) 2018-08-03 2021-03-24 가부시키가이샤 르네상스 에너지 리서치 Steam reforming catalyst
US11819831B2 (en) 2018-08-03 2023-11-21 Renaissance Energy Research Corporation Steam reforming catalyst

Also Published As

Publication number Publication date
JPH0616850B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
US4990481A (en) Catalyst for steam reforming
US4285837A (en) Catalyst for steam reforming of hydrocarbons
US3791993A (en) Process for the production of a reforming catalyst
US20110144400A1 (en) Highly porous foam ceramics as catalyst carriers for the dehydrogenation of alkanes
JPS62160139A (en) Catalyst comprising silica supported by boehmite surface
US3451949A (en) Catalyst for reforming hydrocarbons
JPS5982341A (en) Manufacture of oxalic acid diester
KR20120077688A (en) Metal catalyst for dehydrogenation having improved selectivity
Chai et al. Promotion of hydrogen permeation on metal-dispersed alumina membranes and its application to a membrane reactor for methane steam reforming
AU689996B2 (en) Process for preparation of supports
MXPA97003813A (en) Process for the preparation of sopor
JPH07309619A (en) Alumina stabilized by lanthanum and its production
NO178177B (en) Process for preparing a sintered alumina-based catalyst and process for hydrocarbon conversion
JP2002535119A (en) Catalyst carrier supporting nickel, ruthenium and lanthanum
Schmitt Jr et al. Carbon molecular sieve supports for metal catalysts-II. Selective hydrogenation of hydrocarbons over platinum supported on polyfurfuryl alcohol carbon
JPH0459052A (en) Catalyst for steam reforming
JPH0243952A (en) Catalyst for steam modification
US6562749B1 (en) Process for the preparation of a catalyst or catalyst precursor
US4577047A (en) Catalysts and process for the selective hydrogenation of acetylenes
Inoue et al. Synthesis of large pore-size and large pore-volume aluminas by glycothermal treatment of aluminium alkoxide and subsequent calcination
Catillon et al. Development of new Cu 0–Zn II/Al 2 O 3 catalyst supported on copper metallic foam for the production of hydrogen by methanol steam reforming
CN109718864B (en) Catalyst carrier, supported catalyst, preparation method and application of supported catalyst, and method for preparing hydrogen by reforming methane steam
JPH0683787B2 (en) Catalyst for steam reforming
JPH01138169A (en) Alumina base catalyst, and its production and use
JPS6012132A (en) Heat resistant catalyst and use thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080309

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees