JPH0243787A - Laser device - Google Patents

Laser device

Info

Publication number
JPH0243787A
JPH0243787A JP19497188A JP19497188A JPH0243787A JP H0243787 A JPH0243787 A JP H0243787A JP 19497188 A JP19497188 A JP 19497188A JP 19497188 A JP19497188 A JP 19497188A JP H0243787 A JPH0243787 A JP H0243787A
Authority
JP
Japan
Prior art keywords
laser
wavelength
resonator
air space
etalon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19497188A
Other languages
Japanese (ja)
Inventor
Koichi Wani
和邇 浩一
Yoshiro Ogata
尾形 芳郎
Yasuhiro Shimada
恭博 嶋田
Hideto Kawahara
河原 英仁
Tadaaki Miki
三木 忠明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19497188A priority Critical patent/JPH0243787A/en
Priority to EP88115902A priority patent/EP0310000B1/en
Priority to CA000578540A priority patent/CA1302548C/en
Priority to DE3889831T priority patent/DE3889831T2/en
Publication of JPH0243787A publication Critical patent/JPH0243787A/en
Priority to US07/499,206 priority patent/US4991178A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • H01S3/137Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity for stabilising of frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1062Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using a controlled passive interferometer, e.g. a Fabry-Perot etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain a laser device capable of retaining the quality of a monochromized laser beam for a long period by a method an optical resonator and a wavelength selecting element, installed inside the resonator and in an inert atmosphere, are provided. CONSTITUTION:A laser device of this design is provided with an optical resonator and a single or two or more wavelength selecting elements 4 installed inside the resonator and in an inert gas. For instance, laser rays in an ultraviolet region are oscillated through a discharge tube 1, which employs a mixed gas of rare gas and halogen gas as a laser medium, together with the optical resonator composed of a total reflection mirror 2 and an output mirror 3. An air space etalon 4 serving as a wavelength selection element is provided to an optical axis of the optical resonator. The air space etalon 4 is a kind of a Fabry-Perot etalon, which is provided with two parallel plane quartz plates which have an adequate refractive index toward the laser wavelength and face each other at a very small gap, and installed in a hermetically sealed vessel 5. And, the hermetically sealed vessel 5 is charged with an inert gas such as nitrogen, helium, or argon.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は微細加工等に用いるレーザ装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a laser device used for microfabrication and the like.

従来の技術 近年、微細加工用の光源として、紫外域で発振するレー
ザ装置が注目されている。中でもエキシマレーザは、レ
ーザ媒質であるクリプトン、キセノンなどの希ガスとふ
っ素、塩素などのハロゲンガスの組み合わせによって、
363 nmから193nmの間のいくつかの波長で強
力な発振線を得ることができる。
BACKGROUND OF THE INVENTION In recent years, laser devices that oscillate in the ultraviolet region have attracted attention as light sources for microfabrication. Among these, excimer lasers use a combination of rare gases such as krypton and xenon as laser media and halogen gases such as fluorine and chlorine.
Strong oscillation lines can be obtained at several wavelengths between 363 nm and 193 nm.

これらエキシマレーザの利得バンド幅は約1nmと広く
、光共振器と組み合わせて発振させた場合、発振線が0
.5nm程度の線幅(半値全幅)を持つ。
The gain bandwidth of these excimer lasers is as wide as approximately 1 nm, and when oscillated in combination with an optical resonator, the oscillation line is 0.
.. It has a line width (full width at half maximum) of about 5 nm.

このように比較的広い線幅を持つレーザ装置を光源とし
て用いた場合、光の伝送系に色収差を補正した光学系を
採用する必要がある。ところが、波長が350 nm以
下の紫外域では、光学系に用いるレンズの光学材料の選
択の幅が限られ、色収差補正が困難となる。したがって
、波長350 nm以下のエキシマレーザを利用する場
合、発振線の線幅を0.O05nm程度にまで単色化す
ることが行なわれている。これによって、色収差補正し
ない光学系を採用できることから、装置の簡略化、さら
には小型化、価格の低減を実現できる。また、集光した
レーザビームのパターンを極限まで小さくすることがで
き、超微細加工用光源としての用途が開けてくる。
When a laser device having such a relatively wide line width is used as a light source, it is necessary to employ an optical system that corrects chromatic aberration for the light transmission system. However, in the ultraviolet region where the wavelength is 350 nm or less, the range of selection of optical materials for lenses used in optical systems is limited, making it difficult to correct chromatic aberration. Therefore, when using an excimer laser with a wavelength of 350 nm or less, the line width of the oscillation line should be set to 0. Monochromatization to about O05 nm is being carried out. As a result, it is possible to employ an optical system that does not correct chromatic aberration, which makes it possible to simplify the apparatus, further downsize it, and reduce its cost. Furthermore, the pattern of the focused laser beam can be made as small as possible, opening up applications as a light source for ultrafine processing.

またこのようにエキシマレーザの発振波長を単色化した
場合、その中心波長は利得バンド幅内の任意の値に設定
可能である。したがって、発振波長を精密に設定でき機
構をエキシマレーザ本体に内蔵すれば、波長可変の紫外
レーザ装置として、微細加工のほか、化光反応の制御、
同位体の分離など幅広い応用が期待できる。
Further, when the oscillation wavelength of the excimer laser is made monochromatic in this way, the center wavelength can be set to any value within the gain bandwidth. Therefore, if the oscillation wavelength can be precisely set and a mechanism is built into the excimer laser body, the wavelength-tunable ultraviolet laser device can be used not only for microfabrication but also for controlling photochemical reactions.
It is expected to have a wide range of applications such as isotope separation.

レーザの発振線幅を狭める、すなわち単色化すルニハグ
レーティング、エタロンなどの波長選択素子を共振器中
に置けばよい。第4図はエアスペースエタロン4を用い
て発振線幅を狭めたレーザ装置の一例を示したものであ
る。エアスペースエタロンは2枚の平行平面板を対向さ
せ、その間の干渉効果によって特定の波長だけを透過さ
せるように構成したファプリ・ベローエタロンの一種で
ある。エアスペースエタロンは対向する反射面の精度1
反射率によって透過帯域幅が変わるので、目的とする発
振線幅が得られるように設計、製作すればよい。対向す
る面の反射率を調整するためには、使用するレーザ波長
で特定の反射率をもつコーティングが施される。エキシ
マレーザの波長域では金属酸化物の多層膜コーティング
が一般的である。
A wavelength selection element such as a Lunija grating or an etalon that narrows the oscillation line width of the laser, that is, makes it monochromatic, may be placed in the resonator. FIG. 4 shows an example of a laser device in which the oscillation line width is narrowed using an air space etalon 4. The air space etalon is a type of Fabry-Berrot etalon, which consists of two parallel plane plates facing each other and configured to transmit only specific wavelengths due to the interference effect between them. Air space etalon has an accuracy of 1 of the opposing reflective surface.
Since the transmission band width changes depending on the reflectance, it is only necessary to design and manufacture the device so that the desired oscillation line width can be obtained. To adjust the reflectance of opposing surfaces, a coating is applied that has a specific reflectance at the laser wavelength used. Multilayer metal oxide coatings are common in the excimer laser wavelength range.

発明が解決しようとする課題 ところがレーザ共振器内では強力なレーザ光が波長選択
素子を通過するため、反射面のコーティングが損傷して
、レーザビームの形状の変化や出力の低下、さらには発
振線幅の広がり等を生じやすいという課題があった。本
発明はこのような課題を解決するためなされたもので、
単色化したレーザビームの品質を長期間保持できるレー
ザ装置を提供するものである。
Problems to be Solved by the Invention However, in a laser resonator, a powerful laser beam passes through a wavelength selection element, which damages the coating on the reflective surface, causing changes in the shape of the laser beam, a decrease in output, and even damage to the oscillation line. There was a problem that it was easy to cause the width to expand. The present invention was made to solve such problems,
The present invention provides a laser device that can maintain the quality of a monochromatic laser beam for a long period of time.

課題を解決するための手段 この課題を解決するため本発明は、光共振器と、前記光
共振器中に設置され、不活性ガス雰囲気中におかれた単
一または複数の波長選択素子とを具備したものである。
Means for Solving the Problem In order to solve this problem, the present invention includes an optical resonator and a single or plural wavelength selection elements installed in the optical resonator and placed in an inert gas atmosphere. It is equipped with

作   用 この構成により、波長選択素子のコーテイング面にレー
ザ光が照射された時に空気中の酸素などの活性ガスを介
して起こる劣化反応を抑制することができ、波長選択素
子の寿命を飛躍的に伸ばすことができる。
Function: With this configuration, it is possible to suppress the deterioration reaction that occurs through active gases such as oxygen in the air when the coating surface of the wavelength selection element is irradiated with laser light, dramatically extending the life of the wavelength selection element. It can be stretched.

実施例 第1図は本発明の一実施例であるエキシマレーザの構成
図である。第1図において本発明の実施例のレーザ装置
は希ガスとハロゲンガスの混合気体をレーザ媒質とする
放電管1と、全反射鏡2および出力鏡3からなる光共振
器によって、紫外域でレーザ発振する。光共振器の光軸
上には波長選択素子であるエアスペースエタロン4が置
かれている。エアスペースエタロン4は、レーザ波長に
おいて適当な反射率を持つ2枚の平行平面石英板を微小
なギャップを保って向き合わせたファプリ・ベローエタ
ロンの一種であシ、気密容器5中に設置されている。気
密容器5には窒素、ヘリウム、アルゴンなどの不活性ガ
スが封入されている。
Embodiment FIG. 1 is a block diagram of an excimer laser which is an embodiment of the present invention. In FIG. 1, the laser device according to the embodiment of the present invention emits a laser beam in the ultraviolet region by an optical resonator consisting of a discharge tube 1 using a mixed gas of rare gas and halogen gas as a laser medium, a total reflection mirror 2, and an output mirror 3. oscillate. An air space etalon 4, which is a wavelength selection element, is placed on the optical axis of the optical resonator. The air space etalon 4 is a type of Fabry-Bello etalon, in which two parallel plane quartz plates having an appropriate reflectance at the laser wavelength face each other with a small gap, and is installed in an airtight container 5. There is. The airtight container 5 is filled with an inert gas such as nitrogen, helium, or argon.

次に以上のような構成によるエキシマレーザの単色化の
原理を説明する。一般にエキシマレーザの利得バンド幅
は約1 nmに及び、単色化せずに発振させると0.5
nm程度の発振線幅を持つ。共振器中にエアスペースエ
タロン4を挿入すると、発振線幅はその透過特性に従っ
てたとえば0.001nmオーダにまで単色化できる。
Next, the principle of making the excimer laser monochromatic with the above configuration will be explained. Generally, the gain bandwidth of an excimer laser is about 1 nm, and when oscillated without monochromatic, the gain bandwidth is 0.5 nm.
It has an oscillation linewidth of about nm. When the air space etalon 4 is inserted into the resonator, the oscillation line width can be made monochromatic to, for example, the order of 0.001 nm according to its transmission characteristics.

第2図はエアスペースエタロンによって特定の波長が選
択される原理を示した図である。エアスペースエタロン
の対向する面は数10%の反射率を持っており、入射し
たレーザ光は多重反射した末に元来の進行方向へ出てい
く。この時、N回反射した後に出射する光と、N+1回
転反射後に出射する光との間には、 Δ=2ndcosθ         −・−・−(1
)の光路差Δが生じるので、 mλ=2ndcosθ         ・・・・・・
@)の関係を満たす波長λを持つ光だけがエアスペース
エタロンを透過できることになる。ここで、nは対向す
る面間の屈折率、dは対向する面の間隔、θは光軸に対
する入射光の傾き角、mは整数である。
FIG. 2 is a diagram showing the principle by which a specific wavelength is selected by an air space etalon. The opposing surfaces of the air space etalon have a reflectance of several tens of percent, and the incident laser beam undergoes multiple reflections before exiting in its original direction of travel. At this time, between the light that is emitted after being reflected N times and the light that is emitted after being reflected N+1 times, Δ=2ndcosθ −・−・−(1
) occurs, so mλ=2ndcosθ...
Only light with a wavelength λ that satisfies the relationship @) can pass through the air space etalon. Here, n is the refractive index between the opposing surfaces, d is the distance between the opposing surfaces, θ is the inclination angle of the incident light with respect to the optical axis, and m is an integer.

以上の考察かられかるように、エアスペースエタロンの
対向する面の間ではレーザ光が何往復もする結果、高い
エネルギーの紫外光が定常的に存在することになる。こ
のため、反射膜のコーティングが次第に劣化することは
避けられない。特に、エアスペースエタロンを気密容器
に入れずに空気中で用いた場合、1o6パルス程度エキ
シマレーザ装置を動作させた後に波長選択特性が変化し
て発振線幅が当初の値より広がったり、中心波長が変動
する現象が起った。また、コーティングの表面が局所的
あるいは全体的に凹凸を生じる結果、ビーム形状の変化
や、レーザ出力の圓下が見られた。
As can be seen from the above considerations, as a result of the laser light making many round trips between the opposing surfaces of the air space etalon, high energy ultraviolet light is constantly present. For this reason, it is inevitable that the reflective film coating will gradually deteriorate. In particular, when the air space etalon is used in air without being placed in an airtight container, the wavelength selection characteristics change after operating the excimer laser device with about 106 pulses, causing the oscillation linewidth to become wider than its original value, or the center wavelength A phenomenon occurred in which the In addition, as a result of local or overall unevenness on the surface of the coating, changes in the beam shape and declination of the laser output were observed.

コーティングが劣化する一因としては、紫外光を吸収し
た酸素が活性種となり、同じく紫外光を吸収して反応性
を帯びているコーテイング膜と結合することが挙げられ
る。
One of the reasons why the coating deteriorates is that oxygen that absorbs ultraviolet light becomes an active species and combines with the coating film, which also absorbs ultraviolet light and becomes reactive.

そこで本実施例のレーザ装置においては、エアスペース
エタロンを不活性ガス雰囲気中に置いてこの問題を解決
した。すなわち、エアスペースエタロンを気密容器に収
め、気密容器中の気体を窒素、希ガス等で置換すること
によって、酸素が存在することによって起こる前記の反
応を抑制している。本発表者らの実験によれば、エアス
ペースエタロン周囲の雰囲気を不活性ガスとすることで
、コーティングの寿命は2桁以上延長された。特にエキ
シマレーザの波長で励起種を作らないヘリウム、アルゴ
ン等の希ガスを用いた場合その効果が大きかった。
Therefore, in the laser device of this embodiment, this problem was solved by placing the air space etalon in an inert gas atmosphere. That is, the air space etalon is housed in an airtight container, and the gas in the airtight container is replaced with nitrogen, a rare gas, etc., thereby suppressing the reaction that occurs due to the presence of oxygen. According to experiments conducted by the present authors, the life of the coating was extended by more than two orders of magnitude by using an inert gas atmosphere around the air space etalon. The effect was particularly great when rare gases such as helium and argon were used, which do not produce excited species at the wavelength of the excimer laser.

第3図は本発明の異なる実施例を示す図である。FIG. 3 is a diagram showing a different embodiment of the present invention.

第3図の実施例においては、エアスペースエタロンのギ
ャップ間の気体圧力を変えることによって、レーザ発振
の中心波長を可変にしている。すなわち、エアスペース
エタロンの対向する面間の圧力が変わると、その屈折率
nが変化するので光路差Δモ変わる。その結果、エアス
ペースエタロンによって選択される波長も変化すること
になる。この実施例ではレーザ光の中心波長を所望の値
に制御するため、レーザビームの一部をビームスプリッ
タ6によって波長検出器7に導き、波長検出器7からの
信号に応じて高圧ガス源8のパルプ9またはポンプ10
のパルプ11を開けて気密容器6内の圧力を調節してい
る。この場合も高圧ガス源8から気密容器5に供給され
る気体は窒素、希ガス等であることは言うまでもない。
In the embodiment shown in FIG. 3, the center wavelength of laser oscillation is made variable by changing the gas pressure between the gaps in the air space etalon. That is, when the pressure between the opposing surfaces of the air space etalon changes, the refractive index n changes, so the optical path difference Δmo changes. As a result, the wavelength selected by the airspace etalon will also change. In this embodiment, in order to control the center wavelength of the laser beam to a desired value, a part of the laser beam is guided to a wavelength detector 7 by a beam splitter 6, and a high pressure gas source 8 is activated in accordance with the signal from the wavelength detector 7. Pulp 9 or Pump 10
The pressure inside the airtight container 6 is adjusted by opening the pulp 11. Needless to say, in this case as well, the gas supplied from the high-pressure gas source 8 to the airtight container 5 is nitrogen, rare gas, or the like.

以上のような構成を有するので、本発明のレーザ装置に
おいては波長選択素子の寿命を飛躍的に伸ばすことがで
きる。
With the above configuration, in the laser device of the present invention, the lifetime of the wavelength selection element can be dramatically extended.

なお、本実施例においては波長選択素子としてエアスペ
ースエタロンを用いた例ヲ示り、タカ、−枚のガラス基
板の両面に反射膜をコーティングしたソリッドエタロン
や、基板表面に微細な溝加工を施したグレーティングな
ど他の波長選択素子を用いた場合でも同様の効果が期待
できる。
In this example, an example in which an air space etalon is used as a wavelength selection element is shown. Similar effects can be expected even when other wavelength selection elements such as gratings are used.

発明の詳細 な説明したように本発明によるレーザ装置は、波長選択
素子を不活性ガス雰囲気中に置くことによって波長選択
素子の寿命を伸ばし、長期間にわたって単色化したレー
ザビームの品質を安定に保つという優れた効果を有する
レーザ装置を提供することができる。
As described in detail, the laser device according to the present invention extends the life of the wavelength selection element by placing the wavelength selection element in an inert gas atmosphere, and maintains the quality of a monochromatic laser beam stably over a long period of time. A laser device having such excellent effects can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるレーザ装置の構成図、
第2図はエアスペースエタロンの原理全説明する図、第
3図は本発明の他の実施例を示す図、第4図はレーザ光
を単色化する方法の従来例を示す図である。 1・・・・・・放電管、2・・・・・・全反射鏡、3・
・・・・・出力鏡、4・・・・・・エアスペースエタロ
ン、6・・・・・・’A密容器、6・・・・・・ビーム
スプリッタ、7・・・・・・波長検出器、8・・・・・
・高圧ガス源、9・・・・・・パルプ、10・・・・・
・ポンプ、11・・・・・・パルプ。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名1−
 歓を賃 3−−一出714t +・・−工yスs’−7エタaソ 5−気著容乱 第 4
FIG. 1 is a configuration diagram of a laser device which is an embodiment of the present invention,
FIG. 2 is a diagram illustrating the entire principle of the air space etalon, FIG. 3 is a diagram showing another embodiment of the present invention, and FIG. 4 is a diagram illustrating a conventional method of monochromating laser light. 1...discharge tube, 2...total reflection mirror, 3.
... Output mirror, 4 ... Air space etalon, 6 ... 'A-tight container, 6 ... Beam splitter, 7 ... Wavelength detection Vessel, 8...
・High pressure gas source, 9...Pulp, 10...
・Pump, 11...Pulp. Name of agent: Patent attorney Shigetaka Awano and 1 other person1-
3--1 714t +...-Works s'-7 Eta a So 5-Kijo disturbance No. 4

Claims (1)

【特許請求の範囲】[Claims] 光共振器と、前記光共振器中に設置され、不活性ガス雰
囲気中におかれた単一または複数の波長選択素子とを具
備したことを特徴とするレーザ装置。
A laser device comprising: an optical resonator; and one or more wavelength selection elements installed in the optical resonator and placed in an inert gas atmosphere.
JP19497188A 1987-09-28 1988-08-04 Laser device Pending JPH0243787A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19497188A JPH0243787A (en) 1988-08-04 1988-08-04 Laser device
EP88115902A EP0310000B1 (en) 1987-09-28 1988-09-27 Laser apparatus
CA000578540A CA1302548C (en) 1987-09-28 1988-09-27 Laser apparatus
DE3889831T DE3889831T2 (en) 1987-09-28 1988-09-27 Laser apparatus.
US07/499,206 US4991178A (en) 1987-09-28 1990-03-19 Laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19497188A JPH0243787A (en) 1988-08-04 1988-08-04 Laser device

Publications (1)

Publication Number Publication Date
JPH0243787A true JPH0243787A (en) 1990-02-14

Family

ID=16333392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19497188A Pending JPH0243787A (en) 1987-09-28 1988-08-04 Laser device

Country Status (1)

Country Link
JP (1) JPH0243787A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056635A (en) * 2001-08-17 2003-02-26 Showa Corp Oil lock mechanism of hydraulic shock absorber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056635A (en) * 2001-08-17 2003-02-26 Showa Corp Oil lock mechanism of hydraulic shock absorber

Similar Documents

Publication Publication Date Title
US6424666B1 (en) Line-narrowing module for high power laser
US5802094A (en) Narrow band excimer laser
US7184204B2 (en) Master-oscillator power-amplifier (MOPA) excimer or molecular fluorine laser system with long optics lifetime
US6442182B1 (en) Device for on-line control of output power of vacuum-UV laser
JP5382975B2 (en) High power gas laser equipment
US6421365B1 (en) Narrow band excimer or molecular fluorine laser having an output coupling interferometer
JP2000236130A (en) Molecular fluorine (f2) laser and method of generating and outputting f2 laser beam
WO2016189968A1 (en) Laser device, and band-narrowing optical system
US11846866B2 (en) Apparatus for the spectral broadening of laser pulses and optical system
EP1041689A1 (en) Excimer laser
JP2002198588A (en) Fluorine molecular element
JP2002094160A (en) F2 laser
JPH0243787A (en) Laser device
WO2001001530A1 (en) Narrow band excimer laser with a prism-grating as line-narrowing optical element
JPH0243786A (en) Laser device
US20170149199A1 (en) Laser device
US10965087B2 (en) Laser device
US20130235893A1 (en) Transmissive optical device, laser chamber, amplifier stage laser device, oscillation stage laser device and laser apparatus
JP2537970B2 (en) Wavelength tunable laser device
US6553050B1 (en) Narrow band excimer or molecular fluorine laser having an output coupling interferometer
US6494584B1 (en) Ultraviolet optical device having an optical part with a gas sprayed thereon
JP2506944B2 (en) Wavelength tunable laser device
JPH01302883A (en) Tunable laser apparatus
JP2517066B2 (en) Wavelength stabilization laser device
JP2586661B2 (en) Wavelength stabilized laser device